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Preface

It is sometimes easier to describe something by what it is not rather by what it is
supposed to be. This book is not a research monograph about Malliavin calculus
with the latest results and the most sophisticated proofs. It does not contain all the
results which are known even for the basic subjects which are addressed here. The
goal was to give the largest possible variety of proof techniques. For instance, we did
not focus on the proof of concentration inequality for functionals of the Brownian
motion, as it follows closely the lines of the analog result for Poisson functionals.

This book grew from the graduate courses I gave at Paris-Sorbonne and Paris-
Saclay universities, during the last few years. It is supposed to be as accessible as
possible for students who have a knowledge of Itô calculus and some rudiments of
functional analysis.

A recurrent difficulty when someone discovers Malliavin calculus is due to the
different and often implicit identifications which are made between several functional
spaces. I tried to demystified this point as much as possible. The presentation is
hopefully self-contained, meaning that the necessary results of functional analysis
which are supposed to be known in all the research monographs, are recalled in the
core of the text. The choice of the topics has been influenced by my own research
which revolved for a while around fractional Brownian motion and then shifted to
point processes, with an inclination to the Stein’s method.

I did not insist on the historical applications of the Malliavin calculus which were
about the existence of the density of the distribution of some random variables, be-
cause there are so many other interesting subjects where the Malliavin calculus can be
applied: Greeks computations, conditional expectations, change of measure, optimal
transport, filtration enlargement and more recently the Stein-Malliavin method.

I am greatly indebted to A.S. Üstünel who introduced me to Malliavin calculus a
few years ago. It has been a long and rich journey since then.

This book benefited from the help of numerous students, most notably B.
Costaceque-Cecchi. The remaining errors are mine.

Paris, 2021 Laurent Decreusefond
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Chapter 1
Wiener space

1.1 Gaussian random variables

We begin by basic definitions about Gaussian random variables and vectors.

Definition 1.1 (Gaussian random variable) A real valued random variable 𝑋 is
Gaussian whenever its characteristic function is of the form

E
[
𝑒𝑖𝑡𝑋

]
= 𝑒𝑖𝑡𝑚𝑒−𝜎

2𝑡2/2. (1.1)

It is well known that E [𝑋] = 𝑚 and Var(𝑋) = 𝜎2.

Remark 1.1 This definition means that whenever we know that a random variable is
Gaussian, it is sufficient to compute its average and its variance to fully determine
its distribution.

A Gaussian random vector is not simply a collection of Gaussian random variables.
It is true that all the coordinates of a Gaussian vector are Gaussian but they do satisfy
a supplementary condition. In what follows, the Euclidean scalar product on R𝑛 is
defined by

⟨𝑥, 𝑦⟩ =
𝑛∑︁
𝑗=1
𝑥 𝑗 𝑦 𝑗 .

Definition 1.2 (Gaussian random vector) A random vector 𝑋 in R𝑛, i.e. 𝑋 =

(𝑋1, · · · , 𝑋𝑛), is a Gaussian random vector whenever for any 𝑡 = (𝑡1, · · · , 𝑡𝑛) ∈ R𝑛,
the real-valued random variable

⟨𝑡, 𝑋⟩ =
𝑛∑︁
𝑗=1
𝑡 𝑗𝑋 𝑗

is Gaussian.

1



2 1 Wiener space

In view of the remark 1.1, we have

E
[
𝑒𝑖⟨𝑡 , 𝑋⟩

]
= 𝑒𝑖⟨𝑡 , 𝑚⟩𝑒−

1
2 ⟨Γ𝑋𝑡 , 𝑡 ⟩ , (1.2)

where
Γ𝑋 =

(
cov(𝑋 𝑗 , 𝑋𝑘), 1 ≤ 𝑗 , 𝑘 ≤ 𝑛

)
.

is the so-called covariance matrix of 𝑋 .

Remark 1.2 Somehow hidden in the previous definition lies the identity

Var ⟨𝑡, 𝑋⟩ =
𝑛∑︁

𝑖, 𝑗=1
cov(𝑋 𝑗 , 𝑋𝑘)𝑡𝑖𝑡 𝑗 (1.3)

for any 𝑡 = (𝑡1, · · · , 𝑡𝑛) ∈ R𝑛. Since a variance is always non-negative, this means
that Γ𝑋 satisfies the identity

⟨Γ𝑋𝑡, 𝑡⟩ =
𝑛∑︁

𝑖, 𝑗=1
Γ𝑋 (𝑖, 𝑗) 𝑡𝑖 𝑡 𝑗 ≥ 0,

which induces that the eigenvalues of Γ𝑋 are non-negative.

The main feature of Gaussian vectors is that they are stable by affine transformation.

Theorem 1.1 Let 𝑋 be an R𝑛-valued Gaussian vector, 𝐵 ∈ R𝑝 and 𝐴 a linear map
(i.e. a matrix) from R𝑛 into R𝑝 . The random 𝑌 = 𝐴𝑋 + 𝐵 is an R𝑝-valued Gaussian
vector whose characteristics are given by

E [𝑌 ] = 𝐴E [𝑋] + 𝐵, Γ𝑌 = 𝐴Γ𝑋𝐴
𝑡 ,

where 𝐴𝑡 is the transpose of 𝐴.

Remark 1.3 For 𝑋 , a one dimensional centered, Gaussian random variable,

E [|𝑋 |𝑝] = 𝑐𝑝 Var(𝑋) 𝑝/2. (1.4)

Actually, in view of the previous theorem,

E
[
|N (0, 𝜎2) |𝑝

]
= 𝜎𝑝/2E [|N (0, 1) |𝑝] .

Remark 1.4 If Γ is non-negative symmetric matrix, one can define Γ1/2, a symmetric
non-negative matrix whose square equals Γ. If 𝑋 = (𝑋1, · · · , 𝑋𝑛) is a vector of
independent standard Gaussian random variables, then the previous theorem entails
that Γ1/2𝑋 is a Gaussian vector of covariance matrix Γ.

Beyond this stability by affine transformation, the set of Gaussian vectors enjoys
another remarkable stability property.
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Theorem 1.2 Let (𝑋𝑛, 𝑛 ≥ 1) be a sequence of Gaussian vectors, 𝑋𝑛 ∼ N(𝑚𝑛, Γ𝑋𝑛 ),
which converges in distribution to some random vector 𝑋 . Then, 𝑋 is a Gaussian
vector N(𝑚, Γ𝑋) where

𝑚 = lim
𝑛→∞

𝑚𝑛 and Γ𝑋 = lim
𝑛→∞

Γ𝑋𝑛 .

Remark that for 𝑋 ∼ N(0, Id𝑛), a standard Gaussian vector in R𝑛,

E
[
∥𝑋 ∥2

R𝑛
]
=

𝑛∑︁
𝑗=1

E
[
𝑋2
𝑗

]
= 𝑛.

This means that the mean norm of such a random variable goes to infinity as the
dimension grows. Thus, we cannot construct a Gaussian distribution on an infinite
dimensional space like RN, by just extending what we do on R𝑛.

Definition 1.3 (Gaussian processes) For a set 𝑇 , a family (𝑋 (𝑡), 𝑡 ∈ 𝑇) of random
variables is a Gaussian process whenever for any 𝑛 ≥ 1, for any (𝑡1, · · · , 𝑡𝑛) ∈ 𝑇𝑛,
the random vector (𝑋 (𝑡1), · · · , 𝑋 (𝑡𝑛)) is a Gaussian vector.

1.2 Wiener measure

The construction of measures on functional spaces is a delicate question which is
satisfactory solved for Gaussian measures. Recall that a Brownian motion is defined
as follows.

Definition 1.4 The Brownian motion 𝐵 = (𝐵(𝑡), 𝑡 ≥ 0) is the (unique) centered,
Gaussian process on R+ with independent increments such that

E [𝐵(𝑡)𝐵(𝑠)] = 𝑡 ∧ 𝑠.

Its sample-paths are Hölder continuous of any order strictly less than 1/2.

As such, the distribution of 𝐵 defines a measure on the space of continuous functions,
null at time 0, as well as a measure on the spaces Hol(𝛼) for any 𝛼 < 1/2. It remains
to prove that such a process does exist. There are several possibilities to do so. The
most intuitive is probably the Donsker-Lamperti theorem:

Theorem 1.3 (Donsker-Lamperti) Let (𝑋𝑛, 𝑛 ≥ 1) be a sequence of independent,
identically distributed random variables such that E

[
|𝑋1 |2𝑝

]
< ∞. Then,

1
√
𝑛

[𝑛𝑡 ]∑︁
𝑗=1

𝑋 𝑗 =⇒ 𝐵(𝑡)

in the topology of Hol(𝛾) for any 𝛾 < (𝑝 − 1)/2𝑝, i.e.
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E
𝐹

( 1
√
𝑛

[𝑛.]∑︁
𝑗=1

𝑋 𝑗

) 𝑛→∞−−−−→ E [𝐹 (𝐵)]

for any 𝐹 : Hol(𝛾) → R bounded and continuous.
For 𝑝 = 1, i.e. square integrable random variables, the convergence holds in

C([0, 𝑇]; R) for any 𝑇 > 0.

This construction of the Brownian motion via the random walk is not fully satisfac-
tory as we cannot write 𝐵 as the sum of a series. The construction of Itô-Nisio is
more interesting in this respect.

We need to introduce a few functional spaces before going further. The most well
known space of functions is the set of continuous functions.

Definition 1.5 (Space of continuous functions) We denote by C the space of real
valued functions, continuous on [0, 1], null at time 0 equipped with the norm

∥ 𝑓 ∥∞ = sup
𝑡∈[0,1]

| 𝑓 (𝑡) |.

The space C is a complete normed space, i.e. a Banach space. The polynomials are
dense in C hence it is separable.

If we look at further properties of functions, there are a multitude of ways a function
can be more than continuous but not differentiable. This means that that there exists
a bunch of spaces between C1 and C. The most celebrated are probably the Hölder
spaces.

Definition 1.6 (Hölder space) For 𝛼 ∈ (0, 1], a function 𝑓 : [0, 1] → R is said
to be Hölder continuous of order 𝛼 whenever there exists 𝑐 > 0 such that for all
𝑠, 𝑡 ∈ [0, 1],

| 𝑓 (𝑡) − 𝑓 (𝑠) | ≤ 𝑐 |𝑡 − 𝑠 |𝛼 .

The norm on Hol(𝛼) is given by

∥ 𝑓 ∥Hol(𝛼) = | 𝑓 (0) | + sup
𝑠≠𝑡

| 𝑓 (𝑡) − 𝑓 (𝑠) |
|𝑡 − 𝑠 |𝛼 ·

With this norm, Hol(𝛼) is a Banach space but it is not separable. When 𝛼 = 1, the
functions are said to be Lipschitz continuous.

Remark 1.5 In what follows ℓ denotes the Lebesgue measure on R or R𝑛 according
to the context.

Alternatively, we may consider Sobolev like spaces which are often easier to work
with despite their apparent complexity.

Definition 1.7 (Riemann-Liouville fractional spaces) For 𝛼 > 0, for 𝑓 ∈
𝐿2 ([0, 1] → R; ℓ

)
,



1.2 Wiener measure 5

𝐼𝛼 𝑓 (𝑡) = 1
Γ(𝛼)

∫ 𝑡

0
(𝑡 − 𝑠)𝛼−1 𝑓 (𝑠)d𝑠. (1.5)

The space 𝐼𝛼,2 is the set 𝐼𝛼 (𝐿2 ([0, 1] → R; ℓ
)
) equipped with the scalar product

⟨𝐼𝛼 𝑓 , 𝐼𝛼𝑔⟩𝐼𝛼,2 = ⟨ 𝑓 , 𝑔⟩
𝐿2

(
[0,1]→R; ℓ

) = ∫ 1

0
𝑓 (𝑠)𝑔(𝑠)d𝑠.

Since the map ( 𝑓 ↦→ 𝐼𝛼 𝑓 ) is one-to-one, this defines a scalar product.
More generally, for 𝑝 ≥ 1, 𝐼𝛼,𝑝 is the space 𝐼𝛼

(
𝐿 𝑝

(
[0, 1] → R; ℓ

) )
equipped

with the norm
∥𝐼𝛼 𝑓 ∥𝐼𝛼,𝑝 = ∥ 𝑓 ∥

𝐿𝑝
(
[0,1]→R; ℓ

) .
Another useful scale of functions is the Slobodetzky family of fractional Sobolev
spaces.

Definition 1.8 (Slobodetzky spaces) For 𝛼 ∈ (0, 1] and 𝑝 ≥ 1, a function 𝑓 ∈
𝐿 𝑝

(
[0, 1] → R; ℓ

)
is in W𝛼,𝑝 whenever∬

[0,1]2

| 𝑓 (𝑡) − 𝑓 (𝑠) |𝑝
|𝑡 − 𝑠 |1+𝛼𝑝

d𝑠d𝑡 < ∞.

The space W𝛼,𝑝 equipped with the norm

∥ 𝑓 ∥ 𝑝W𝛼,𝑝
:= ∥ 𝑓 ∥

𝐿𝑝
(
[0,1]→R; ℓ

) + (∬
[0,1]2

| 𝑓 (𝑡) − 𝑓 (𝑠) |𝑝
|𝑡 − 𝑠 |1+𝛼𝑝

d𝑠d𝑡
)1/𝑝

,

is a separable Banach space.

These spaces are interesting because of the following embeddings.

Theorem 1.4 For any 𝛼′′ > 𝛼′ > 𝛼 > 1/𝑝, we have

Hol(𝛼′′) ⊂ W𝛼′ , 𝑝 ⊂ 𝐼𝛼,𝑝 ⊂ Hol(𝛼 − 1/𝑝) ⊂ C.

Moreover, polynomials on [0, 1] have bounded derivative, thus they are Lipschitz
hence Hölder continuous of any order and they are dense in C hence all these spaces
are dense in C.

As a consequence, we retrieve easily the Kolmogorov lemma about the regularity of
Brownian sample-paths.

Lemma 1.1 For any 𝛼 ∈ [0, 1/2) and any 𝑝 ≥ 1, the sample-paths of a Brownian
motion belong to W𝛼,𝑝 with probability 1.

Proof It is sufficient to prove that

E
[∬

[0,1]2

|𝐵(𝑡) − 𝐵(𝑠) |𝑝
|𝑡 − 𝑠 |1+𝛼𝑝

d𝑠d𝑡
]
< ∞.
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Since 𝐵(𝑡) − 𝐵(𝑠) is a Gaussian random variable,

E [|𝐵(𝑡) − 𝐵(𝑠) |𝑝] = 𝑐𝑝 E
[
|𝐵(𝑡) − 𝐵(𝑠) |2

] 𝑝/2
= 𝑐𝑝 |𝑡 − 𝑠 |𝑝/2.

The function (𝑠, 𝑡) ↦−→ |𝑡 − 𝑠 |−1+(1/2−𝛼) 𝑝 is integrable provided that 𝛼 < 1/2, hence
the result. □

•> Cameron-Martin space

A space which will be of paramount importance in the following is the Cameron-
Martin space, denoted by H and defined by

H = 𝐼1,2,

the set of differentiable functions whose derivative is square integrable over [0, 1],
equipped with the scalar product

⟨ 𝑓 , 𝑔⟩H = ⟨ ¤𝑓 , ¤𝑔⟩
𝐿2

(
[0,1]→R; ℓ

)
where ¤𝑓 is the unique element of 𝐿2 ([0, 1] → R; ℓ

)
such that

𝑓 (𝑡) = 𝐼1 𝑓 (𝑡) =
∫ 𝑡

0
¤𝑓 (𝑠)d𝑠.

According to the Cauchy-Schwarz inequality, for 𝑓 ∈ H

| 𝑓 (𝑡) − 𝑓 (𝑠) | =
����∫ 1

0
1(𝑠,𝑡 ] (𝑟) ¤𝑓 (𝑟)d𝑟

���� ≤ √
𝑡 − 𝑠 ∥ ¤𝑓 ∥

𝐿2
(
[0,1]→R; ℓ

)
hence H ⊂ Hol(1/2) and in view of Theorem 1.4, H is dense in any W𝛼,𝑝 for
𝛼 < 1/2, 𝑝 ≥ 1.

We now are in position to describe the Itô-Nisio construction of the Wiener measure.
Consider ( ¤ℎ𝑚, 𝑚 ≥ 0) a complete orthonormal basis of 𝐿2 ([0, 1] → R; ℓ

)
. By the

very definition of the scalar product on H , this entails that (ℎ𝑚 = 𝐼1 ¤ℎ𝑚, 𝑚 ≥ 0) is
a complete orthonormal basis of H . One may choose the family given by:

ℎ0 (𝑡) = 𝑡 and ℎ𝑚 (𝑡) =
√

2
𝜋𝑚

sin(𝜋𝑚𝑡) for 𝑚 ≥ 1. (1.6)

Then, consider the sequence of approximations given by

𝑆𝑛 (𝑡) =
𝑛∑︁
𝑚=0

𝑋𝑚 ℎ𝑚 (𝑡) (1.7)
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where (𝑋𝑚, 𝑚 ≥ 0) is a sequence of independent, standard Gaussian random vari-
ables. We then have the following extension of the Itô-Nisio theorem.

Theorem 1.5 For any (𝛼, 𝑝) such that 1/𝑝 < 𝛼 < 1/2, the sequence (𝑆𝑛, 𝑛 ≥ 1)
converges in W𝛼,𝑝 with probability 1. Moreover, the limit process, denoted by 𝐵, is
Gaussian, centered with covariance

E [𝐵(𝑡)𝐵(𝑠)] = min(𝑡, 𝑠).

Hence 𝐵 is distributed as a Brownian motion.

0.0 0.2 0.4 0.6 0.8 1.0

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

Fig. 1.1 A sample-path of 𝑆5000 sampled on one thousand points. The roughness is already apparent
though the trajectory is still differentiable.

We first need a general lemma.

Lemma 1.2 Let

𝜔𝑀 = sup
𝑚,𝑛≥𝑀

∥𝑆𝑛 − 𝑆𝑚∥W𝛼,𝑝
and 𝑇𝑀 = sup

𝑛≥𝑀
∥𝑆𝑛 − 𝑆𝑀 ∥W𝛼,𝑝

.

If (𝑇𝑀 , 𝑀 ≥ 1) converges in probability to 0 then (𝑆𝑛, 𝑛 ≥ 1) is convergent with
probability 1.

Proof It is clear that (
𝑇𝑀 ≤ 𝜖

)
⊂

(
𝜔𝑀 ≤ 2𝜖

)
,

hence
P(𝜔𝑀 > 2𝜖) ≤ P(𝑇𝑀 > 𝜖).

If (𝑇𝑀 , 𝑀 ≥ 1) converges in probability to 0, then so does (𝜔𝑀 , 𝑀 ≥ 1). Con-
sequently, there is a subsequence which converges with probability 1 but 𝜔𝑀 is
decreasing, hence the whole sequence (𝜔𝑀 , 𝑀 ≥ 1) converges to 0 with probabil-
ity 1.
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This means that (𝑆𝑛, 𝑛 ≥ 1) is a.e. a Cauchy sequence in a complete Banach
space, hence is convergent. □

Proof (Proof of Theorem 1.5) Step 1. The Doob inequality for Banach valued mar-
tingales states that

E
[
𝑇
𝑝

𝑀

]
≤ 𝑝

𝑝 − 1
sup
𝑛≥𝑀

E
[
∥𝑆𝑛 − 𝑆𝑀 ∥ 𝑝W𝛼,𝑝

]
(1.8)

Since 𝑆𝑛 − 𝑆𝑀 is a Gaussian process, in view of (1.4),

E
[���(𝑆𝑛 − 𝑆𝑀 ) (𝑡) − (𝑆𝑛 − 𝑆𝑀 ) (𝑠)

���𝑝]
= 𝑐𝑝E

[���(𝑆𝑛 − 𝑆𝑀 ) (𝑡) − (𝑆𝑛 − 𝑆𝑀 ) (𝑠)
���2] 𝑝/2

= 𝑐𝑝E

[( 𝑛∑︁
𝑚=𝑀+1

𝑋𝑚
(
ℎ𝑚 (𝑡) − ℎ𝑚 (𝑠)

) )2
] 𝑝/2

.

Since the 𝑋𝑚’s are independent with unit variance,

E

[( 𝑛∑︁
𝑚=𝑀+1

𝑋𝑚
(
ℎ𝑚 (𝑡) − ℎ𝑚 (𝑠)

) )2
]
=

𝑛∑︁
𝑚=𝑀+1

(
ℎ𝑚 (𝑡) − ℎ𝑚 (𝑠)

)2
. (1.9)

A clever use of Parseval identity

The trick is to note that

ℎ𝑚 (𝑡) = ⟨ ¤ℎ𝑚, 1[0,𝑡 ]⟩𝐿2 = ⟨ℎ𝑚, 𝑡 ∧ .⟩H .

This means that the right-hand-side of (1.9) is the Cauchy remainder of the series

∞∑︁
𝑚=0

⟨ℎ𝑚, 𝑡 ∧ . − 𝑠 ∧ .⟩2
H = ∥𝑡 ∧ . − 𝑠 ∧ .∥2

H = |𝑡 − 𝑠 |,

according to the Parseval identity. Since 𝛼 < 1/2,∫
[0,1]2

|𝑡 − 𝑠 |𝑝/2 |𝑡 − 𝑠 |−1−𝛼𝑝d𝑠d𝑡 =
∫
[0,1]2

|𝑡 − 𝑠 |−1+(1/2−𝛼) 𝑝d𝑠d𝑡 < ∞.

Similarly, we have

E
[
∥𝑆𝑛 − 𝑆𝑀 ∥ 𝑝

𝐿𝑝
(
[0,1]→R; ℓ

) ] ≤ 𝑐
(

𝑛∑︁
𝑚=𝑀+1

⟨ℎ𝑚, 𝑡 ∧ .⟩2
H

) 𝑝/2

.
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By the dominated convergence theorem, it follows that

sup
𝑛≥𝑀

E
[
∥𝑆𝑛 − 𝑆𝑀 ∥ 𝑝W𝛼,𝑝

]
≤ 𝑐

∫ 1

0

( ∞∑︁
𝑚=𝑀+1

⟨ℎ𝑚, 𝑡 ∧ .⟩2
H

) 𝑝/2

d𝑡

+ 𝑐
∫
[0,1]2

( ∞∑︁
𝑚=𝑀+1

⟨ℎ𝑚, 𝑡 ∧ . − 𝑠 ∧ .⟩2
H

) 𝑝/2
|𝑡 − 𝑠 |−1−𝛼𝑝d𝑠d𝑡

𝑀→∞−−−−−→ 0. (1.10)

The result follows from (1.10), the Markov inequality and Lemma 1.2. We denote
by 𝐵 the limit of 𝑆𝑛.
Step 2. It is clear that for any (𝑡1, · · · , 𝑡𝑛) ∈ [0, 1] and (𝛼1, · · · , 𝛼𝑛),

𝑛∑︁
𝑖=1

𝛼𝑖𝑆𝑀 (𝑡𝑖)

is a Gaussian random variable. In view of Theorem 1.2, the limit is Gaussian hence
𝐵 is a Gaussian process.
Step 3. Remark that the sequence (𝑆𝑛, 𝑛 ≥ 1) is built on the probability space
Ω = RN, equipped with the probability measure P = ⊗𝑛∈N a where a is the standard
Gaussian distribution on R. Fatou’s Lemma and (1.9) entail that

E
[
∥𝐵 − 𝑆𝑀 ∥ 𝑝W𝛼,𝑝

]
≤ lim inf

𝑛
E

[
∥𝑆𝑛 − 𝑆𝑀 ∥ 𝑝W𝛼,𝑝

]
≤ lim sup

𝑛

E
[
∥𝑆𝑛 − 𝑆𝑀 ∥ 𝑝W𝛼,𝑝

]
= inf

𝑀
sup
𝑛≥𝑀

E
[
∥𝑆𝑛 − 𝑆𝑀 ∥ 𝑝W𝛼,𝑝

]
= 0, (1.11)

according to (1.10). This means (𝑆𝑀 , 𝑀 ≥ 1) converges to 𝐵 in 𝐿2 (Ω → W𝛼,2; P
)
,

hence

E [𝐵(𝑡)𝐵(𝑠)] = E

[ ∞∑︁
𝑚=0

𝑋𝑚⟨ℎ𝑚, 𝑡 ∧ .⟩H ×
∞∑︁
𝑚′=0

𝑋𝑚′ ⟨ℎ𝑚′ , 𝑠 ∧ .⟩H

]
=

∞∑︁
𝑚=0

∞∑︁
𝑚′=0

E [𝑋𝑚𝑋𝑚′ ] ⟨ℎ𝑚, 𝑡 ∧ .⟩H ⟨ℎ𝑚′ , 𝑠 ∧ .⟩H

by Fubini Theorem,

=

∞∑︁
𝑚=0

E
[
𝑋2
𝑚

]
⟨ℎ𝑚, 𝑡 ∧ .⟩H ⟨ℎ𝑚, 𝑠 ∧ .⟩H
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by independence and hence orthogonality of the 𝑋𝑚’s,

=

∞∑︁
𝑚=0

⟨ℎ𝑚, 𝑡 ∧ .⟩H ⟨ℎ𝑚, 𝑠 ∧ .⟩H

since 𝑋𝑚 has a unit variance,

= ⟨𝑡 ∧ ., 𝑠 ∧ .⟩H ,

according to the Parseval equality. The very definition of the scalar product on H
entails that

⟨𝑡 ∧ ., 𝑠 ∧ .⟩H =

∫ 1

0
1[0,𝑡 ] (𝑟)1[0,𝑠] (𝑟)d𝑟 = 𝑡 ∧ 𝑠.

Several other constructions as limit of stochastic processes lead to a Brownian
motion. As a conclusion of these theorems, it appears that the distribution of 𝐵 is
a probability measure on the Banach spaces C([0, 1]; R), Hol(𝛾) or W𝛼,𝑝 . Now,
if we reverse the problem, how can we characterize a probability measure on, say,
C([0, 1]; R)? How do we determine that it coincides with the Brownian motion
distribution?

In finite dimension, a probability measure is characterized by its Fourier trans-
form, often called its characteristic function. This still holds in separable Banach
spaces.

Definition 1.9 For ` a probability measure on a separable Banach space W (whose
dual is denoted by W∗), its characteristic functional is

𝜙` : W∗ −→ C

𝑧 ↦−→
∫

W
𝑒𝑖⟨𝑧,𝑤⟩W∗ ,Wd`(𝑤).

Theorem 1.6 For ` and a two probability measures on W,

(𝜙` = 𝜙a) ⇐⇒ (` = a).

•> Gelfand triplet

We now need to introduce the set of functional spaces which will serve as the
framework for the sequel. From now on, W will be any of the spaces W𝛼,𝑝 for
1/𝑝 < 𝛼 < 1/2 or C([0, 1],R) and W∗ is its topological dual (the set of continuous
linear forms on W). The measure ` is the Wiener measure, i.e. the distribution
induced by the Brownian motion on W.

The Hilbert space H plays the rôle of pivotal space, meaning that it is identified
with its dual. The map 𝔢 is the embedding from H into W and 𝔢∗ is its adjoint map.
Because of the identification, we have that for any 𝑧 ∈ W∗ and ℎ ∈ H ,
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⟨𝑧, 𝔢(ℎ)⟩W∗ ,W = ⟨𝔢∗ (𝑧), ℎ⟩H .

It is useful to have in mind the diagram 1.2.

W∗ H∗

𝐿2 ([0, 1] → R; ℓ
)

H W

𝔢∗

𝐼1 𝔢

Fig. 1.2 Embeddings and identification for Wiener spaces. An arrow with a hook means the map
is one-to-one. A double head indicates that the map is onto or that is range in dense.

Note that, since 𝔢∗ (W∗)⊥ = ker 𝔢 = {0}, 𝔢∗ (W∗) is dense in H . The triplet
(W,H , `) is known as a Gelfand triplet or an abstract Wiener space.

•! Do not identify too much!

As the map 𝐼1, the first order quadrature operator, is an isometric isomorphism
between 𝐿2 ([0, 1] → R; ℓ

)
and H , it is common to identify these two spaces. Since

we already identified H and its dual, we cannot identify H and 𝐿2 ([0, 1] → R; ℓ
)

otherwiseH is identified to 𝐿2 ([0, 1] → R; ℓ
)
, i.e. all square integrable functions are

differentiable. Unfortunately, this is often done in the literature because it simplifies
greatly the presentation and permits useful further identifications. This is the main
cause of disarray when first reading a paper or a book on Malliavin calculus.

Example 1.1 Representation of 𝔢∗ (Y𝑎)
According to Theorem 1.4, H ⊂ Hol(1/2). Thus, the Dirac measure Y𝑎 is a

continuous linear map on H . Let 𝑥𝑎 be its representative in H . We must have for
any 𝑓 ∈ H ,

Y𝑎 ( 𝑓 ) = 𝑓 (𝑎) = 𝑓 (𝑎) − 𝑓 (0) = ⟨𝑥𝑎, 𝑓 ⟩H =

∫ 1

0
¤𝑥𝑎 (𝑠) ¤𝑓 (𝑠) d𝑠,

where ¤𝑓 = (𝐼1)−1 𝑓 is the derivative of 𝑓 . The sole candidate is ¤𝑥𝑎 = 1[0,𝑎] , hence
𝑥𝑎 (𝑠) = 𝑎 ∧ 𝑠, i.e.

𝔢∗ (Y𝑎) = . ∧ 𝑎. (1.12)

Hence, 𝔢∗ (Y𝑎) = 𝑎 ∧ . = 𝐼1 (1[0,𝑎]).

With the notations of Theorem 1.5, we have

Theorem 1.7 For any 𝑧 ∈ W∗,
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E
[
𝑒𝑖⟨𝑧,𝐵⟩W∗ ,W

]
= exp

(
−1

2
∥𝔢∗ (𝑧)∥2

H

)
. (1.13)

Proof From Theorem 1.5, we have

⟨𝑧, 𝐵⟩W∗ ,W = lim
𝑛→∞

𝑛∑︁
𝑚=0

𝑋𝑚 ⟨𝑧, 𝔢(ℎ𝑚)⟩W∗ ,W.

Remark that the random variable ⟨𝑧, 𝐵⟩W∗ ,W is the limit of a sum of independent
Gaussian random variables. By dominated convergence, we get

E
[
𝑒𝑖⟨𝑧,𝐵⟩W∗ ,W

]
= lim
𝑛→∞

𝑛∏
𝑚=0

E
[
𝑒𝑖𝑋𝑚 ⟨𝑧,𝔢(ℎ𝑚 ) ⟩W∗ ,W

]
= lim
𝑛→∞

𝑛∏
𝑚=0

exp
(
−1

2
⟨𝑧, 𝔢(ℎ𝑚)⟩2

W∗ ,W

)
by (1.1),

= exp

(
−1

2

∞∑︁
𝑚=0

⟨𝔢∗ (𝑧), ℎ𝑚⟩2
W∗ ,W

)
= exp

(
−1

2
∥𝔢∗ (𝑧)∥2

H

)
,

according to the Parseval equality. □

1.3 Wiener integral

The dual bracket between an element of W∗ and an element of W is defined by
construction of the dual of W. But we not only have the Banach structure on W, we
also have a measure. We can take advantage of this richer framework to extend the
above mentioned dual bracket to elements of H and W. In what follows, the letter 𝜔
represents the generic element of W. We denote by ` the distribution of 𝐵 on W.

Definition 1.10 (Wiener integral) The map

𝛿 : 𝔢∗ (W∗) ⊆ H −→ 𝐿2 (W → R; `
)

𝔢∗ (𝑧) ↦−→ ⟨𝑧, 𝜔⟩W∗ ,W .

is an isometry. Its unique extension to H is called the Wiener integral.

Proof The very definition of ` (see (1.13)) entails that for any 𝑧 ∈ W∗,
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E
[
exp

(
𝑖\ ⟨𝑧, 𝜔⟩W∗ ,W

) ]
= exp

(
− \

2

2
∥𝔢∗ (𝑧)∥2

H

)
.

This means that the random variable (𝛿𝑧) (𝜔) = ⟨𝑧, 𝜔⟩W∗ ,W is a centered Gaussian
random variable of variance ∥𝔢∗ (𝑧)∥2

H . Otherwise stated, for ℎ ∈ 𝔢∗ (W∗),

∥𝛿(ℎ)∥
𝐿2

(
W→R; `

) = ∥ℎ∥H . (1.14)

Since 𝔢∗ (W∗) is dense in H , we can extend 𝛿 as a linear isometry from H into
𝐿2 (W → R; `

)
as follows: For ℎ ∈ H , take (𝑧𝑛, 𝑛 ≥ 1) a sequence of elements of

W∗ such that 𝔢∗ (𝑧𝑛) converges to ℎ ∈ H . Then according to (1.14), the sequence
(𝛿(𝔢∗ (𝑧𝑛)), 𝑛 ≥ 1) is Cauchy in 𝐿2 (W → R; `

)
hence converges to an element of

𝐿2 (W → R; `
)

we denote by 𝛿ℎ. Moreover, (1.14) also implies that if ℎ = 0 then
lim𝑛→∞ 𝛿(𝔢∗ (𝑧𝑛)) = 0 hence the limit does not depend on the chosen sequence. □

Corollary 1.1 For ℎ ∈ H ,

E
[
𝑒𝑖 𝛿 (ℎ)

]
= exp

(
−1

2
∥ℎ∥2

H

)
.

Proof With our new notations, Equation (1.13) can be rewritten as follows: For
𝑧 ∈ W∗,

E
[
𝑒𝑖 𝛿 (𝔢

∗ (𝑧) )
]
= exp

(
−1

2
∥𝔢∗ (𝑧)∥2

H

)
.

Let (𝑧𝑛, 𝑛 ≥ 1) a sequence of elements of W∗ such that 𝔢∗ (𝑧𝑛) tends to ℎ in H .
By construction, (𝛿(𝔢∗ (𝑧𝑛)), 𝑛 ≥ 1) tends to 𝛿(ℎ) in 𝐿2 (W → R; `

)
, hence there

is a subsequence which we still denote by the same indices, which converges with
probability 1 in W. The dominated convergence theorem thus entails that

E
[
𝑒𝑖 𝛿 (𝔢

∗ (𝑧𝑛 ) )
]
𝑛→∞−−−−→ E

[
𝑒𝑖 𝛿 (ℎ)

]
.

Furthermore, we have
∥𝔢∗ (𝑧𝑛)∥H

𝑛→∞−−−−→ ∥ℎ∥H
and the result follows. □

Remark 1.6 For ℎ ∈ W∗ and 𝑘 ∈ H

⟨ℎ, 𝜔 + 𝔢(𝑘)⟩W∗ ,W = 𝛿(𝔢∗ (ℎ)) (𝜔) + ⟨𝔢∗ (ℎ), 𝑘⟩H .

Passing to the limit, we have

𝛿ℎ(𝜔 + 𝑘) = 𝛿ℎ(𝜔) + ⟨ℎ, 𝑘⟩H , (1.15)

for any ℎ ∈ H .

Remark 1.7 In view of (1.12), we can write
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𝜔(𝑡) = 𝛿(𝔢∗ (Y𝑡 )) = 𝛿(𝑡 ∧ .) (𝜔). (1.16)

Furthermore, let (ℎ𝑚, 𝑚 ≥ 0) be a complete orthonormal basis of H . We have

𝑡 ∧ . =
∞∑︁
𝑚=0

⟨𝑡 ∧ ., ℎ𝑚⟩H ℎ𝑚

=

∞∑︁
𝑚=0

〈
1[0,𝑡 ] , ¤ℎ𝑚

〉
𝐿2

(
[0,1]→R; ℓ

) ℎ𝑚
=

∞∑︁
𝑚=0

ℎ𝑚 (𝑡) ℎ𝑚.

Hence,

𝜔(𝑡) =
∞∑︁
𝑚=0

𝛿ℎ𝑚 (𝜔) 𝔢(ℎ𝑚) (𝑡) (1.17)

•! A word about the notations

The Brownian motion takes its value in W. We can see it as a random variable from
an indefinite space Ω into W and then use the notation 𝐵, implicitly representing
𝐵(𝜔). With this convention, the distribution of 𝐵 on W is the Wiener measure and
denoted by `. We can as well choose Ω to be itself W, i.e. work on what is called
the canonical space, and then 𝐵(𝜔) = 𝜔. In this situation, as usual the measure on
Ω is denoted by P. Thus for 𝐹 : W → R, we can equivalently write∫

W
𝐹d` or E [𝐹 (𝐵)] .

No notation is better than the other. The former is more usual, the latter keeps track
of the fact that we are working with trajectories as basic elements.

The most useful theorem for the sequel states that if we translate the Brownian
sample-path by an element of H , then the distribution of this new process is abso-
lutely continuous with respect to the initial Wiener measure. This is the transposition
in infinite dimension of the trivial result in dimension 1:

E [ 𝑓 (N (𝑚, 1))] = (2𝜋)−1/2
∫

R
𝑓 (𝑥 + 𝑚)𝑒−𝑥2/2d𝑥

= (2𝜋)−1/2
∫

R
𝑓 (𝑥)𝑒𝑥𝑚−𝑚2/2𝑒−𝑥

2/2d𝑥 = E [( 𝑓Λ𝑚) (N (0, 1))]

where Λ𝑚 (𝑥) = 𝑒𝑥𝑚−𝑚2/2.
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Theorem 1.8 (Cameron-Martin) For any ℎ ∈ H , for any bounded function 𝐹 :
W → R, ∫

W
𝐹 (𝜔 + 𝔢(ℎ))d`(𝜔) =

∫
W
𝐹 (𝜔)Λℎ (𝜔)d`(𝜔) (1.18)

where
Λℎ (𝜔) = exp

(
𝛿ℎ(𝜔) − 1

2
∥ℎ∥2

H

)
.

Proof Let

𝑇ℎ : W −→ W
𝜔 ↦−→ 𝜔 + 𝔢(ℎ)

whose inverse is 𝑇−ℎ. Eqn. (1.18) can be rewritten

E [𝐹 ◦ 𝑇ℎ] = E [𝐹Λℎ] .

It is equivalent to
E [𝐹 ◦ 𝑇−ℎ Λℎ] = E [𝐹] . (1.19)

This means that the pushforward of the measure Λℎ` by the map 𝑇−ℎ is the Wiener
measure `. In view of (1.13), we have to prove that for any 𝑧 ∈ W∗,∫

W
exp

(
𝑖 ⟨𝑧, 𝜔 − 𝔢(ℎ)⟩W∗ ,W

)
exp

(
𝛿ℎ(𝜔) − 1

2
∥ℎ∥2

H

)
d`(𝜔)

= exp
(
−1

2
∥𝔢∗ (𝑧)∥2

H

)
. (1.20)

Remark that

𝑖 ⟨𝑧, 𝜔 − 𝔢(ℎ)⟩W∗ ,W + 𝛿ℎ(𝜔) − 1
2
∥ℎ∥2

H

= 𝑖 ⟨𝑧, 𝜔⟩W∗ ,W + 𝛿ℎ(𝜔) − 𝑖 ⟨𝑧, 𝔢(ℎ)⟩W∗ ,W − 1
2
∥ℎ∥2

H

= 𝑖𝛿
(
𝔢∗ (𝑧) − 𝑖ℎ

)
(𝜔) − 𝑖 ⟨𝔢∗ (𝑧), ℎ⟩H − 1

2
∥ℎ∥2

H . (1.21)

In view of the definition of the Wiener integral,∫
W

exp
(
𝑖𝛿

(
𝔢∗ (𝑧) − 𝑖ℎ

)
(𝜔)

)
d`(𝜔) = exp

(
−1

2
∥𝔢∗ (𝑧) − 𝑖ℎ∥2

H

)
.

Since H is a real (not a complex) Hilbert space,

∥𝔢∗ (𝑧) − 𝑖ℎ∥2
H = ∥𝔢∗ (𝑧)∥2

H − ∥ℎ∥2
H − 2𝑖 ⟨𝔢∗ (𝑧), ℎ⟩H . (1.22)

Plug (1.22) into (1.21) to get (1.20). □
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A quick refresher about Hilbert spaces

We shall often encounter partial functions: For a function of several variables, say
𝑓 (𝑡, 𝑠), we denote by 𝑓 (𝑡, .) the partial function

𝑓 (𝑡, .) : 𝐸 −→ R
𝑠 ↦−→ 𝑓 (𝑡, 𝑠).

Definition 1.11 A Hilbert space (𝐻, ⟨., .⟩𝐻 ) is a vector space 𝐻 which is complete
for the topology induced by the scalar product ⟨., .⟩𝐻 .

Recall that a metric space 𝐸 is separable whenever there exists a denumerable family
which is dense: There exists (𝑥𝑛, 𝑛 ≥ 1) such that for any 𝜖 > 0, any 𝑥 ∈ 𝑋 , one can
find some 𝑥𝑛 such that 𝑑 (𝑥, 𝑥𝑛) < 𝜖 . By construction, the set of rational numbers is
such a set in R. All the spaces we are going to consider, even the seemingly ugliest,
are separable hence we can safely forget this subtlety.

Theorem 1.9 Any separable Hilbert space 𝐻 admits a complete orthonormal basis
(CONB for short) (𝑒𝑛, 𝑛 ≥ 1), i.e. on the one hand

⟨𝑒𝑛, 𝑒𝑚⟩𝐻 = 1{𝑛} (𝑚)

and on the other hand, any 𝑥 ∈ 𝐻 can be written

𝑥 =

∞∑︁
𝑛=1

⟨𝑥, 𝑒𝑛⟩𝐻 𝑒𝑛

which means

lim
𝑁→∞

𝑥 − 𝑁∑︁
𝑛=1

⟨𝑥, 𝑒𝑛⟩𝐻 𝑒𝑛


𝐻
= 0.

We will use repeatedly in diverse contexts the Parseval inequality which says the
following.

Corollary 1.2 (Parseval) Let (𝑒𝑛, 𝑛 ≥ 1) be a CONB. For any 𝑥 ∈ 𝐻,

∥𝑥∥𝐻2 =

∞∑︁
𝑛=1

⟨𝑥, 𝑒𝑛⟩2
𝐻 and ⟨𝑥, 𝑦⟩𝐻 =

∞∑︁
𝑛=1

⟨𝑥, 𝑒𝑛⟩𝐻 ⟨𝑦, 𝑒𝑛⟩𝐻 .

The classical example of Hilbert spaces is the space of square integrable functions
from a measurable space (𝐸 ; 𝑚) into R:

𝐿2 (𝐸 → R; 𝑚
)
=

{
𝑓 : 𝐸 → R,

∫
𝐸

| 𝑓 (𝑥) |2d𝑚(𝑥) < ∞
}
,

with the scalar product
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⟨ 𝑓 , 𝑔⟩
𝐿2

(
𝐸→R;𝑚

) = ∫
𝐸

𝑓 (𝑥) 𝑔(𝑥)d𝑚(𝑥).

Self-reproducing Hilbert spaces

Assume we are given a symmetric function 𝑅 on 𝐸 × 𝐸 satisfying

𝑛∑︁
𝑘,𝑙=1

𝑅(𝑡𝑘 , 𝑡𝑙) 𝑐𝑘 𝑐𝑙 ≥ 0

for any 𝑛 ≥ 1, any 𝑡1, · · · , 𝑡𝑛 ∈ 𝐸 and any 𝑐1, · · · , 𝑐𝑛 ∈ R, with equality if and only
if 𝑐𝑘 = 0 for all 𝑘 . Then, 𝑅 is said to be symmetric positive definite kernel.

Definition 1.12 Consider 𝐻0 = span {𝑅(𝑡, .), 𝑡 ∈ 𝐸} and define an inner product on
𝐻0 by

⟨𝑅(𝑡, .), 𝑅(𝑠, .)⟩𝐻0 = 𝑅(𝑡, 𝑠). (1.23)

Then, 𝐻 is the completion of 𝐻0 with respect to this inner product: The set of
functions of the form

𝑓 (𝑠) =
∞∑︁
𝑖=1

𝛼𝑖𝑅(𝑡𝑖 , 𝑠)

for some denumerable family (𝑡𝑘 , 𝑘 ≥ 1) of elements of 𝐸 and some real numbers
(𝛼𝑘 , 𝑘 ≥ 1) such that

∞∑︁
𝑖=1

𝛼2
𝑖 𝑅(𝑡𝑖 , 𝑡𝑖) < ∞.

Compact maps in Hilbert spaces

Definition 1.13 A linear map 𝑇 between two Hilbert spaces 𝐻1 and 𝐻2 is said to be
compact whenever the image of any bounded subset in 𝐻1 is a relatively compact
subset (i.e. its closure is compact) in 𝐻2. It can be written: For any ℎ ∈ 𝐻1

𝑇ℎ =

∞∑︁
𝑛=1

_𝑛 ⟨ 𝑓𝑛, ℎ⟩𝐻1 𝑔𝑛

where ( 𝑓𝑛, 𝑛 ≥ 1) and (𝑔𝑛, 𝑛 ≥ 1) are orthonormal sets of respectively 𝐻1 and 𝐻2.
Moreover, (_𝑛, 𝑛 ≥ 1) is a sequence of positive real numbers with sole accumulation
point zero. If for some rank 𝑁 , _𝑛 = 0 for 𝑛 ≥ 𝑁 , the operator is said to be of finite
rank.

Among those operators, some will play a crucial rôle in the sequel.
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Definition 1.14 (Trace class operators) Let 𝐻 be a Hilbert space and (𝑒𝑛, 𝑛 ≥ 1)
be a CONB on𝐻. A linear map 𝐴 from𝐻 into itself is said to be trace-class whenever∑︁

𝑛≥1
| ⟨𝐴𝑒𝑛, 𝑒𝑛⟩ | < ∞.

Then, its trace is defined as

trace(𝐴) =
∑︁
𝑛≥1

⟨𝐴𝑒𝑛, 𝑒𝑛⟩ .

In the decomposition of Definition 1.13, this means that

∞∑︁
𝑛=1

|_𝑛 | < ∞.

Definition 1.15 (Hilbert-Schmidt operators) Let 𝐻1 and 𝐻2 be two Hilbert space
and (𝑒𝑛, 𝑛 ≥ 1) (resp. ( 𝑓𝑝 , 𝑝 ≥ 1)) a CONB of 𝐻1 (resp. 𝐻2). A linear map 𝐴 from
𝐻1 into 𝐻2 is said to be Hilbert-Schmidt whenever

∥𝐴∥2
HS =

∑︁
𝑛≥1

∥𝐴𝑒𝑛∥2
𝐻2

=
∑︁
𝑛≥1

∑︁
𝑝≥1

〈
𝐴𝑒𝑛, 𝑓𝑝

〉2
𝐻2
< ∞.

If 𝐻1 = 𝐻2, in the decomposition of Definition 1.13, this means that

∞∑︁
𝑛=1

_2
𝑛 < ∞.

Note that a linear map from 𝐻 into itself can be described by an infinite matrix: To
characterize 𝐴, since𝐻 has a basis, it is sufficient to determine its values on this basis.
This means that 𝐴 is completly determined by the family (⟨𝐴𝑒𝑛, 𝑒𝑘⟩𝐻 , 𝑛, 𝑘 ≥ 1),
which is nothing but a kind of an infinite matrix. We can also write

⟨𝐴𝑒𝑛, 𝑒𝑘⟩𝐻 = ⟨𝐴, 𝑒𝑛 ⊗ 𝑒𝑘⟩𝐻⊗𝐻 ,

so that 𝐴 appears as a linear map on 𝐻 ⊗ 𝐻.

Theorem 1.10 If 𝐻 = 𝐿2 (𝐸 → R; `
)

and 𝐴 is Hilbert-Schmidt then there exists a
kernel which we still denote by 𝐴 : 𝐻 × 𝐻 → R such that for any 𝑓 ∈ 𝐻,

𝐴 𝑓 (𝑥) =
∫
𝐸

𝐴(𝑥, 𝑦) 𝑓 (𝑦)d`(𝑦)

and
∥𝐴∥2

HS =

∬
𝐸×𝐸

|𝐴(𝑥, 𝑦) |2d`(𝑥)d`(𝑦).

Theorem 1.11 (Composition of Hilbert-Schmidt maps) With the same notations
as above, the composition of two Hilbert-Schmidt is trace class.
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Actually, this is an equivalence: A trace-class map can always be written as the
composition of two Hilbert-Schmidt operators. Moreover,

| trace(𝐴 ◦ 𝐵) | ≤
∑︁
𝑛≥1

��⟨𝐴 ◦ 𝐵𝑒𝑛, 𝑒𝑛⟩𝐻
�� ≤ ∥𝐴∥HS∥𝐵∥HS. (1.24)

Lemma 1.3 (Composition of integral maps) If 𝐻 = 𝐿2 (𝐸 → R; `
)

and 𝐴, 𝐵 are
Hilbert-Schmidt maps on 𝐻. Then, 𝐵 ◦ 𝐴 is trace-class and

trace(𝐵 ◦ 𝐴) =
∬
𝐸×𝐸

𝐵(𝑥, 𝑦)𝐴(𝑦, 𝑥)d`(𝑥)d`(𝑦).

Proof We must verify the finiteness of∑︁
𝑛≥1

| ⟨𝐵𝐴𝑒𝑛, 𝑒𝑛⟩𝐻 |.

By the definition of the adjoint, applying twice the Cauchy-Schwarz inequality, we
have∑︁

𝑛≥1
| ⟨𝐵𝐴𝑒𝑛, 𝑒𝑛⟩𝐻 | =

∑︁
𝑛≥1

| ⟨𝐴𝑒𝑛, 𝐵∗𝑒𝑛⟩𝐻 | ≤
∑︁
𝑛≥1

∥𝐴𝑒𝑛∥𝐻 ∥𝐵∗𝑒𝑛∥𝐻

≤
(∑︁
𝑛≥1

∥𝐴𝑒𝑛∥2
𝐻

)1/2 (∑︁
𝑛≥1

∥𝐵∗𝑒𝑛∥2
𝐻

)1/2

= ∥𝐴∥HS∥𝐵∗∥HS.

The Parseval identity (twice) yields

trace(𝐵 ◦ 𝐴) =
∑︁
𝑛≥1

⟨𝐴𝑒𝑛, 𝐵∗𝑒𝑛⟩𝐻 =
∑︁
𝑛≥1

∑︁
𝑘≥1

⟨𝐴𝑒𝑛, 𝑒𝑘⟩𝐻 ⟨𝐵∗𝑒𝑛, 𝑒𝑘⟩𝐻

=
∑︁
𝑛≥1

∑︁
𝑘≥1

⟨𝐴, 𝑒𝑘 ⊗ 𝑒𝑛⟩𝐻⊗𝐻 ⟨𝐵∗, 𝑒𝑘 ⊗ 𝑒𝑛⟩𝐻⊗𝐻 = ⟨𝐴, 𝐵∗⟩𝐻⊗𝐻 .

By the identification of 𝐴, 𝐵 and their kernel,

⟨𝐴, 𝐵∗⟩𝐻⊗𝐻 =

∬
𝐻×𝐻

𝐴(𝑥, 𝑦)𝐵∗ (𝑥, 𝑦)d`(𝑥)d`(𝑦)

=

∬
𝐻×𝐻

𝐴(𝑥, 𝑦)𝐵(𝑦, 𝑥)d`(𝑥)d`(𝑦).

The proof is thus complete. □

Example 1.2 Hilbert-Schmidt embeddings in fractional Liouville spaces Since 𝐼𝛼 ◦
𝐼𝛽 = 𝐼𝛼+𝛽 , we have

𝐼𝛽,2 ⊂ 𝐼𝛼,2 for any 𝛽 > 𝛼.
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Lemma 1.4 The embedding 𝔢 of 𝐼𝛽,2 into 𝐼𝛼,2 is Hilbert-Schmidt if and only if
𝛽 − 𝛼 > 1/2.

Proof Let (𝑒𝑛, 𝑛 ≥ 1) be CONB of 𝐿2 ( [0, 1]) and set ℎ𝑛 = 𝐼𝛽𝑒𝑛. Then (ℎ𝑛, 𝑛 ≥ 1)
is a CONB of 𝐼𝛽,2. We must prove that

∞∑︁
𝑛=1

∥𝔢(ℎ𝑛)∥2
𝐼𝛼,2

< ∞.

By the very definition of the norm in 𝐼𝛼,2, this is equivalent to show

∞∑︁
𝑛=1

∥𝐼𝛽−𝛼 (𝑒𝑛)∥2
𝐿2 < ∞.

But this latter sum turns to be equal to the Hilbert-Schmidt norm of 𝐼𝛽−𝛼 viewed as a
linear map from 𝐿2 into itself. In view of Proposition 1.10, 𝐼𝛽−𝛼 is Hilbert-Schmidt
if and only if ∬

[0,1]2
|𝑡 − 𝑠 |2( (𝛽−𝛼)−1)d𝑠d𝑡 < ∞.

This only happens if 𝛽 − 𝛼 > 1/2. □

1.4 Problems

1.1 (Dual of 𝐿2 ([0, 1] → R; ℓ
)
) Since we identified 𝐼1,2 and its dual, we cannot

identify 𝐿2 ([0, 1] → R; ℓ
)

and its dual as usual. Show that the dual of 𝐿2 ([0, 1] →
R; ℓ

)
can be identified to 𝐼1

− (𝐼1,2) where

𝐼1
− 𝑓 (𝑡) =

∫ 1

𝑡

𝑓 (𝑠)d𝑠.

1.2 (Brownian measure on 𝐼𝛼,2) From Theorem 1.4, we know that 𝐼𝛼,2 ⊆ 𝐿2 for
any 𝛼 > 0.

1. Show that this embedding is Hilbert-Schmidt if and only if 𝛼 > 1/2.

For 𝛼 > 1/2, 𝐼𝛼,2 ⊆ Hol(𝛼 − 1/2) ⊂ C hence, the Dirac measure 𝜖𝜏 belongs to
𝐼∗
𝛼,2. Let 𝑗𝛼 be the canonical isometry between 𝐼∗

𝛼,2 and 𝐼𝛼,2.

2. Show that
𝑗𝛼 (𝜖𝜏) =

1
Γ(𝛼) 𝐼

𝛼
(
(𝜏 − .)𝛼−1

)
.

3. Following the proof of Theorem 1.5, show that (𝑆𝑛, 𝑛 ≥ 0) as defined in (1.7)
is convergent in 𝐼𝛼,2 for 𝛼 < 1/2.
It is important to remark that ( ¤ℎ𝑛, 𝑛 ≥ 0) is an orthonormal family of
𝐿2 ([0, 1] → R; ℓ

)
.
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4. Show that for any 𝑧 ∈ 𝐼𝛼,2,

E
[
𝑒
𝑖⟨𝑧,∑𝑛 𝑋𝑛ℎ𝑛 ⟩𝐼𝛼,2 ] = exp(−1

2
⟨𝑉𝛼𝑧, 𝑧⟩𝐼𝛼,2 )

where
𝑉𝛼 = 𝐼𝛼 ◦ 𝐼1−𝛼 ◦ (𝐼1−𝛼)∗ ◦ (𝐼𝛼)−1.

1.3 (Wiener space of the Brownian bridge) The Brownian bridge𝑊 is the centered
Gaussian process whose covariance kernel is given by

E [𝑊 (𝑡)𝑊 (𝑠)] = 𝑠 ∧ 𝑡 (1 − 𝑠 ∨ 𝑡).

Alternatively, it can be described by a transformation of the Brownian motion:

𝑊 (𝑡) dist.
= 𝐵(𝑡) − 𝑡𝐵(1),

where 𝐵 is an ordinary Brownian motion.
Let

𝑃 : W −→ W

𝑓 ↦−→
(
𝑡 ↦→ 𝑓 (𝑡) − 𝑡 𝑓 (1)

)
.

Let W0 be the elements of W which are null at time 1 and H0 = W0 ∩H .

1. Show that 𝑃 is an orthogonal projection from H to H0. Prove that

H = H0 ⊕ span ℎ0

where ℎ0 (𝑡) = 𝑡 as in the definition of the basis of H , see (1.6).
2. Derive that (ℎ𝑛, 𝑛 ≥ 1) is a complete orthonormal basis of H0.
3. Show that for ℎ ∈ H0, the law of𝑊 + ℎ is absolutely continuous with respect to

the distribution of𝑊 .
4. Let 𝛿𝑊 be the Wiener integral with respect to𝑊 . Show that

𝛿𝑊 (𝑠 ∧ . − 𝑠 ∗ .) = 𝑊 (𝑠).

5. Alternatively, show that ∑︁
𝑛≥1

𝑋𝑛 ℎ𝑛,

where (𝑋𝑛, 𝑛 ≥ 1) is a family of independent standard Gaussian variables and
(ℎ𝑛, 𝑛 ≥ 1) the basis mentioned in (1.6), converges with probability 1, in H0,
to a Gaussian process which has the distribution of𝑊 .
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1.5 Notes and comments

The construction of the Wiener measure dates back to the Donsker’s Theorem [2],
improved ten years later by Lamperti [6]. A more abstract version of the construction
of an abstract Wiener space is to consider a triple made of a Hilbert spaceH , a Banach
space W and a continuous injective map 𝔢 from H into W, with dense image and
which is radonifying (meaning that it transforms a cylindric measure into a true
Radon measure). If W is an Hilbert space, this amounts to assume that 𝔢 is Hilbert-
Schmidt (see [1]). Radonifying functions are the subject of the monography [9].
Proposition 25.6.3 of [7] states that the canonical embedding of H into any W𝛼,𝑝 is
indeed radonifying.

The presentation given here is inspired by [11] and [5]. Another construction can
be found in [10]. For details on Hilbert spaces and operators on such spaces, the
reader could consult any book relative to functional analysis like [12] or [3, 4] for
the not faint of heart.

The properties of fractional integrals which will be needed essentially in the
chapter about fractional Brownian motion (see 4) can be found in the bible for
almost everything about fractional calculus [8].

References

[1] L. Coutin and L. Decreusefond. “Stein’s method for Brownian approximations”. In: Com-
munications on Stochastic Analysis 7.3 (2013), pp. 349–372.

[2] M. D. Donsker. “An Invariance Principle for Certain Probability Limit Theorems”. In: Mem.
Amer. Math. Soc. 6 (1951). 00427, p. 12.

[3] N. Dunford and J. T. Schwartz. Linear Operators. Part I. Wiley Classics Library, 1988.
[4] N. Dunford and J.T. Schwartz. Linear Operators. Part II. Wiley Classics Library, 1988.
[5] K. Itô and M. Nisio. “On the Convergence of Sums of Independent Banach Space Valued

Random Variables”. In: Osaka Journal of Mathematics 5 (1968), pp. 35–48.
[6] J. Lamperti. “On Convergence of Stochastic Processes”. In: Transactions of the American

Mathematical Society 104 (1962), pp. 430–435.
[7] A. Pietsch. Operator Ideals. Vol. 20. North-Holland Publishing Co., Amsterdam-New York,

1980.
[8] S.G. Samko, A.A. Kilbas, and O.I. Marichev. Fractional Integrals and Derivatives. Gordon

and Breach Science, 1993.
[9] L. Schwartz. Séminaire Laurent Schwartz 1969–1970: Applications Radonifiantes. Centre

de Mathématiques, 1970.
[10] H.-H. Shih. “On Stein’s Method for Infinite-Dimensional Gaussian Approximation in Ab-

stract Wiener Spaces”. In: Journal of Functional Analysis 261.5 (2011), pp. 1236–1283.
[11] D. W. Stroock. “Abstract Wiener space, revisited”. In: Communications on Stochastic Anal-

ysis 2.1 (2008).
[12] K. Yosida. Functional Analysis. Berlin: Springer-Verlag, 1995.



Chapter 2
Gradient and divergence

2.1 Gradient

If our objective is to define a differential calculus on the Banach space𝑊 , why don’t
we use the notion of Fréchet derivative? A function 𝐹 : 𝑊 → R is said to be Fréchet
differentiable if there exists a continuous linear operator 𝐴 : 𝑊 → R such that

lim
𝜖→0

𝜖−1 ∥𝐹 (𝜔 + 𝜖𝜔′) − 𝐹 (𝜔) − 𝜖 𝐴(𝜔′)∥𝑊 = 0 (2.1)

for any 𝜔 ∈ 𝑊 and any 𝜔′ ∈ 𝑊 . In particular, a Fréchet differentiable function is
continuous. One of the most immediate function we can think of is the so-called Itô
map which sends a sample-path 𝜔 to the corresponding sample-path of the solution
of a well defined stochastic differential equation. It is well known (see [3, Section
3.3] for instance) that in dimension higher than one, this map is not continuous.
This induces that the notion of Fréchet derivative is not well suited to a differential
calculus on the Wiener space. Moreover, since we work on a probability space,
measurable functions 𝐹 from𝑊 into R are random variables, meaning that they are
defined up to a negligible set. To avoid any inconsistency in a formula like (2.1), we
must ensure that

(𝐹 = 𝐺 ` a.s.) =⇒ (𝐹 (. + 𝜔′) = 𝐺 (. + 𝜔′) ` a.s.)

for any 𝜔′. With the notations of Theorem 1.8, this requires that 𝑇#
𝜔′` (the push-

forward of the measure ` by the translation map 𝑇𝜔′ ) to be absolutely continuous
with respect to the Wiener measure `. This fact is granted only if 𝜔′ belongs to 𝐼1,2.
These two reasons mean that we are to define the directional derivative of 𝐹 in a
restricted class of possible perturbations.

Gross-Sobolev gradient

The basic definition of the differential of a function 𝑓 : R𝑛 → R is to consider the
limit of

23



24 2 Gradient and divergence

lim
Y→0

Y−1 ( 𝑓 (𝑥 + Y𝑦)) − 𝑓 (𝑥)).

For modern applications, this definition is insufficient as it says nothing on the
integrability of the so-defined derivative. This is where the notion of Sobolev spaces
takes its paramount importance. One of the possible definition of the Sobolev space
𝐻1,2 (R𝑛) is to define it as the completion of C1

𝑐 (R𝑛; R), the space of C1 class
functions with compact support, with respect to the norm

∥ 𝑓 ∥𝐻1,2 (R𝑛 ) =
©«∥ 𝑓 ∥2

𝐿2
(
R𝑛→R; ℓ

) + 𝑛∑︁
𝑗=1

∥𝜕 𝑗 𝑓 ∥2
𝐿2

(
R𝑛→R; ℓ

) ª®¬
1/2

.

We more or less copy this approach here, replacing the space C1
𝑐 (R𝑛; R) by the

space of cylindrical functionals and then defining the gradient only in the directions
allowed by the Cameron-Martin space. To pursue the reasoning, we need to prove that
the so-defined gradient is closable, i.e. if we choose different sequences approaching
the same functions in some 𝐿 𝑝

(
W → R; `

)
, the limits of their gradient should be

the same. This turns to be guaranteed by (a consequence of) the quasi-invariance
formula (1.18).

Recall the diagram

W∗ H ∗ = (𝐼1,2)∗

𝐿2 H = 𝐼1,2 W

𝔢∗

𝐼1 𝔢

and that ` is the Wiener measure on W. We first recall the definition of the Schwartz
space on R𝑛.

Definition 2.1 The Schwartz space on R𝑛, denoted by Schwartz(R𝑛), is the set of
C∞ functions from R𝑛 to R whose all derivatives are rapidly decreasing: 𝑓 belongs to
Schwartz(R𝑛) if for any 𝛼 = (𝛼1, · · · , 𝛼𝑛) ∈ N𝑛 and any 𝛽 = (𝛽1, · · · , 𝛽𝑛) ∈ (R+)𝑛,

sup
𝑥∈R𝑛

��𝑥𝛽𝜕𝛼 𝑓 (𝑥)�� < ∞.

Definition 2.2 A function 𝐹 : 𝑊 → R is said to be cylindrical if there exist an
integer 𝑛, a function 𝑓 ∈ Schwartz(R𝑛), (ℎ1, · · · , ℎ𝑛) ∈ H𝑛 such that

𝐹 (𝜔) = 𝑓
(
𝛿ℎ1 (𝜔), · · · , 𝛿ℎ𝑛 (𝜔)

)
.

The set of such functionals is denoted by S.

Theorem 2.1 The set S is dense in 𝐿 𝑝
(
W → R; `

)
.
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Proof Let D𝑛 be the dyadic subdivision of mesh 2−𝑛 of [0, 1] and F𝑛 = 𝜎{𝐵(𝑡), 𝑡 ∈
D𝑛}. Any continuous function can be approximated by its affine interpolation on the
dyadic subdivisions hence ∨𝑛F𝑛 = F and the 𝐿 𝑝

(
W → R; `

)
convergence theorem

for martingales says that

E [𝐹 | F𝑛]
𝑛→∞−−−−−−−−−−−→

𝐿𝑝
(
W→R; `

) 𝐹.

For 𝜖 > 0, let 𝑛 such that ∥𝐹 − E [𝐹 | F𝑛] ∥𝐿𝑝
(
W→R; `

) < 𝜖 . The Doob Lemma

entails that there exists 𝜓𝑛 measurable from R2𝑛 to R such that

E [𝐹 | F𝑛] = 𝜓𝑛 (𝐵(𝑡), 𝑡 ∈ D𝑛).

Let `𝑛 be the distribution of the Gaussian vector (𝐵(𝑡), 𝑡 ∈ D𝑛),∫
|𝜓𝑛 |𝑝d`𝑛 = E [|E [𝐹 | F𝑛] |𝑝] ≤ E [|𝐹 |𝑝] < ∞.

That means that 𝜓𝑛 belongs to 𝐿 𝑝
(
R𝑛 → R; `𝑛

)
hence for any 𝜖 > 0, there exists

𝜑𝜖 ∈ S(R2𝑛 ) such that ∥𝜓𝑛 − 𝜑𝜖 ∥𝐿𝑝
(
R𝑛→R; `𝑛

) < 𝜖 . Then, 𝜑𝜖 (𝐵(𝑡), 𝑡 ∈ D𝑛)
belongs to S and is within distance 2𝜖 of 𝐹 in 𝐿 𝑝

(
W → R; `

)
. □

The gradient is first defined on cylindrical functionals.
Definition 2.3 Let 𝐹 ∈ S, ℎ ∈ H , with 𝐹 = 𝑓 (𝛿ℎ1, · · · , 𝛿ℎ𝑛). Set

∇𝐹 =

𝑛∑︁
𝑗=1

(𝜕 𝑗 𝑓 )
(
𝛿ℎ1, · · · , 𝛿ℎ𝑛

)
ℎ 𝑗 ,

so that

⟨∇𝐹, ℎ⟩H =

𝑛∑︁
𝑗=1

(𝜕 𝑗 𝑓 )
(
𝛿ℎ1, · · · , 𝛿ℎ𝑛

) 〈
ℎ 𝑗 , ℎ

〉
H .

This definition is coherent with the natural definition of directional derivative.
Lemma 2.1 For 𝐹 ∈ S, for ℎ ∈ H , we have

⟨∇𝐹 (𝜔), ℎ⟩H = lim
𝜖→0

1
𝜖

(
𝐹 (𝜔 + 𝜖ℎ) − 𝐹 (𝜔)

)
.

Proof For 𝐹 (𝜔) = 𝑓

(
𝛿ℎ1 (𝜔), · · · , 𝛿ℎ𝑛 (𝜔)

)
,

𝐹 (𝜔 + 𝜖ℎ) = 𝑓

(
𝛿ℎ1 (𝜔 + 𝜖ℎ), · · · , 𝛿ℎ𝑛 (𝜔 + 𝜖ℎ)

)
= 𝑓

(
𝛿ℎ1 (𝜔) + 𝜖 ⟨ℎ1, ℎ⟩H , · · · , 𝛿ℎ𝑛 (𝜔) + 𝜖 ⟨ℎ𝑛, ℎ⟩H)

)
because of (1.15). Now then, we apply the classical chain rule to derive with respect
to 𝜖 and substitute 0 to 𝜖 to obtain
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𝑑

𝑑𝜖
𝐹 (𝜔 + 𝜖ℎ)

����
𝜖=0

=

𝑛∑︁
𝑗=1

(𝜕 𝑗 𝑓 )
(
𝛿ℎ1 (𝜔), · · · , 𝛿ℎ𝑛 (𝜔)

) 〈
ℎ 𝑗 , ℎ

〉
H .

The proof is thus complete. □

In view of Lemma 2.1, we see that S is an algebra for the ordinary product.

Corollary 2.1 For 𝐹 ∈ S, 𝜙 ∈ Schwartz(R),

∇(𝐹𝐺) = 𝐹 ∇𝐺 + 𝐺 ∇𝐹 (2.2)
∇𝜙(𝐹) = 𝜙′ (𝐹) ∇𝐹. (2.3)

Example 2.1 Derivative of 𝑓 (𝐵(𝑡)) Recall that 𝐵(𝑡) = 𝛿(𝑡 ∧ .). Hence, for 𝑓 ∈
Schwartz(R),

∇ 𝑓 (𝐵(𝑡)) = 𝑓 ′ (𝐵(𝑡)) ∇ (𝛿(𝑡 ∧ .)) = 𝑓 ′ (𝐵(𝑡)) 𝑡 ∧ .

As shows the last example, the previous definition entails that each 𝜔, ∇𝐹 (𝜔) is an
element of H , i.e. a differentiable function whose derivative is square integrable.
Hence, we can speak of (𝜔, 𝑠) ↦−→ ∇𝑠𝐹 (𝜔). This means that ∇𝐹 can be viewed as
an H -valued random variable or as a process with differentiable paths. In the setting
of Malliavin calculus, we adopt the former point of view. As such it is now natural
to discuss the integrability of the random variable ∇𝐹.

Before going further it may be worth looking below for some elements about
tensor products of Banach spaces.

Theorem 2.2 For 𝐹 ∈ S, ∇𝐹 belongs to 𝐿 𝑝
(
W → H ; `

)
for any 𝑝 ≥ 1.

Proof Step 1. Assume 𝑝 > 1. Since

𝐿 𝑝
(
W → H ; `

)
≃ 𝐿 𝑝

(
W → R; `

)
⊗ H ,

we have (
𝐿 𝑝

(
W → H ; `

) )∗ ≃ 𝐿𝑞
(
W → R; `

)
⊗ H

where 𝑞 = 𝑝/(𝑝 − 1).
Step 2. Consider the set

𝐵𝑞,H = {(𝑘, 𝐺) ∈ H × 𝐿𝑞
(
W → R; `

)
, ∥𝑘 ∥H = 1, ∥𝐺∥

𝐿𝑞
(
W→R; `

) = 1}.

Let 𝐹 = 𝑓 (𝛿ℎ), for 𝑝 > 1, the proposition 2.1 says that to prove that the 𝑝-norm of
∇𝐹 is finite, it is sufficient to show that

sup
(𝑘,𝐺) ∈𝐵𝑞,H

����⟨∇𝐹, 𝑘 ⊗ 𝐺⟩𝐿𝑝 (W→H; `
)
, 𝐿𝑞

(
W→H; `

) ���� < ∞.

Recall that 𝐿 𝑝
(
W → H ; `

)
≃ 𝐿 𝑝

(
W → R; `

)
⊗H . Thus, for 𝑇 ∈ 𝐿 𝑝

(
W → R; `

)
and 𝑙 ∈ H , by the very definition of the duality bracket (see (2.39)),
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⟨𝑇 ⊗ 𝑙, 𝐺 ⊗ 𝑘⟩
𝐿𝑝

(
W→H; `

)
, 𝐿𝑞

(
W→H; `

) = ⟨𝑇, 𝐺⟩
𝐿𝑝

(
W→R; `

)
, 𝐿𝑞

(
W→R; `

) ⟨𝑙, 𝑘⟩H
= E [𝐹𝐺] ⟨𝑙, 𝑘⟩H
= E

[
⟨𝐹 ⊗ 𝑙, 𝐺 ⊗ 𝑘⟩H

]
.

By density of the pure tensor products, we get����⟨∇𝐹, 𝑘 ⊗ 𝐺⟩𝐿𝑝 (W→H; `
)
, 𝐿𝑞

(
W→H; `

) ���� = ��E [
⟨∇𝐹, 𝑘⟩H 𝐺

] ��
=

��E [ 𝑓 ′ (𝛿ℎ)𝐺] ⟨𝑘, ℎ⟩H
��

≤ ∥ 𝑓 ′∥∞∥𝐺∥
𝐿𝑞

(
W→R; `

) ∥ℎ∥H ∥𝑘 ∥H .

Hence the supremum over 𝐵𝑞,H is finite. The same proof can be applied when
𝐹 = 𝑓 (𝛿ℎ 𝑗 , 1 ≤ 𝑗 ≤ 𝑚).
Step 3. For 𝑝 = 1, the previous considerations no longer prevail since an 𝐿1 space
is not reflexive so that we cannot apply (2.41). However, it is sufficient to see that
𝐿 𝑝

(
W → H ; `

)
is included in 𝐿1 (W → H ; `

)
.

It is an exercise left to the reader to see that the map

Id ⊗𝐼−1 : 𝐿 𝑝
(
W → R; `

)
⊗ H −→ 𝐿 𝑝

(
W → R; `

)
⊗ 𝐿2 ([0, 1] → R; ℓ

)
𝐹 ⊗ ℎ ↦−→ 𝐹 ⊗ ¤ℎ

is continuous. Moreover, Theorem 2.2 means for any 𝐹 ∈ S,∇𝐹 belongs to 𝐿 𝑝
(
W →

R; `
)
⊗H . Hence there exists an element ¤∇𝐹 of 𝐿 𝑝

(
W → R; `

)
⊗𝐿2 ([0, 1] → R; ℓ

)
such that

⟨∇𝐹, ℎ⟩H =

∫ 1

0
¤∇𝑠𝐹 ¤ℎ(𝑠)d𝑠

and ∥𝐹∥
𝐿𝑝

(
W→H; `

) = E

[(∫ 1

0
| ¤∇𝑠𝐹 |2d𝑠

) 𝑝/2]1/𝑝

.

On the interest of closability

We now have a nice Banach space into which our gradient lives. The idea is then to
extend it by density, i.e. take a sequence (𝐹𝑛, 𝑛 ≥ 1) of cylindrical functions which
converges in 𝐿 𝑝

(
W → R; `

)
to a function 𝐹 and say that if the sequence of gradients

(∇𝐹𝑛, 𝑛 ≥ 1) converge to something in 𝐿 𝑝
(
W → H ; `

)
, then 𝐹 is differentiable

and its gradient is the latter limit. For this procedure to be valid, we need to ensure
that the limit does not depend on the approximating sequence. This is the rôle of the
notion of closability.

Theorem 2.3 ∇ is closable in 𝐿 𝑝
(
W → H ; `

)
for 𝑝 > 1.
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This means that if 𝐹𝑛 ∈ S tends to 0 in 𝐿 𝑝
(
W → R; `

)
and ∇𝐹𝑛 tends to [ in

𝐿 𝑝
(
W → H ; `

)
then [ = 0.

•> Integration by parts

The classical integration by parts formula reads as∫
R
𝑓 (𝑥)𝑔′ (𝑥)d𝑥 = −

∫
R
𝑓 ′ (𝑥)𝑔(𝑥)d𝑥 (2.4)

if 𝑓 and 𝑔 do vanish at infinity. It can be seen as a consequence of the invariance of
the Lebesgue measure with respect to translations. Actually, we have for any 𝑦 ∈ R,∫

R
𝑓 (𝑥 + 𝑦)𝑔(𝑥 + 𝑦)d𝑥 =

∫
R
𝑓 (𝑥)𝑔(𝑥)d𝑥.

The right-hand-side does not depend on 𝑦, hence if we differentiate the left-hand-side
with respect to 𝑦 at 𝑦 = 0, we obtain (2.4).

The Wiener measure is not invariant but only quasi-invariant, this gives an addi-
tional term in the integration by parts formula.

Lemma 2.2 (Integration by parts) For 𝐹 and 𝐺 cylindrical, for ℎ ∈ H ,

E
[
𝐺 ⟨∇𝐹, ℎ⟩H

]
= −E

[
𝐹 ⟨∇𝐺, ℎ⟩H

]
+ E [𝐹𝐺 𝛿ℎ] . (2.5)

Proof The Cameron-Martin theorem says that∫
W
𝐹 (𝜔 + 𝜖ℎ)𝐺 (𝜔 + 𝜖ℎ)d`(𝜔) =

∫
W
𝐹 (𝜔)𝐺 (𝜔) exp

(
𝜖𝛿ℎ(𝜔) − 𝜖2

2
∥ℎ∥2

H

)
d`(𝜔).

Differentiate both sides with respect to 𝜖 , at 𝜖 = 0, to obtain

E
[
𝐹 ⟨∇𝐺, ℎ⟩H

]
+ E

[
𝐺 ⟨∇𝐹, ℎ⟩H

]
= E [𝐹𝐺 𝛿ℎ] ,

which corresponds to Eqn. (2.5). □

Proof (Proof of Theorem 2.3) Let (𝐹𝑛, 𝑛 ≥ 1) which tends to 0 in 𝐿 𝑝
(
𝑊 → R; `

)
and such that ∇𝐹𝑛 tends to [ in 𝐿 𝑝

(
𝑊 → H ; `

)
. Then the right-hand-side of

Eqn. (2.5) tends to 0. On the other hand, by definition of the convergence in 𝐿 𝑝
(
W →

H ; `
)
,

E
[
𝐺 ⟨∇𝐹𝑛, ℎ⟩H

] 𝑛→∞−−−−→ ⟨[, ℎ ⊗ 𝐺⟩
𝐿𝑝

(
W→H; `

)
, 𝐿𝑞

(
W→H; `

) .
It means that for any ℎ ∈ H and 𝐺 ∈ S,

⟨[, ℎ ⊗ 𝐺⟩
𝐿𝑝

(
W→H; `

)
, 𝐿𝑞

(
W→H; `

) = 0. (2.6)
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By density of S in 𝐿 𝑝
(
W → R; `

)
, (2.6) holds for𝐺 ∈ 𝐿 𝑝

(
W → R; `

)
. According

to Theorem 2.10, ⟨[, Z⟩
𝐿𝑝

(
W→H; `

)
,𝐿𝑞

(
W→H; `

) = 0 for any Z ∈ 𝐿𝑞
(
W → H ; `

)
,

hence [ = 0. □

Definition 2.4 A functional 𝐹 belongs to D𝑝,1 if there exists (𝐹𝑛, 𝑛 ≥ 0) which
converges to 𝐹 in 𝐿 𝑝

(
W → R; `

)
, such that (∇𝐹𝑛, 𝑛 ≥ 0) is Cauchy in 𝐿 𝑝

(
W →

H ; `
)
. Then, ∇𝐹 is defined as the limit of this sequence. We put on D𝑝,1 the norm

∥𝐹∥ 𝑝,1 = E [|𝐹 |𝑝]1/𝑝 + E
[
∥∇𝐹∥ 𝑝H

]1/𝑝
. (2.7)

With this definition, it is not easy to determine whether a given function belongs to
D𝑝,1. The next lemma is one efficient criterion.
Lemma 2.3 Let 𝑝 > 1. Assume that there exists (𝐹𝑛, 𝑛 ≥ 0) which converges in
𝐿 𝑝

(
W → R; `

)
to 𝐹 such that sup𝑛 ∥∇𝐹𝑛∥𝐿𝑝

(
W→H; `

) is finite. Then, 𝐹 ∈ D𝑝,1.

See below for the three necessary theorems of functional analysis.

Proof (Proof of Lemma 2.3) Since sup𝑛 ∥∇𝐹𝑛∥𝐿𝑝
(
W→H; `

) is finite, there exists a
subsequence (see Proposition 2.2) which we still denote by (∇𝐹𝑛, 𝑛 ≥ 0) weakly
convergent in 𝐿 𝑝

(
W → H ; `

)
to some limit denoted by [. For 𝑘 > 0, let 𝑛𝑘 be such

that ∥𝐹𝑚 −𝐹∥
𝐿𝑝

(
W→R; `

) < 1/𝑘 for 𝑚 ≥ 𝑛𝑘 . The Mazur’s Theorem 2.3 implies that
there exists a convex combination of elements of (∇𝐹𝑚, 𝑚 ≥ 𝑛𝑘) such that

∥
𝑀𝑘∑︁
𝑖=1

𝛼𝑘𝑖 ∇𝐹𝑚𝑖 − [∥𝐿𝑝
(
W→H; `

) < 1/𝑘.

Moreover, since the 𝛼𝑘
𝑖

are positive and sums to 1,

∥
𝑀𝑘∑︁
𝑖=1

𝛼𝑘𝑖 𝐹𝑚𝑖 − 𝐹∥𝐿𝑝
(
W→R; `

) = ∥
𝑀𝑘∑︁
𝑖=1

𝛼𝑘𝑖 (𝐹𝑚𝑖 − 𝐹)∥𝐿𝑝
(
W→R; `

)
≤
𝑀𝑘∑︁
𝑖=1

𝛼𝑘𝑖 ∥𝐹𝑚𝑖 − 𝐹∥𝐿𝑝
(
W→R; `

) ≤ 1
𝑘
·

We have thus constructed a sequence

𝐹𝑘 =

𝑀𝑘∑︁
𝑖=1

𝛼𝑘𝑖 𝐹𝑚𝑖

such that 𝐹𝑘 tends to 𝐹 in 𝐿 𝑝
(
W → R; `

)
and ∇𝐹𝑘 converges in 𝐿 𝑝

(
W → H ; `

)
to a limit. By the construction of D𝑝,1, this means that 𝐹 belongs to D𝑝,1 and that
∇𝐹 = [. □

Example 2.2 Derivative of Doléans-Dade exponentials For ℎ ∈ H , the random
variable
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𝐹 = exp
(
𝛿ℎ − 1

2
∥ℎ∥2

H

)
is called the Doléans-Dade exponential associated to ℎ. The random variable 𝐹
belongs to D𝑝,1 for any 𝑝 ≥ 1 and we have

∇𝐹 = 𝐹 ℎ. (2.8)

Remark that exp does not belong to Schwartz(R) hence we cannot apply (2.3) as is.
Let

exp𝑀 : 𝑥 ↦−→ 𝑀
√

2𝜋

∫
R

exp(𝑦 ∧ 𝑀)𝑒−𝑀2 (𝑥−𝑦)2/2d𝑦.

By the properties of convolution products, exp𝑀 belongs to Schwartz(R) and con-
verges to exp as 𝑀 goes to infinity. Moreover, in view of (2.3), we have

∇ exp𝑀

(
𝛿ℎ − 1

2
∥ℎ∥2

H

)
= exp′𝑀

(
𝛿ℎ − 1

2
∥ℎ∥2

H

)
ℎ.

It turns out that

exp′𝑀 (𝑥) = 𝑀
√

2𝜋

∫
R
𝑒𝑥−𝑦1{𝑥−𝑦≤𝑀 }𝑒

−𝑀2𝑦2/2d𝑦 (2.9)

=
𝑀
√

2𝜋

∫
R
𝑒𝑦1{𝑦≤𝑀 }𝑒

−𝑀2 (𝑥−𝑦)2/2d𝑦

𝑀→∞−−−−−→ 𝑒𝑥 . (2.10)

It thus remains to prove that

sup
𝑀

E
[����exp′𝑀

(
𝛿ℎ − 1

2
∥ℎ∥2

H

)����𝑝] < ∞. (2.11)

From (2.9) and Jensen inequality,

E
[����exp′𝑀

(
𝛿ℎ − 1

2
∥ℎ∥2

H

)����𝑝] ≤ 𝑀
√

2𝜋

∫
R

E
[
𝑒𝑝 (𝛿ℎ−

1
2 ∥ℎ∥

2
H )

]
𝑒−𝑝𝑦𝑒−𝑀

2𝑦2/2d𝑦.

Now then,

E
[
Λ
𝑝

ℎ

]
= E

[
exp

(
𝛿(𝑝ℎ) − 1

2
∥𝑝ℎ∥2

H

)]
exp

(
𝑝2 − 𝑝

2
∥ℎ∥2

H

)
= exp

(
𝑝2 − 𝑝

2
∥ℎ∥2

H

)
.

Hence,
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E
[����exp′𝑀

(
𝛿ℎ − 1

2
∥ℎ∥2

H

)����𝑝] ≤ exp
(
𝑝2 − 1

2
∥ℎ∥2

H

)
𝑀
√

2𝜋

∫
R
𝑒−𝑝𝑦𝑒−𝑀

2𝑦2/2d𝑦

= exp
(
𝑝2 − 𝑝

2
∥ℎ∥2

H

)
E

[
exp

(
−𝑝N(0, 1/𝑀2)

)]
= exp

(
𝑝2 − 𝑝

2
∥ℎ∥2

H

)
exp(𝑝/𝑀2).

Then, (2.11) holds true and the result follows from (2.10) and Lemma 2.3.

Lazy student trick

Using the theory of distributions on Wiener space (see [7]), we can almost prove
that a functional is differentiable because we know how to compute its derivative.
Indeed, 𝐹 is always differentiable in the sense of distributions and it remains to prove
that it defines an element of 𝐿 𝑝

(
W → H ; `

)
= 𝐿𝑞

(
W → H ; `

)∗ to be able to
claim that it belongs to D𝑝,1.

The previous proof would then boil down to say that formally

∇Λℎ (𝜔) = Λℎ (𝜔) ℎ

and then use the same computations as above to show that

E
[
∥Λℎ ℎ∥ 𝑝H

]
= E

[
Λ
𝑝

ℎ

]
∥ℎ∥ 𝑝H = exp( 𝑝

2 − 𝑝
2

∥ℎ∥2
H) ∥ℎ∥ 𝑝H < ∞,

hence Λ𝑘 ∈ D𝑝,1.

Corollary 2.2 Let 𝐹 belong to D𝑝,1 and 𝐺 to D𝑞,1 with 𝑞 = 𝑝/(𝑝 − 1). If ℎ ∈ H ,
then Eqn. (2.5) holds:

E
[
𝐺 ⟨∇𝐹, ℎ⟩H

]
= −E

[
𝐹 ⟨∇𝐺, ℎ⟩H

]
+ E [𝐹𝐺 𝛿ℎ] .

Proof According to Lemma 2.2, it is true for 𝐹 and 𝐺 in S. Let (𝐹𝑛, 𝑛 ≥ 0) a
sequence of elements of S converging to 𝐹 in D𝑝,1. Since 𝐺 belongs to S, 𝐺 and
∇ℎ𝐺 belong to 𝐿𝑞

(
W → R; `

)
. By Hölder inequality, we see that (2.5) holds for

𝐹 ∈ D𝑝,1 and𝐺 ∈ S. Repeat the same approach with an approximation of𝐺 ∈ D𝑞,1
by elements of S. □

We can now generalize the basic formulas to elements of D𝑝,1 whose proof are
obtained by density.

Theorem 2.4 For 𝐹 ∈ D𝑝,1 and 𝐺 ∈ D𝑞,1 (with 1/𝑝 + 1/𝑞 = 1/𝑟 for 𝑟 > 1), for
𝜙 ∈ C1

𝑏
, the product 𝐹𝐺 belongs to D𝑟 , 1 and

∇(𝐹𝐺) = 𝐹 ∇𝐺 + 𝐺 ∇𝐹
∇𝜙(𝐹) = 𝜙′ (𝐹) ∇𝐹.
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•! Derivative of Banach valued functionals

More generally, for 𝑈 : W → 𝑋 where 𝑋 is Banach space, we can reproduce the
whole machinery to define its gradient. Consider the 𝑋-valued cylindrical functions
of the form

𝑈 (𝜔) = 𝑓 (𝛿ℎ1 (𝜔), · · · , 𝛿ℎ𝑛) 𝑥

where the first term is an element of S and 𝑥 is a deterministic element of 𝑋 . Then,
define ∇𝐹 as the element of 𝐿 𝑝

(
W → H ⊗ 𝑋; `

)
given by

∇𝑈 (𝜔) =
𝑛∑︁
𝑗=1
𝜕 𝑗 𝑓 (𝛿ℎ1 (𝜔), · · · , 𝛿ℎ𝑛) ℎ 𝑗 ⊗ 𝑥

and consider D𝑝,1 (𝑋) the completion of the vector space of 𝑋-valued cylindrical
functions with respect to the norm

∥𝑈∥D𝑝,1 (𝑋) = ∥𝑈∥
𝐿𝑝

(
W→𝑋; `

) + ∥∇𝑈∥
𝐿𝑝

(
W→H⊗𝑋; `

) .

Support of the gradient and adaptability

The Malliavin calculus does not need any notion of time to be developed. The
definition of the gradient relies only on the properties of the Gaussian measure,
which can defined for processes indexed by several variables like the Brownian
sheet. It is then remarkable that, in the end, there exists a link between measurability
and support of the gradient.

We need to introduce the two families of projections:

Definition 2.5 For any 𝑡 ∈ [0, 1], we set

¤𝜋𝑡 : 𝐿2 ([0, 1] → R; ℓ
)
−→ 𝐿2 ([0, 1] → R; ℓ

)
¤ℎ ↦−→ ¤ℎ1[0,𝑡 ] ,

𝜋𝑡 : H −→ H
ℎ = 𝐼1 ( ¤ℎ) ↦−→ 𝐼1 ( ¤ℎ1[0,𝑡 ]).

We have

∥𝜋𝑡ℎ∥2
H =

∫ 1

0
¤ℎ(𝑠)21[0,𝑡 ] (𝑠)d𝑠 ≤ ∥ ¤ℎ∥2

𝐿2 = ∥ℎ∥2
H ,

meaning that 𝜋𝑡 is continuous on H . Moreover,

𝜋𝑡 (𝑠 ∧ .) = 𝐼1 ( ¤𝜋𝑡 (1[0,𝑠])
)
= 𝐼1 (1[0,𝑠]1[0,𝑡 ]

)
= 𝐼1 (1[0,𝑠∧𝑡 ])

)
= (𝑡 ∧ 𝑠) ∧ .
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so that

𝜋𝑡 (𝑠 ∧ .) =
{
𝑠 ∧ . if 𝑠 ≤ 𝑡
𝑡 ∧ . otherwise.

(2.12)

Lemma 2.4 Let 𝐹 ∈ D𝑝,1 and F𝑡 = 𝜎{𝜔(𝑠), 𝑠 ≤ 𝑡}. Then, E [𝐹 | F𝑡 ] belongs to
D𝑝,1 and we have

𝜋𝑡E [∇𝐹 | F𝑡 ] = ∇E [𝐹 | F𝑡 ] (2.13)

Furthermore, if 𝐹 is F𝑡 -measurable then ¤∇𝑠𝐹 = 0 for all 𝑠 > 𝑡.

Proof Step 1. First consider that 𝐹 is cylindrical. For the sake of simplicity, imagine
that

𝐹 = 𝑓

(
𝐵(𝑡1), 𝐵(𝑡2)

)
with 𝑡1 < 𝑡 < 𝑡2.

Then,

E [𝐹 | F𝑡 ] = E
[
𝑓

(
𝐵(𝑡1), 𝐵(𝑡2) − 𝐵(𝑡) + 𝐵(𝑡)

)]
=

∫
R
𝑓

(
𝐵(𝑡1), 𝐵(𝑡) + 𝑥

)
𝑝𝑡2−𝑡 (𝑥)d𝑥

= 𝑓

(
𝐵(𝑡1), 𝐵(𝑡)

)
, (2.14)

where 𝑝𝑡2−𝑡 is the density of 𝐵(𝑡2) − 𝐵(𝑡), i.e. of a centered Gaussian distribution of
variance (𝑡2 − 𝑡) and

𝑓 (𝑢, 𝑣) =
∫

R
𝑓
(
𝑢, 𝑣 + 𝑥

)
𝑝𝑡2−𝑡 (𝑥)d𝑥 belongs to Schwartz(R2).

On the one hand,

∇𝑠E [𝐹 | F𝑡 ] = 𝜕1 𝑓
(
𝐵(𝑡1), 𝐵(𝑡)

)
𝑡1 ∧ 𝑠 + 𝜕2 𝑓

(
𝐵(𝑡1), 𝐵(𝑡)

)
𝑡 ∧ 𝑠. (2.15)

On the other hand,

E [∇𝑠𝐹 | F𝑡 ] = E
[
𝜕1 𝑓

(
𝐵(𝑡1), 𝐵(𝑡2)

)
| F𝑡

]
𝑡1 ∧ 𝑠

+ E
[
𝜕2 𝑓

(
𝐵(𝑡1), 𝐵(𝑡2)

)
| F𝑡

]
𝑡2 ∧ 𝑠. (2.16)

The same reasoning as in (2.14) leads to

E [𝜕𝑖 𝑓 (𝐵(𝑡1), 𝐵(𝑡2)) | F𝑡 ] =
∫

R
𝜕𝑖 𝑓

(
𝐵(𝑡1), 𝐵(𝑡) + 𝑥

)
𝑝𝑡−𝑡2 (𝑥)d𝑥

= 𝜕𝑖 𝑓
(
𝐵(𝑡1), 𝐵(𝑡)

)
, (2.17)

for 𝑖 ∈ {1, 2}. In view of (2.17), Eqn. (2.16) becomes
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E [∇𝑠𝐹 | F𝑡 ] =
2∑︁
𝑖=1

𝜕𝑖 𝑓
(
𝐵(𝑡1), 𝐵(𝑡)

)
𝑡𝑖 ∧ 𝑠. (2.18)

Thus, according to (2.12),

𝜋𝑡E [∇𝑠𝐹 | F𝑡 ] =
2∑︁
𝑖=1

𝜕𝑖 𝑓
(
𝐵(𝑡1), 𝐵(𝑡)

)
𝜋𝑡 (𝑡𝑖 ∧ .) (𝑠)

=

2∑︁
𝑖=1

𝜕𝑖 𝑓
(
𝐵(𝑡1), 𝐵(𝑡)

)
(𝑡𝑖 ∧ 𝑡) ∧ 𝑠

= ∇𝑠E [𝐹 | F𝑡 ] .

Step 2. For the general case, let (𝐹𝑛, 𝑛 ≥ 0) a sequence of elements of S converging
to 𝐹 in D𝑝,1. We can construct a sequence of cylindrical functions which are F𝑡
measurable and converge in D𝑝,1 to E [𝐹 | F𝑡 ]. For any 𝑛, there exist 𝑡𝑛1 < . . . < 𝑡

𝑛
𝑘𝑛

such that 𝐹𝑛 = 𝑓𝑛 (𝐵(𝑡𝑛1 ), · · · , 𝐵(𝑡
𝑛
𝑘𝑛
)). If 𝑡𝑛

𝑗0
≤ 𝑡 < 𝑡𝑛

𝑗0+1, for 𝑙 ≥ 𝑗0 +1, replace 𝐵(𝑡𝑛
𝑙
)

by (
𝐵(𝑡𝑛𝑙 ) − 𝐵(𝑡

𝑛
𝑙−1)

)
+ . . . +

(
𝐵(𝑡𝑛𝑗0+1) − 𝐵(𝑡)

)
+ 𝐵(𝑡).

Let𝑊𝑛 the Gaussian vector whose coordinates are the independent Gaussian random
variables (𝐵(𝑡𝑛

𝑘𝑛
) − 𝐵(𝑡𝑛

𝑘𝑛−1), · · · , 𝐵(𝑡
𝑛
𝑗0+1) − 𝐵(𝑡)) and

^𝑛 : R𝑘𝑛 −→ R𝑘𝑛

𝑤 = (𝑤𝑖 , 1 ≤ 𝑖 ≤ 𝑘𝑛) ↦−→ 𝑤𝑖 if 𝑖 ≤ 𝑗0,

↦−→ 𝑤𝑖 + 𝐵(𝑡) +
𝑖− 𝑗0∑︁
𝑙=1

𝑊𝑛
𝑙 if 𝑖 > 𝑗0.

Hence

E [𝐹𝑛 | F𝑡 ] = E
[
( 𝑓𝑛 ◦ ^𝑛)

(
𝐵(𝑡𝑛1 ), · · · , 𝐵(𝑡 𝑗𝑛0 )

)
| 𝐵(𝑡𝑛1 ), · · · , 𝐵(𝑡)

]
.

Starting from this identity, we can reproduce the latter reasoning and see that (2.13)
holds for such functionals.
Step 3. It remains to prove that E [𝐹𝑛 | F𝑡 ] converges to 𝐹 = E [𝐹 | F𝑡 ] in D𝑝,1. By
Jensen inequality,

E [|E [𝐹𝑛 | F𝑡 ] − E [𝐹 | F𝑡 ] |𝑝] ≤ E [|𝐹𝑛 − 𝐹 |𝑝]
𝑛→∞−−−−→ 0.

According to Proposition 2.1, the dual of 𝐿 𝑝
(
W → H ; `

)
is 𝐿𝑞

(
W → H ; `

)
and

∥∇E [𝐹𝑛 | F𝑡 ] − ∇E [𝐹𝑚 | F𝑡 ] ∥𝐿𝑝
(
W→H; `

)
= sup

{���E [
⟨∇E [𝐹𝑛 | F𝑡 ] − ∇E [𝐹𝑚 | F𝑡 ] , ℎ⟩H 𝐺

] ���, ∥ℎ∥H = 1, ∥𝐺∥𝐿𝑞 = 1
}
.
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Then, (2.13) implies that��E [
⟨∇E [𝐹𝑛 | F𝑡 ] − ∇E [𝐹𝑚 | F𝑡 ] , ℎ⟩H 𝐺

] ��
=

��E [
⟨𝜋𝑡E [∇(𝐹𝑛 − 𝐹𝑚) | F𝑡 ] , ℎ⟩H 𝐺

] ��
=

��E [
⟨E [∇(𝐹𝑛 − 𝐹𝑚) | F𝑡 ] , 𝜋𝑡ℎ⟩H 𝐺

] ��
≤ ∥∇(𝐹𝑛 − 𝐹𝑚)∥𝐿𝑝

(
𝑊→H; `

) ∥ℎ∥H ∥𝐺∥
𝐿𝑞

(
W→R; `

) .
Since (∇𝐹𝑛, 𝑛 ≥ 0) is a Cauchy sequence in 𝐿 𝑝

(
W → H ; `

)
, so does the sequence

(∇E [𝐹𝑛 | F𝑡 ] , 𝑛 ≥ 0), hence it is a converging sequence. Since ∇ is closable, the
limit can only be ∇E [𝐹 | F𝑡 ].
Step 4. Recall that Y𝑠 is the Dirac mass at point 𝑠 and that Y𝑠 ∈ W∗. Let 𝐻⊥

𝑡 =⋂
𝑠∈[𝑡 ,1]∩Q ker(Y𝑠 − Y𝑡 ); it is a denumerable intersection of closed subspaces of H ,

hence it is closed in H . By sample-paths continuity of the elements of H , ¤ℎ(𝑠) = 0
for 𝑠 > 𝑡 means that ℎ(𝑠) = ℎ(𝑡) for any 𝑠 > 𝑡 and 𝑠 ∈ Q, which is equivalent to
ℎ ∈ 𝐻⊥

𝑡 . From Step 3, we know that there exists a subsequence, we still denote by
(𝐹𝑛, 𝑛 ≥ 0), such that ∇E [𝐹𝑛 | F𝑡 ] converges almost-surely in H to ∇E [𝐹 | F𝑡 ].
From Step 2, we know that for any 𝑛 ≥ 1, ∇E [𝐹𝑛 | F𝑡 ] belongs to 𝐻⊥

𝑡 . Since 𝐻⊥
𝑡 is

closed, ∇E [𝐹 | F𝑡 ] belongs to 𝐻⊥
𝑡 .

As we saw above, an element𝑈 of 𝐿 𝑝
(
W → H ; `

)
can be represented as

𝑈 (𝜔, 𝑡) =
∫ 𝑡

0
¤𝑈 (𝜔, 𝑠)d𝑠, for all 𝑡 ∈ [0, 1] (2.19)

where ¤𝑈 is measurable from𝑊 × [0, 1] onto R.

Definition 2.6 An H -valued random variable 𝑈 is said to be adapted whenever the
process ¤𝑈 given by (2.19), is adapted in the classical sense.

We denote by 𝐿2
𝑎 (𝑊 → H ; `) the set of H -valued adapted, random variables

such that

E
[∫ 1

0
| ¤𝑈 (𝑠) |2d𝑠

]
= E

[
∥𝑈∥2

H
]
< ∞.

It is a closed subspace of 𝐿2 (𝑊 → H ; `): For a sequence of adapted processes which
converges to some process in 𝐿2 (𝑊 → H ; `

)
, there exists a subsequence which

converges with probability 1 hence the adaptability is transferred to the limiting
process.

Similarly D𝑎2,1 (H) is the subset of 𝐿2
𝑎 (𝑊 → H ; `) such that

E
[∬

| ¤∇𝑟 ¤𝑈 (𝑠) |2d𝑟d𝑠
]
= E

[
∥∇𝑈∥2

𝐿2
(
W→H; `

) ] < ∞.

Theorem 2.5 Let𝑈 belongs to D𝑎2,1 (H) and D𝑛 be the dyadic partition of [0, 1] of
step 2−𝑛. Then,
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¤𝑈D𝑛 (𝑡) =
2𝑛−1∑︁
𝑖=1

2𝑛
(∫ 𝑖 2−𝑛

(𝑖−1)2−𝑛
¤𝑈 (𝑟)d𝑟

)
1(𝑖2−𝑛 , (𝑖+1)2−𝑛 ] (𝑡) (2.20)

converges in D𝑎2,1 (H) to𝑈.

Proof Step 1. Since indicator functions with disjoint support are orthogonal in
𝐿2 ([0, 1] → R; ℓ

)
, we have∫ 1

0
| ¤𝑈D𝑛 (𝑡) |2d𝑡 =

2𝑛−1∑︁
𝑖=1

(
2𝑛

∫ 𝑖 2−𝑛

(𝑖−1)2−𝑛
¤𝑈 (𝑟)d𝑟

)2
∫ 1

0
1(𝑖2−𝑛 , (𝑖+1)2−𝑛 ] (𝑡)d𝑡

≤
2𝑛−1∑︁
𝑖=1

∫ 𝑖 2−𝑛

(𝑖−1)2−𝑛
| ¤𝑈 (𝑟) |2 d𝑟

2−𝑛 2−𝑛 =

∫ 1

0
| ¤𝑈 (𝑟) |2d𝑟,

according to the Jensen inequality. Hence,

E
[∫ 1

0
| ¤𝑈D𝑛 (𝑡) |2d𝑡

]
≤ E

[∫ 1

0
| ¤𝑈 (𝑟) |2d𝑟

]
.

In other words, this means that the maps

𝑝D𝑛 : 𝐿2 (W → H ; `
)
−→ 𝐿2 (W → H ; `

)
𝑈 ↦−→ 𝐼1 ( ¤𝑈D𝑛 )

are continuous and satisfy
∥𝑝D𝑛 ∥ ≤ 1. (2.21)

Let

𝑀 =
{
𝑈 ∈ 𝐿2 (W → H ; `

)
, ¤𝑈 is a.s. continuous and E

[
∥ ¤𝑈∥2

∞
]
< ∞

}
.

For such a process

∥ ¤𝑈 − ¤𝑈D𝑛 ∥2
𝐿2

(
[0,1]→R; ℓ

) ≤
2𝑛−1∑︁
𝑖=1

∫ 𝑖 2−𝑛

(𝑖−1)2−𝑛

(
2𝑛

∫ 𝑖 2−𝑛

(𝑖−1)2−𝑛
| ¤𝑈 (𝑟) − ¤𝑈 (𝑡) |d𝑟

)2
d𝑡

≤
2𝑛−1∑︁
𝑖=1

∫ 𝑖 2−𝑛

(𝑖−1)2−𝑛
2𝑛

∫ 𝑖 2−𝑛

(𝑖−1)2−𝑛
| ¤𝑈 (𝑟) − ¤𝑈 (𝑡) |2d𝑟d𝑡,

by the Jensen inequality. Since ¤𝑈 is a.s. continuous, for 𝑡 ∈ ((𝑖 − 1)2−𝑛, 𝑖 2−𝑛],

2𝑛
∫ 𝑖 2−𝑛

(𝑖−1)2−𝑛
| ¤𝑈 (𝑟) − ¤𝑈 (𝑡) |2d𝑟

𝑛→∞−−−−→
a.s.

0.

Since E
[
∥ ¤𝑈∥2

∞
]

is finite, the dominated convergence theorem entails that
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E

[
2𝑛−1∑︁
𝑖=1

∫ 𝑖 2−𝑛

(𝑖−1)2−𝑛
2𝑛

∫ 𝑖 2−𝑛

(𝑖−1)2−𝑛
| ¤𝑈 (𝑟) − ¤𝑈 (𝑡) |2d𝑟d𝑡

]
𝑛→∞−−−−→ 0.

We have thus proved that for 𝑈 ∈ 𝑀 , 𝑝D𝑛𝑈 converges to 𝑈 in 𝐿2 (W ⊗ [0, 1] →
R; ` ⊗ ℓ

)
. For𝑈 ∈ 𝐿2 (W → H ; `

)
, for any 𝜖 > 0, there exists𝑈𝜖 ∈ 𝑀 such that

∥𝑈 −𝑈𝜖 ∥𝐿2
(
W→H; `

) ≤ 𝜖 .

In view of(2.21),

∥𝑈 − 𝑝D𝑛𝑈∥
𝐿2

(
W→H; `

) ≤ ∥𝑈 −𝑈𝜖 ∥𝐿2
(
W→H; `

) + ∥𝑝D𝑛 (𝑈 −𝑈𝜖 )∥𝐿2
(
W→H; `

)
+ ∥𝑝D𝑛 (𝑈𝜖 ) −𝑈𝜖 ∥𝐿2

(
W→H; `

)
≤ 2∥𝑈 −𝑈𝜖 ∥𝐿2

(
W→H; `

) + ∥𝑝D𝑛 (𝑈𝜖 ) −𝑈𝜖 ∥𝐿2
(
W→H; `

)
≤ 2𝜖 + ∥𝑝D𝑛 (𝑈𝜖 ) −𝑈𝜖 ∥𝐿2

(
W→H; `

) .
It remains to choose 𝑛 sufficiently large to have the rightmost term less than 𝜖 to
prove that ¤𝑈D𝑛 tends to ¤𝑈 in 𝐿2 (W ⊗ [0, 1] → R; ` ⊗ ℓ

)
.

Step 2. Remark that if ¤𝑈 is adapted then so does ¤𝑈D𝑛 since we chose carefully the
interval of the integral in (2.20).
Step 3. Similarly, if 𝑈 ∈ D2,1, ¤∇𝑟 ¤𝑈𝑡 can be approximated in 𝐿2 (W ⊗ [0, 1]2 →
R; ` ⊗ ℓ⊗2) by

2𝑛−1∑︁
𝑖=1

2𝑛
(∫ 𝑖 2−𝑛

(𝑖−1)2−𝑛
¤∇𝑟 ¤𝑈 (𝑠)d𝑠

)
1(𝑖2−𝑛 , (𝑖+1)2−𝑛 ] (𝑡).

Then, the same proof as before shows this approximation converges in the space
𝐿2 (W ⊗ [0, 1]2 → R; ` ⊗ ℓ⊗2) to ¤∇ ¤𝑈. □

•> Derivative of Itô integrals

This approximation is necessary to compute the derivative of an Itô integral. It is
the analog of the usual formula

𝑑

𝑑𝜏

(∫ 𝜏

0
𝑓 (𝜏, 𝑠)d𝑠

)
= 𝑓 (𝜏, 𝜏) +

∫ 𝜏

0

𝜕 𝑓

𝜕𝜏
(𝜏, 𝑠)d𝑠,

since we have some 𝜔’s both in ¤𝑈 and in 𝑑𝐵.

Theorem 2.6 For 𝑈 ∈ D𝑎2,1 (H), the Itô integral of ¤𝑈 belongs to D2,1 and for any
ℎ ∈ H ,
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∇
(∫

¤𝑈 (𝑠)d𝐵(𝑠)
)
, ℎ

〉
H

=

∫ 1

0
¤𝑈 (𝑠) ¤ℎ(𝑠)d𝑠 +

∫ 1

0

〈
∇ ¤𝑈 (𝑠), ℎ

〉
H d𝐵(𝑠). (2.22)

Proof From the previous theorem, we know that
〈
∇ ¤𝑈 (𝑠), ℎ

〉
H is adapted and square

integrable so that its stochastic integral is well defined. For𝑈 (𝑡) = 𝑈𝑎 𝐼1 (1(𝑎,𝑏]) (𝑡)
with 𝑈𝑎 ∈ F𝑎 and 𝑈𝑎 ∈ D2,1, on the one hand, since ∇ is a derivation operator, we
have〈

∇
(∫

¤𝑈 (𝑠)d𝐵(𝑠)
)
, ℎ

〉
H

=

〈
∇
(
𝑈𝑎

(
𝐵(𝑏) − 𝐵(𝑎)

) )
, ℎ

〉
H

= ⟨∇𝑈𝑎, ℎ⟩H
(
𝐵(𝑏) − 𝐵(𝑎)

)
+

∫ 1

0
𝑈𝑎 1(𝑎,𝑏] (𝑠) ¤ℎ(𝑠)d𝑠

=

∫ 1

0
⟨∇𝑈𝑎, ℎ⟩H 1(𝑎,𝑏] (𝑠)d𝐵(𝑠) +

∫ 1

0
𝑈𝑎 1(𝑎,𝑏] (𝑠) ¤ℎ(𝑠)d𝑠

=

∫ 1

0
¤𝑈 (𝑠) ¤ℎ(𝑠)d𝑠 +

∫ 1

0

〈
∇ ¤𝑈 (𝑠), ℎ

〉
H d𝐵(𝑠).

By linearity, Eqn. (2.22) holds for simple processes as in Theorem 2.5. Since for 𝑈
with continuous sample-paths,𝑈D𝑛 tends in 𝐿2 (𝑊 × [0, 1], ` ⊗ ℓ) to𝑈, in virtue of
Lemma 2.3, it remains to prove that

sup
𝑛

E
[
∥∇

∫
¤𝑈D𝑛 (𝑠)d𝐵(𝑠)∥2

H

]
< ∞.

By the very definition of the Pettis integral,〈∫ 1

0
∇ ¤𝑈D𝑛 (𝑠)d𝐵(𝑠), ℎ

〉
H

=

∫ 1

0

〈
∇ ¤𝑈D𝑛 (𝑠), ℎ

〉
H d𝐵(𝑠).

In view of (2.22), the hard part is then to show that

sup
𝑛

E
[
∥
∫ 1

0
∇ ¤𝑈D𝑛 (𝑠)d𝐵(𝑠)∥2

H

]
< ∞.

We remark that
𝑡 ↦−→

∫ 𝑡

0
∇ ¤𝑈D𝑛 (𝑠)d𝐵(𝑠)

is an Hilbert valued martingale and we admit that the Itô isometry is still valid:
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E

[����∫ 1

0
∇ ¤𝑈D𝑛 (𝑠)d𝐵(𝑠)

����2] = E
[∫ 1

0
∥∇ ¤𝑈D𝑛 (𝑠)∥2

Hd𝑠
]

= E
[∫ 1

0

∫ 1

0
| ¤∇𝑟 ¤𝑈D𝑛 (𝑠) |2d𝑟d𝑠

]
= ∥∇𝑈D𝑛 ∥2

𝐿2
(
W→H⊗H; `

) .
Combining (2.22) with this upper-bound, we get

E
[
∥∇

∫
¤𝑈D𝑛 (𝑠)d𝐵(𝑠)∥2

H

]
≤ 2

(
∥𝑈D𝑛 ∥2

𝐿2
(
W→H; `

) + ∥∇𝑈D𝑛 ∥2
𝐿2

(
W→H⊗H; `

) ) .
We conclude with Theorem 2.5. □

For cylindrical functions, we can clearly define higher order derivative following the
same rule. The only difficulty is to realize that the second (respectively 𝑘-th) order
gradient belongs to H⊗(2) (respectively H⊗(𝑘 ) ): For instance, for 𝐹 = 𝑓 (𝛿ℎ 𝑗 , 1 ≤
𝑗 ≤ 𝑛),〈

∇(2)𝐹, ℎ ⊗ 𝑘
〉
H⊗H

=

𝑛∑︁
𝑗 ,𝑙=1

𝜕 𝑗 ,𝑙 𝑓 (𝛿ℎ 𝑗 , 1 ≤ 𝑗 ≤ 𝑛)
〈
ℎ 𝑗 , ℎ

〉
H ⊗ ⟨ℎ𝑙 , 𝑘⟩H

=
〈
∇
(
⟨∇𝐹, ℎ⟩H

)
, 𝑘

〉
H .

Definition 2.7 For any 𝑝 > 1 and 𝑘 ≥ 1, D𝑝,𝑘 is the completion of S with respect
to the norm

∥𝐹∥ 𝑝,𝑘 = ∥𝐹∥ 𝑝 +
𝑘∑︁
𝑗=1

∥∇( 𝑗 )𝐹∥
𝐿𝑝

(
W→H⊗( 𝑗) ; `

) .
The space of test functions is D = ∩𝑝>1 ∩𝑘≥1 D𝑝,𝑘 . It plays the same rôle as the set
of C∞ functions with compact support plays in the theory of distributions.

Example 2.3 Second derivative of 𝐵(𝑡)2 We know that

∇𝐵(𝑡)2 = 2𝐵(𝑡) ∇𝐵(𝑡) = 2 𝐵(𝑡) 𝑡 ∧ .

By iteration,

∇(2)𝐵(𝑡)2 = 2∇𝐵(𝑡) ⊗ 𝑡 ∧ . = 2 (𝑡 ∧ .) ⊗ (𝑡 ∧ .).

or equivalently
∇(2)
𝑟 ,𝑠𝐵(𝑡)2 = 2 (𝑡 ∧ 𝑟) (𝑡 ∧ 𝑠).

∇(2)𝐹 ∈ H ⊗ H or ∇(2)𝐹 : H → H ?

By its very definition ∇(2)𝐹 (𝜔) is an element of H ⊗H that is to say a continuous
linear form on H×H , i.e. it takes as its argument ℎ, 𝑘 ∈ H and yields a real number.
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Alternatively, we can consider the map

H −→ H ∗ ≃ H

ℎ ↦−→
(
𝑘 ↦→ ⟨∇(2)𝐹 (𝜔), ℎ ⊗ 𝑘⟩H⊗H

)
.

As such ∇(2)𝐹 (𝜔) appears as a linear map from H into itself. To make things even
more confusing, we can work with the 𝐿2 representatives. By the very construction
of tensor products, it is immediate that

𝐼1 ⊗ 𝐼1 : 𝐿2 ([0, 1]2 → R; ℓ
)
≃ 𝐿2 ([0, 1] → R; ℓ

)⊗(2) −→ H ⊗ H
¤ℎ ⊗ ¤𝑘 ↦−→ 𝐼1 ( ¤ℎ) ⊗ 𝐼1 ( ¤𝑘)

can be extended in a bĳective isometry and we denote by ¤∇(2)𝐹 (𝜔) the pre-image
of ∇(2)𝐹 (𝜔) by this map so that we have

⟨∇(2)𝐹 (𝜔), ℎ ⊗ 𝑘⟩H⊗H =

∫ 1

0

∫ 1

0
¤∇(2)
𝑠,𝑟 𝐹 (𝜔) ¤ℎ(𝑠) ¤𝑘 (𝑟)d𝑠d𝑟. (2.23)

•> ∇(2)𝐹 is a symmetric Hilbert-Schmidt operator

In ordinary differential calculus, the Schwarz Theorem says that the order of dif-
ferentiation is unimportant. The analog here is the say that ∇(2) is a symmetric
operator.

Lemma 2.5 Assume that some 𝑝 ≥ 1, 𝐹 ∈ D𝑝,2. Then, for any 𝑘, 𝑙 ∈ H ,〈
∇(2)𝐹, 𝑘 ⊗ 𝑙

〉
H⊗H

=

〈
∇(2)𝐹, 𝑙 ⊗ 𝑘

〉
H⊗H

< Moreover, for 𝐹 ∈ D2,2, for almost all 𝜔 ∈ W, ∇(2)𝐹 (𝜔) viewed as a map from
H into itself if Hilbert-Schmidt

Proof Step 1. 𝐹 ∈ D2,2 means that

∞ > E
[
∥∇(2)𝐹∥2

H

]
= E

[∫ 1

0

∫ 1

0
| ¤∇𝑟 ¤∇𝑠𝐹 (𝜔) |2d𝑟d𝑠

]
.

This implies that almost all 𝜔 ∈ W,∫ 1

0

∫ 1

0
| ¤∇𝑟 ¤∇𝑠𝐹 (𝜔) |2d𝑟d𝑠 < ∞,

which in view of (2.23) means that ∇(2)𝐹 (𝜔) is Hilbert-Schmidt.
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Step 2. For 𝐹 ∈ S, 𝐹 = 𝑓 (𝛿ℎ1, · · · , 𝛿ℎ𝑀 ), in virtue of the Schwarz theorem for
crossed derivatives of functions of several variables,〈

∇(2)𝐹, 𝑘 ⊗ 𝑙
〉
H⊗H

=

𝑛∑︁
𝑖, 𝑗=1

𝜕2
𝑖 𝑗 𝑓 (𝛿ℎ1, · · · , 𝛿ℎ𝑀 ) ⟨𝑘, ℎ𝑖⟩H

〈
𝑙, ℎ 𝑗

〉
H

=

𝑛∑︁
𝑖, 𝑗=1

𝜕2
𝑗𝑖 𝑓 (𝛿ℎ1, · · · , 𝛿ℎ𝑀 )

〈
𝑙, ℎ 𝑗

〉
H ⟨𝑘, ℎ𝑖⟩H

=

〈
∇(2)𝐹, 𝑙 ⊗ 𝑘

〉
H⊗H

.

Furthermore, (2.23) entails that

|E
[〈
∇(2)𝐹, 𝑘 ⊗ 𝑙 − 𝑙 ⊗ 𝑘

〉
H⊗H

]
| ≤ 2∥𝐷∥D2,2 ∥𝑘 ∥H ∥𝑙∥H ,

hence the proof by density of S in D2,2.

2.2 Divergence

For a matrix 𝑀 ∈ M𝑛,𝑝 (R), its adjoint, which turns to coincide with its transpose,
is defined by the identity:

⟨𝑀𝑥, 𝑦⟩R𝑝 = ⟨𝑥, 𝑀∗𝑦⟩R𝑛 .

We see that to define an adjoint, we need to have a notion a scalar product or more
generally of a duality bracket. It is then natural for 𝑀 continuous from a Banach 𝐸
into a Banach 𝐹, to define its adjoint as the continuous map from 𝐹∗ into 𝐸∗ defined
by the identity:

⟨𝑀𝑥, 𝑦⟩𝐹,𝐹∗ = ⟨𝑥, 𝑀∗𝑦⟩𝐸,𝐸∗ .

For any 𝑞 > 1, the Gross-Sobolev derivative, which we denoted by ∇, is continuous
between the two spaces:

D𝑞,1 ⊂ 𝐿𝑞
(
W → R; `

)
−→ 𝐿𝑞

(
W → H ; `

)
.

Therefore its adjoint is a map from(
𝐿𝑞

(
𝑊 → H ; `

) )∗
= 𝐿 𝑝

(
W → H ; `

)
−→

(
𝐿𝑞

(
W → R; `

) )∗
= 𝐿 𝑝

(
W → R; `

)
with 1/𝑝 + 1/𝑞 = 1 and must satisfy the identity
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⟨∇𝐹,𝑈⟩
𝐿𝑞

(
W→H; `

)
,𝐿𝑝

(
W→H; `

) = ⟨𝐹,∇∗𝑈⟩
𝐿𝑞

(
W→R; `

)
,𝐿𝑝

(
W→R; `

)
⇐⇒ E [⟨∇𝐹,𝑈⟩H] = E [𝐹 ∇∗𝑈] .

An additional difficulty comes from the fact that ∇ is not defined on the whole of
𝐿𝑞

(
W → R; `

)
but only on the subsetD𝑞,1, hence we need to take some restrictions

in the definition of the adjoint.
Definition 2.8 Let 𝑝 > 1. Let Dom𝑝 ∇∗ be the set of H -valued random variables𝑈
for which there exists 𝑐𝑝 (𝑈) such that for any 𝐹 ∈ D𝑞,1,��E [

⟨∇𝐹, 𝑈⟩H
] �� ≤ 𝑐𝑝 (𝑈) ∥𝐹∥𝐿𝑞 (W→R; `

) .
In this case, we define ∇∗𝑈 as the unique element of 𝐿 𝑝

(
W → R; `

)
such that

E
[
⟨∇𝐹, 𝑈⟩H

]
= E [𝐹 ∇∗𝑈] .

Remark 2.1 (∇∗ coincides with the Wiener integral on H ) Recall that 𝛿 is the Wiener
integral. We now show that 𝛿 = ∇∗ |H . For any 𝐹 ∈ S, according to (2.5), we have

E [⟨∇𝐹, ℎ⟩H] = E [𝐹𝛿ℎ] (2.24)

and 𝛿ℎ is a Gaussian random variable of variance ∥ℎ∥2
H , thus belongs to any 𝐿𝑞

(
W →

R; `
)

for any 𝑞 > 1. Hence,

|E [⟨∇𝐹, ℎ⟩H] | ≤ ∥ℎ∥H ∥𝐹∥
𝐿𝑝

(
W→R; `

) .
This means that ℎ belongs to Dom𝑝 ∇∗ and (2.24) entails that ∇∗ℎ = 𝛿ℎ. Henceforth,
in the following, we will use the notation 𝛿 instead of ∇∗ and we keep for further
reference the fundamental formula

E [⟨∇𝐹, 𝑈⟩H] = E [𝐹 𝛿𝑈] (2.25)

for any 𝐹 ∈ D𝑞,1 and𝑈 ∈ Dom𝑝 𝛿.

In usual deterministic calculus, if 𝑎 is a constant, then trivially∫
𝑎𝑢(𝑠)d𝑠 = 𝑎

∫
𝑢(𝑠)d𝑠. (2.26)

For Itô integrals, this property does not hold any longer since we may have a problem
of adaptability: If 𝑎 is a random variable, not belonging to F0 and 𝑢 is an adapted
process with all the required integrability properties, then the process (𝑎 𝑢(𝑠), 𝑠 ≥ 0)
is not adapted so that

∫
𝑎𝑢(𝑠)d𝐵(𝑠) is not well defined. For the divergence, since

we got rid of the adaptability hypothesis, we can prove a formula analog to (2.26)
which is a simple consequence of the fact that ∇ is a derivation operator.

•> Divergence of the product of a random variable by a vector field
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Theorem 2.7 Let 𝑈 ∈ Dom𝑝 𝛿 and 𝑎 ∈ D𝑞,1 with 1/𝑝 + 1/𝑞 = 1/𝑟. Then, 𝑎𝑈 ∈
Dom𝑟 𝛿 and

𝛿(𝑎𝑈) = 𝑎 𝛿𝑈 − ⟨∇𝑎,𝑈⟩H . (2.27)

Proof Step 1. We first prove that the right-hand-side belongs to 𝐿𝑟
(
W → R; `

)
.

E [|𝑎𝛿𝑈 |𝑟 ] ≤ E [|𝑎 |𝑞]𝑟/𝑞 E [|𝛿𝑈 |𝑝]𝑟/𝑝 (2.28)

and

E
[��⟨∇𝑎, 𝑈⟩H ��𝑟 ] ≤ E

[
∥∇𝑎∥𝑟H ∥𝑈∥𝑟H

]
≤ E

[
∥∇𝑎∥𝑞H

]𝑟/𝑞
E

[
∥𝑈∥ 𝑝H

]𝑟/𝑝
≤ ∥𝑎∥𝑟D𝑞,1 ∥𝑈∥𝑟D𝑝,1 . (2.29)

Step 2. Denote 𝑟∗ = 𝑟/(𝑟 − 1). For 𝐹 ∈ D𝑟∗ ,1, since ∇ is a true derivation,

E [⟨∇𝐹, 𝑎𝑈⟩H] = E [⟨𝑎∇𝐹,𝑈⟩H]
= E [⟨∇(𝑎𝐹) − 𝐹∇𝑎,𝑈⟩H]
= E [𝐹 𝑎𝛿𝑈] − E [𝐹⟨∇𝑎,𝑈⟩H] .

(2.30)

According to (2.28) and (2.29), (2.30) implies that

|E [⟨∇𝐹, 𝑎𝑈⟩H] | ≤ ∥𝑎∥D𝑝,1 ∥𝑈∥D𝑞,1 ∥𝐹∥𝐿𝑟∗
(
W→H; `

)
Hence, 𝑎𝑈 belongs to Dom𝑟 𝛿.
Step 3. At last, (2.30) implies (2.27) by identification. □

We have already seen that the Itô integral coincides with the Wiener integral for
deterministic integrands provided that we identify ℎ and ¤ℎ. We now show that
modulo the same identification, the divergence of adapted processes coincides with
their Itô integral.

Corollary 2.3 (Divergence extends Itô integral) Let𝑈 ∈ D𝑎2,1 (H). Then,𝑈 belong
to Dom2 𝛿 and

𝛿𝑈 =

∫ 1

0
¤𝑈 (𝑠)d𝐵(𝑠), (2.31)

where the stochastic integral is taken in the Itô sense.

Proof The principle of the proof is to establish (2.31) for adapted simple processes
and then pass to the limit.
Step 1. For 0 ≤ 𝑠 < 𝑡 ≤ 1, let
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¤𝑈 (𝑟) = \𝑠 1(𝑠,𝑡 ] (𝑟), i.e.𝑈 (𝑟) = \𝑠
(
𝑡 ∧ 𝑟 − 𝑠 ∧ 𝑟

)
,

where \𝑠 ∈ D2,1 and \𝑠 is F𝑠-measurable. According to Theorem 2.7,𝑈 is in Dom2 𝛿

and

𝛿(𝑈) = \𝑠 𝛿(𝑡 ∧ . − 𝑠 ∧ .) − ⟨∇\𝑠 , 𝑡 ∧ . − 𝑠 ∧ .⟩H

= \𝑠
(
𝐵(𝑡) − 𝐵(𝑠)

)
−

∫ 1

0
¤∇𝜏\𝑠 1(𝑠,𝑡 ] (𝜏)d𝜏 (2.32)

Now recall that according to Lemma 2.4, since \𝑠 ∈ F𝑠 ,

¤∇𝜏\𝑠 = 0 if 𝜏 > 𝑟,

hence the rightmost integral of (2.32) is null and

𝛿(𝑈) = \𝑠
(
𝐵(𝑡) − 𝐵(𝑠)

)
=

∫ 1

0
¤𝑈 (𝑟)d𝐵(𝑟). (2.33)

Step 2. If ¤𝑈 is adapted, the random variable

2𝑛
(∫ 𝑖2−𝑛

(𝑖−1)2−𝑛
¤𝑈 (𝑟)d𝑟

)
belongs to F𝑖2−𝑛 .

Hence, with the notations of Theorem 2.5, we have by linearity

𝛿(𝑈D𝑛 ) =
∫ 1

0
¤𝑈D𝑛 (𝑟)d𝐵(𝑟).

Step 3. It remains to show that we can pass to the limit in both sides of (2.31). The
application 𝛿 is continuous from D𝑎2,1 (H) ⊂ D2,1 (H) into 𝐿2 (W → R; `

)
. Hence,

Theorem 2.5 entails that

𝛿(𝑈D𝑛 )
𝐿2

(
W→R; `

)
−−−−−−−−−−→

𝑛→∞
𝛿(𝑈).

Furthermore, the Itô integral is an isometry hence a continuous map from 𝐿2
𝑎 (W ×

[0, 1] → R; `) into 𝐿2 (W → R; `
)
. Hence,∫ 1

0
¤𝑈D𝑛 (𝑟)d𝐵(𝑟)

𝐿2
(
W→R; `

)
−−−−−−−−−−→

𝑛→∞

∫ 1

0
¤𝑈 (𝑟)d𝐵(𝑟).

The proof is thus complete. □

The Itô isometry states that for𝑈 adapted

E

[(∫ 1

0
¤𝑈 (𝑠)d𝐵(𝑠)

)2]
= E

[∫ 1

0
| ¤𝑈 (𝑠) |2d𝑠

]
.
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One of the most elegant formula given by the Malliavin calculus is the generalization
of this identity to non-adapted integrands.

Remark 2.2 If𝑈 ∈ D2,1 (H) then ¤∇ ¤𝑈 is a.s. an Hilbert-Schmidt map on 𝐿2 ( [0, 1] ×
[0, 1], ℓ ⊗ ℓ). Indeed, by the definition of the norm in D2,1 (H),

∥𝑈∥2
D2,1

= E
[
∥𝑈∥2

H
]
+ E

[
∥∇𝑈∥2

H⊗H
]

= E
[∫ 1

0
¤𝑈 (𝑠)2d𝑠

]
+ E

[∫ 1

0

∫ 1

0
| ¤∇𝑟 ¤𝑈 (𝑠) |2d𝑟d𝑠

]
.

This ensures the almost-sure finiteness of∫ 1

0

∫ 1

0
| ¤∇𝑟 ¤𝑈 (𝑠) |2d𝑟d𝑠,

meaning that ¤∇ ¤𝑈 is Hilbert-Schmidt with probability 1.

Lemma 2.6 If𝑈 belongs to D𝑎2,1 (H) then trace(∇𝑈 ◦ ∇𝑈) = 0.

Proof According to Lemma 1.3,

trace(∇𝑈 ◦ ∇𝑈) =
∬

[0,1]2

¤∇𝑟 ¤𝑈 (𝑠) ¤∇𝑠 ¤𝑈 (𝑟)d𝑟d𝑠.

Since ¤𝑈 (𝑠) is F𝑠-measurable, ¤∇𝑟 ¤𝑈 (𝑠) = 0 if 𝑟 > 𝑠. Similarly, ¤∇𝑠 ¤𝑈 (𝑟) = 0 if 𝑠 > 𝑟.
Hence, the product is zero ℓ ⊗ ℓ almost-surely. It follows that the integral is null. □

•! Extension of the Itô isometry

The Itô isometry says that the 𝐿2 (Ω → R; P
)
-norm of the stochastic integral of

an adapted process is equal to the 𝐿2 (Ω × [0, 1] → R; P ⊗ ℓ
)
-norm of the process.

The next formula extends this relation to non adapted integrands and quantify the
difference due to non adaptability.

Theorem 2.8 (𝐿2 norm of divergence) The space D1,2 (H) is included in Dom2 𝛿

and for𝑈 ∈ D1,2 (H),

E
[
𝛿𝑈2] = E

[
∥𝑈∥2

H
]
+ E [trace(∇𝑈 ◦ ∇𝑈)] . (2.34)

Lemma 2.7 For 𝑘 ≥ 1, for 𝑉 ∈ D2,1 (H⊗(𝑘 ) ), for 𝑥 ∈ H⊗(𝑘 ) , for ℎ ∈ H ,〈
∇⟨𝑉, 𝑥⟩H⊗(𝑘) , ℎ

〉
H = ⟨∇𝑉, 𝑥 ⊗ ℎ⟩H⊗(𝑘+1)

Proof For the sake of simplicity, we give the proof for 𝑘 = 1. The general case is
handled similarly. Going back to the definition of the scalar product in H , we have
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∇⟨𝑉, 𝑥⟩H⊗(𝑘) , ℎ

〉
H =

∫ 1

0
¤∇𝑠

(∫ 1

0
¤𝑉 (𝑟) ¤𝑥(𝑟)d𝑟

)
¤ℎ(𝑠)d𝑠.

Approximate the inner integral by Riemann sums and pass to the limit to show that

¤∇𝑠
(∫ 1

0
¤𝑉 (𝑟) ¤𝑥(𝑟)d𝑟

)
=

∫ 1

0
¤∇𝑠 ¤𝑉 (𝑟) ¤𝑥(𝑟)d𝑟,

first for 𝑉 such that (𝑟, 𝑠) ↦−→ ¤∇𝑠 ¤𝑉 (𝑟) is continuous and then by density for all
𝑉 ∈ D2,1 (H). Hence the result. □

Proof (Proof of Theorem 2.8) For𝑈 ∈ D1,2 (H),𝑈 takes its values in H so that we
can write

𝑈 =
∑︁
𝑛≥0

⟨𝑈, ℎ𝑛⟩H ℎ𝑛,

for (ℎ𝑛, 𝑛 ≥ 0) a complete orthonormal basis of H . The series

𝑈𝑁 =

𝑁∑︁
𝑛=0

⟨𝑈, ℎ𝑛⟩H ℎ𝑛 and ∇𝑈𝑁 =

𝑁∑︁
𝑛=0

∇ ⟨𝑈, ℎ𝑛⟩H ℎ𝑛

converge in 𝐿2 (W → H ; `
)

and 𝐿2 (W → H ⊗ H ; `
)
) respectively.

According to (2.27),

𝛿𝑈𝑁 =

𝑁∑︁
𝑛=0

⟨𝑈, ℎ𝑛⟩H 𝛿ℎ𝑛 −
𝑁∑︁
𝑛=0

⟨∇𝑈, ℎ𝑛 ⊗ ℎ𝑛⟩H⊗H .

Thus,

∇𝛿𝑈𝑁

=

𝑁∑︁
𝑛=0

{
⟨∇𝑈, ℎ𝑛⟩H 𝛿ℎ𝑛 + ⟨𝑈, ℎ𝑛⟩H ℎ𝑛 − ∇

(
⟨∇𝑈, ℎ𝑛 ⊗ ℎ𝑛⟩H⊗H

)}
. (2.35)

Consequently, in virtue of Lemma 2.7,

E [𝛿𝑈𝑁 𝛿𝑈𝑁 ] =
𝑁∑︁

𝑛,𝑘≥0
E

[
⟨𝑈, ℎ𝑘⟩H ⟨∇𝑈, ℎ𝑛 ⊗ ℎ𝑘⟩H⊗H 𝛿ℎ𝑛

]
+

𝑁∑︁
𝑛,𝑘≥0

E
[
⟨𝑈, ℎ𝑛⟩H ⟨𝑈, ℎ𝑘⟩H ⟨ℎ𝑛, ℎ𝑘⟩H

]
−

𝑁∑︁
𝑛,𝑘≥0

E
[
⟨𝑈, ℎ𝑘⟩H

〈
∇(2)𝑈, ℎ𝑛 ⊗ ℎ𝑛 ⊗ ℎ𝑘

〉
H⊗(3)

]
= 𝐴1 + 𝐴2 − 𝐴3.
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On the one hand, Parseval equality yields

𝐴2 =
∑︁
𝑛,𝑘≥0

E
[
⟨𝑈, ℎ𝑛⟩H ⟨𝑈, ℎ𝑘⟩H ⟨ℎ𝑛, ℎ𝑘⟩H

]
=

∑︁
𝑛≥0

E
[
⟨𝑈, ℎ𝑛⟩2

H
]
= E

[
∥𝑈∥2

H
]
.

Apply once more the integration by parts formula in 𝐴1:

𝐴1 =

𝑁∑︁
𝑛,𝑘≥0

E
[
⟨∇𝑈, ℎ𝑘 ⊗ ℎ𝑛⟩H⊗H ⟨∇𝑈, ℎ𝑛 ⊗ ℎ𝑘⟩H⊗H

]
+

𝑁∑︁
𝑛,𝑘≥0

E
[
⟨𝑈, ℎ𝑘⟩H

〈
∇(2)𝑈, ℎ𝑛 ⊗ ℎ𝑘 ⊗ ℎ𝑛

〉
H⊗(3)

]
= trace(∇𝑈𝑁 ◦ ∇𝑈𝑁 ) + 𝐴3,

since ∇(2) is a symmetric operator, cf. Lemma 2.5.
Step 3. In brief, we have proved so far that

E
[
𝛿𝑈2

𝑁

]
= ∥𝑈𝑁 ∥𝐿2

(
W→H; `

) + E [trace(∇𝑈𝑁 ◦ ∇𝑈𝑁 )] .

Then, Eqn. (1.24) entails that

E
[
𝛿(𝑈𝑁 −𝑈𝐾 )2] ≤ ∥𝑈𝑁 −𝑈𝐾 ∥2

𝐿2
(
W→H; `

) + ∥∇𝑈𝑁 − ∇𝑈𝐾 ∥2
𝐿2

(
W→H⊗H; `

) .
Thus, the sequence (𝛿𝑈𝑁 , 𝑁 ≥ 0) is Cauchy in 𝐿2 (W → R; `

)
hence convergent

towards a limit temporarily denoted by [ ∈ 𝐿2 (W → R; `
)
. For 𝐹 ∈ D1,2,

E
[
⟨∇𝐹, 𝑈⟩H

]
= lim
𝑁→∞

E
[
⟨∇𝐹, 𝑈𝑁 ⟩H

]
= lim
𝑁→∞

E [𝐹 𝛿𝑈𝑁 ] = E [𝐹 [] .

By the very definition of the divergence, this means that𝑈 ∈ Dom2 𝛿 and 𝛿𝑈 = [ =

lim𝑁→∞ 𝛿𝑈𝑁 . □

During the proof, we have obtained a generalization of (2.22):

Corollary 2.4 For𝑈 ∈ D1,2 (H), we have

∇𝛿𝑈 = 𝑈 + 𝛿∇𝑈.

Proof Combine (2.35) and (2.27). □
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Banach spaces

2.2.1 Dual spaces

Let 𝑋 a Banach space, i.e. a vector space with a norm for which it is complete. Its
topological dual, denoted by 𝑋∗, is the set of continuous linear forms on 𝑋; i.e. the
linear maps 𝜙 from 𝑋 into R such that

∥𝜙∥𝑋∗ := sup
∥𝑥 ∥𝑋≤1

|𝜙(𝑥) | < ∞.

To keep track of the spaces to which every term belongs to, it is often denoted

𝜙(𝑥) = ⟨𝜙, 𝑥⟩𝑋∗ ,𝑋 . (2.36)

A consequence of the Hahn-Banach theorem gives a very interesting way to compute
the norm of an element of the original Banach space 𝑋 via computations on 𝑋∗

∥𝑥∥𝑋 = sup
𝜙∈𝑋∗

∥𝜙∥𝑋∗ ≤1

|⟨𝜙, 𝑥⟩𝑋∗ ,𝑋 | (2.37)

A Banach space is said to be reflexive whenever 𝑋∗∗ = 𝑋 . For instance, if 𝜌 is a
𝜎-finite measure on a space (𝐸, E),

• For 𝑝 ≥ 1, the dual of 𝐿 𝑝
(
𝐸 → R; 𝜌

)
is identified to the space 𝐿𝑞

(
𝐸 → R; 𝜌

)
where 1/𝑝 + 1/𝑞 = 1.

• The dual of 𝐿∞
(
𝐸 → R; 𝜌

)
is strictly larger than 𝐿1 (𝐸 → R; 𝜌

)
. Hence,

𝐿1 (𝐸 → R; 𝜌
)

is not reflexive.
• When 𝑋 is an Hilbert space, the dual is isometrically isomorphic to 𝑋 . Let
^ : 𝑋∗ → 𝑋 , this isomorphism. Then,

⟨𝜙, 𝑥⟩𝑋∗ ,𝑋 = ⟨^(𝜙), 𝑥⟩𝑋,𝑋,

i.e. the duality bracket is actually the scalar product on 𝑋 , which gives another
reason to the notation (2.36).

• The dual space ofC([0, 1],R) is the set of finite measures on [0, 1]. In particular,
the Dirac mass

Y𝑎 : C([0, 1],R) −→ R
𝑓 ↦−→ 𝑓 (𝑎)

belongs to (C([0, 1],R))∗.
• For 1/𝑝 < [,𝑊[,𝑝 ⊂ C([0, 1],R), hence Y𝑎 also belongs the dual of this space.
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Dunford-Pettis integral

It is easy to define ∫ 𝑏

𝑎

𝑓 (𝑠)d𝑠

when 𝑓 takes its value in R𝑑 by simply considering this integral is the 𝑑-dimensional
vector whose components are ∫ 𝑏

𝑎

𝑓𝑖 (𝑠)d𝑠

for 𝑖 = 1, · · · , 𝑑. If 𝑓 takes its value in a functional space, i.e. 𝑓 (𝑠, .) is a function
for any 𝑠, we may want to define the integral of 𝑓 as the function

𝑥 ↦−→
∫ 𝑏

𝑎

𝑓 (𝑠, 𝑥)d𝑠, (2.38)

i.e. we integrate with respect to 𝑠 for each 𝑥 fixed. This will automatically raises
some measurability questions. The framework of Dunford-Pettis integral is here to
give a clean definition of (2.38).

Definition 2.9 A function 𝑓 : (𝐸, 𝜌) −→ 𝑋 , where 𝑋 is a Banach space, is weakly
measurable if for any 𝑥 ∈ 𝑋∗, the real-valued function ⟨𝑥, 𝑓 ⟩𝑋∗ ,𝑋 is measurable.

The same function is said to be Dunford integrable is if for any 𝑥 ∈ 𝑋∗, the
real-valued function ⟨𝑥, 𝑓 ⟩𝑋∗ ,𝑋 belongs to 𝐿1 (𝐸 → R; 𝜌

)
.

Theorem 2.9 If 𝑓 is Dunford integrable then the map

𝑋∗ −→ R

𝑥 ↦−→
∫
𝐸

⟨𝑥, 𝑓 ⟩ d𝜌

is continuous, hence belongs to 𝑋∗∗.

As far as we are concerned we will have to consider functions which are Hilbert
valued, hence 𝑋∗∗ = 𝑋 and the integral is an element of the initial space. That means
there exists an element of 𝑋 Hilbert denoted by

∫
𝑓 d` such that〈∫

𝐸

𝑓 d`, 𝑥
〉
𝑋

=

∫
𝐸

⟨ 𝑓 , 𝑥⟩𝑋 d`.

The stochastic integral of a Hilbert valued adapted process is defined as usual. A
𝑋-valued process is said to be progressive if it is of the form

𝑋 (𝑡) =
𝑛∑︁
𝑗=1

𝐴𝑖1(𝑡𝑖 ,𝑡𝑖+1 ] (𝑡) 𝑥𝑖

where 𝑥1, · · · , 𝑥𝑛 is a family of elements of 𝑋 and 𝐴𝑖 is F𝑡𝑖 -measurable. Then,
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0
𝑋 (𝑠)d𝐵(𝑠) =

𝑛∑︁
𝑗=1

𝐴𝑖

(
𝐵(𝑡𝑖+1 ∧ 𝑡) − 𝐵(𝑡𝑖 ∧ 𝑡)

)
⊗ 𝑥𝑖 .

It is a martingale and we can then extend the notion of stochastic integral to adapted,
𝑋-valued and square integrable processes. This yields a martingale which satisfies
the Doob inequality:

E
[
sup
𝑡≤1

∥
∫ 𝑡

0
𝑋 (𝑠)d𝐵(𝑠)∥2

𝑋

]
≤ 4E

[∫ 1

0
∥𝑋 (𝑠)∥2

𝑋d𝑠
]
.

Tensor products of Banach spaces

What is a tensor product?

If we have two real-valued functions 𝑓 and 𝑔 defined on respective space 𝐸 and 𝐹, the
tensor product of 𝑓 and 𝑔 is simply the function of two variables (𝑠, 𝑡) ↦→ 𝑓 (𝑠)𝑔(𝑡),
which is defined on 𝐸 × 𝐹. Evidently, we must take care of the topology we put
on the space of such functions. There are numerous possibilities, giving raise to
non-equivalent topologies. We stick here to the simplest one, namely the projective
topology since it is perfectly adequate to what we have in mind.

In a general setting, the tensor product of Banach spaces is defined even for
Banach spaces which are not set of functions, hence the strange circumlocution via
the dual spaces. We will see in the end that this amounts to the previous description
when we deal with 𝐿 𝑝-spaces.

Definition 2.10 Let 𝑋 and 𝑌 two Banach spaces, with respective dual 𝑋∗ and 𝑌 ∗.
For 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 , 𝑥 ⊗ 𝑦 is the bilinear form defined by:

𝑥 ⊗ 𝑦 : 𝑋∗ × 𝑌 ∗ −→ R
([, Z) ↦−→ ⟨[, 𝑥⟩𝑋∗ ,𝑋 ⟨Z, 𝑦⟩𝑌 ∗ ,𝑌 .

(2.39)

We now define the topology on the space spanned by the 𝑥 ⊗ 𝑦.
Definition 2.11 (See [6, chapter 2]) The projective tensor product of 𝑋 and 𝑌 ,
denoted by 𝑋 ⊗ 𝑌 , is the completion of the vector space spanned by the finite linear
combinations of some 𝑥 ⊗ 𝑦 for 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 , equipped with the norm

∥𝑧∥𝑋⊗𝑌 = inf

{
𝑛∑︁
𝑖=1

∥𝑥𝑖 ∥𝑋 ∥𝑦𝑖 ∥𝑌 , 𝑧 =
𝑛∑︁
𝑖=1

𝑥𝑖 ⊗ 𝑦𝑖

}
. (2.40)

Example 2.4 Tensor product of 𝐿2 spaces If 𝑋 = 𝐿2 (𝐸 → R; 𝑚
)

and 𝑌 = 𝐿2 (𝐹 →
R; 𝜌

)
then 𝑋∗ ≃ 𝑋 and 𝑌 ∗ ≃ 𝑌 . Furthermore,
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⟨𝑥 ⊗ 𝑦, 𝑓 ⊗ 𝑔⟩𝑋⊗𝑌, 𝑋∗⊗𝑌 ∗ =

∫
𝐸

𝑥(𝑠) 𝑓 (𝑠)d𝑚(𝑠)
∫
𝐹

𝑦(𝑡)𝑔(𝑡)d𝜌(𝑡)

=

∬
𝐸×𝐹

𝑥(𝑠)𝑦(𝑡) 𝑓 (𝑠)𝑔(𝑡)d𝑚(𝑠) d𝜌(𝑡).

Thus, 𝑥 ⊗ 𝑦 can be identified with the function of two variables (𝑠, 𝑡) ↦→ 𝑥(𝑠)𝑦(𝑡)
and as we shall see below in a more general case

𝐿2 (𝐸 → R; 𝑚
)
⊗ 𝐿2 (𝐹 → R; 𝜌

)
≃ 𝐿2 (𝐸 × 𝐹 → R; 𝑚 ⊗ 𝜌

)
.

In the definition of the norm on 𝑋 ⊗𝑌 , we need to take the infimum of all the possible
representations of 𝑧 as a linear combinations of elementary tensor products since
such a representation is by no means unique.

Example 2.5 Decomposition of an L as a sum of two rectangles One of the simplest
situation we can imagine, is the tensor product of 𝐿1 (R → R; ℓ

)
by itself. The

function
1[0,1] (𝑠) ⊗ 1[0,2] (𝑡) + 1[1,2] (𝑠) ⊗ 1[1,2] (𝑡)

can be equally written as:

1[0,1] (𝑠) ⊗ 1[0,1] (𝑡) + 1[0,2] (𝑠) ⊗ 1[1,2] (𝑡).

We then see that an element of span{𝑥 ⊗ 𝑦, 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 } may have several
representations, thus the need to take the infimum in (2.40).

Proposition 2.1 For 𝑋 and 𝑌 two reflexive Banach spaces, i.e. (𝑋∗)∗ = 𝑋 . The dual
of𝑊 = 𝑋 ⊗ 𝑌 is the space𝑊∗ = 𝑋∗ ⊗ 𝑌 ∗ with the duality pairing:

⟨𝑤∗, 𝑤⟩𝑊∗,𝑊 =
∑︁
𝑖, 𝑗

〈
𝑥∗𝑖 , 𝑥 𝑗

〉
𝑋∗,𝑋

〈
𝑦∗𝑖 , 𝑦 𝑗

〉
𝑌∗,𝑌

where 𝑤 =
∑
𝑗 𝑥 𝑗 ⊗ 𝑦 𝑗 ∈ 𝑋 ⊗ 𝑌 and 𝑤∗ =

∑
𝑖 𝑥

∗
𝑖
⊗ 𝑦∗

𝑖
∈ 𝑋∗ ⊗ 𝑌 ∗. Moreover,

∥𝑤∗∥𝑊∗ := sup
∥𝑤 ∥𝑊=1

��⟨𝑤∗, 𝑤⟩𝑊∗ ,𝑊

��
= sup

{��⟨𝑤∗, 𝑥 ⊗ 𝑦⟩𝑊∗ ,𝑊

��, ∥𝑥∥𝑋 = 1, ∥𝑦∥𝑌 = 1
}
. (2.41)

This proposition is important as it says that to compute the norm of an element of
𝑊∗, it is sufficient to test it against simple tensor products.

Let 𝑋 be a Banach space and a a measure on a space 𝐸 . The set 𝐿 𝑝
(
𝐸 → 𝑋; a

)
is the space of functions 𝜓 from 𝐸 into 𝑋 such that∫

𝐸

∥𝜓(𝑥)∥ 𝑝
𝑋

da(𝑥) < ∞.
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Theorem 2.10 ([6, page 30]) For 𝑋 a Banach space, the space 𝐿 𝑝
(
𝐸 → R; a

)
⊗ 𝑋

is isomorphic to 𝐿 𝑝
(
𝐸 → 𝑋; a

)
.

Moreover, if 𝑋 = 𝐿 𝑝
(
𝐹 → R; 𝜌

)
then 𝐿 𝑝

(
𝐸 → 𝑋; a

)
is isometrically isomorphic

to 𝐿 𝑝
(
𝐸 × 𝐹 → R; a ⊗ 𝜌

)
. Moreover, the set of simple functions, i.e. functions of

the form
𝑛∑︁
𝑗=1

𝑓 𝑗 (𝑠)𝜓 𝑗 (𝑥)

where 𝑓 𝑗 ∈ 𝐿 𝑝
(
𝐸 → R; a

)
and 𝜓 𝑗 ∈ 𝐿 𝑝

(
𝐹 → R; 𝜌

)
, is dense into 𝐿 𝑝

(
𝐸 × 𝐹 →

R; a ⊗ 𝜌
)
.

Convergence, strong and weak

Definition 2.12 (Weak convergence) A sequence (𝑥𝑛, 𝑛 ≥ 0) is said to be weakly
convergent in a Banach space 𝑋 , if for every [ ∈ 𝑋∗, (⟨[, 𝑥𝑛⟩𝑋∗ ,𝑋 , 𝑛 ≥ 0) is
convergent.

Remark 2.3 Since | ⟨[, 𝑥𝑛 − 𝑥⟩𝑋∗ ,𝑋 | ≤ ∥[∥𝑋∗ ∥𝑥𝑛 − 𝑥∥𝑋, strong convergence implies
weak convergence but the converse is false. For instance, let (𝑒𝑛, 𝑛 ≥ 0) a complete
orthonormal basis in a Hilbert space 𝑋 , on the one hand ∥𝑒𝑛∥𝑋 = 1. On the other
hand, according to Parseval equality, for [ ∈ 𝑋∗ = 𝑋 , ∥[∥2

𝑋
=

∑
𝑛 | ⟨[, 𝑒𝑛⟩𝑋 |2.

Hence, (⟨[, 𝑥𝑛⟩𝑋∗ ,𝑋 , 𝑛 ≥ 0) converges weakly to 0. The convergence cannot hold in
the strong sense.

Proposition 2.2 (Eberlein-Shmulyan,[9, page 141]) Let 𝑋 be a reflexive Banach
space, i.e. (𝑋∗)∗ = 𝑋 . Then, any strongly bounded sequence admits a weakly con-
vergent subsequence.

Remark 2.4 For any measure, 𝐿 𝑝 spaces are reflexive only for 𝑝 ≠ 1,∞. We do have
that the dual of 𝐿1 is 𝐿∞ but the dual of 𝐿∞ is larger than 𝐿1.

Proposition 2.3 (Mazur, [9, page 120]) Let (𝑥𝑛, 𝑛 ≥ 0) be a weakly convergent
subsequence in a Banach space 𝑋 and set 𝑥 its limit. Then, for any 𝜖 > 0, there
exist 𝑛 and (𝛼𝑖 , 1 ≤ 𝑖 ≤ 𝑛) such that 𝛼𝑖 ≥ 0,

∑
𝑖 𝛼𝑖 = 1 and

∥
𝑛∑︁
𝑖=1

𝛼𝑖𝑥𝑛𝑖 − 𝑥∥𝑋 ≤ 𝜖 .

2.3 Problems

2.1 Let 𝐹 ∈ D𝑝,1 and 𝜖 > 0. Set 𝜙𝜖 (𝑥) =
√
𝑥2 + 𝜖2.

1. Show that 𝜙𝜖 (𝐹) ∈ D𝑝,1.
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2. Show that |𝐹 | ∈ D𝑝,1 and that

¤∇𝑠 |𝐹 | =


¤∇𝑠𝐹 if 𝐹 > 0
0 if 𝐹 = 0
− ¤∇𝑠𝐹 if 𝐹 < 0.

3. If 𝐺 ∈ D𝑝,1, compute ∇(𝐹 ∨ 𝐺).

Let 𝐵 be the standard Brownian motion on [0, 1] and 𝑀 = sup𝑡∈[0,1] 𝐵(𝑠). Let
Q ∩ [0, 1] = {𝑡𝑛, 𝑛 ≥ 0}. Consider

𝑀𝑛 = sup
𝑠∈{𝑡1 , · · · ,𝑡𝑛 }

𝐵(𝑠).

We admit that 𝐵 attains its maximum at a unique point 𝑇 , almost-surely. Let

𝑇 = arg max
𝑠∈[0,1]

𝐵(𝑠).

4. Show that 𝑀𝑛 belongs to D𝑝,1 and compute ¤∇𝑀𝑛.
5. Prove that 𝑀 ∈ D𝑝,1 and that ¤∇𝑀 = 1[0,𝑇 ] .

2.2 (Iterated divergence) For𝑈 ∈ S(H), i.e.

𝑈 =

𝑛∑︁
𝑗=1

𝑓 𝑗 (𝛿ℎ1, · · · , 𝛿ℎ𝑚)𝑣 𝑗

where (𝑣1, · · · , 𝑣𝑛) belong to H and 𝑓 𝑗 in the Schwartz space on R𝑚. Let 𝛿 (2)
defined by the duality

E
[
𝛿2𝑢⊗(2)𝐺

]
= E

[〈
𝑢⊗(2) ,∇(2)𝐺

〉
H⊗H

]
for any 𝐺 ∈ D2,2. Show that

𝛿2 (𝑈⊗(2) ) =
(
𝛿𝑈

)2 − ∥𝑈∥2
H − trace(∇𝑈 ◦ ∇𝑈) − 2𝛿(⟨∇𝑈,𝑈⟩H).

2.3 (Stratonovitch integral) The Itô integral has a major drawback: Its differential
is not given by the usual formula but by the Itô formula. On the other hand, the
Stratonovitch integral does satisfy the usual rule of differentiation but does not yield
a martingale! We see in this problem that the Stratonovitch integral can be computed
with 𝛿 and ∇. For 𝑇𝑛 = {0 = 𝑡0 < 𝑡1 = 1/𝑛 < . . . < 𝑡𝑛 = 1}, let

d𝐵𝑇𝑛 (𝑡) =
𝑛−1∑︁
𝑖=0

𝐵(𝑡𝑖+1) − 𝐵(𝑡𝑖)
𝑡𝑖+1 − 𝑡𝑖

1[𝑡𝑖 , 𝑡𝑖+1 ] (𝑡)d𝑡

and
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𝐵𝑇𝑛 (𝑡) =
∫ 𝑡

0
d𝐵𝑇𝑛 (𝑠) =

𝑛−1∑︁
𝑖=0

(
𝐵(𝑡𝑖) +

𝐵(𝑡𝑖+1) − 𝐵(𝑡𝑖)
𝑡𝑖+1 − 𝑡𝑖

(𝑡 − 𝑡𝑖)
)

1[𝑡𝑖 , 𝑡𝑖+1 ] (𝑡)

be the linear affine interpolation of 𝐵. For anyH -valued random variable𝑈, consider
the Riemann-like sum

𝑆𝑈𝑇𝑛 =

∫ 1

0
¤𝑈 (𝑠)d𝐵𝑇𝑛 (𝑠) =

𝑛−1∑︁
𝑖=0

𝐵(𝑡𝑖+1) − 𝐵(𝑡𝑖)
𝑡𝑖+1 − 𝑡𝑖

∫ 𝑡𝑖+1

𝑡𝑖

¤𝑈 (𝑡)d𝑡.

The process 𝑈 is said to be Stratonovitch integrable if the sequence (𝑆𝑈
𝑇𝑛
, 𝑛 ≥ 0)

converges in probability as 𝑛 goes to infinity.
Assume that𝑈 belongs to D1,2 (H) and that the map

[0, 1] × [0, 1] −→ R
(𝑠, 𝑡) ↦−→ ¤∇𝑠 ¤𝑈 (𝑡)

is continuous.

1. Show that𝑈 is Stratonovitch integrable and

lim
𝑛→∞

𝑆𝑈𝑇𝑛 = 𝛿𝑈 +
∫ 1

0
¤∇𝑟 ¤𝑈 (𝑟)d𝑟.

Indication: Verify that

𝑆𝑈𝑇𝑛 =

𝑛−1∑︁
𝑖=0

1
𝑡𝑖+1 − 𝑡𝑖

𝛿(𝐼1 (1[𝑡𝑖 ,𝑡𝑖+1 ]))
∫ 𝑡𝑖+1

𝑡𝑖

¤𝑈 (𝑡)d𝑡.

Apply (2.27).
2. Find

lim
𝑛→∞

𝑛−1∑︁
𝑖=0

1
2

( ¤𝑈 (𝑡𝑖) + ¤𝑈 (𝑡𝑖+1)
)
(𝐵(𝑡𝑖+1) − 𝐵(𝑡𝑖)) .

2.4 Notes and comments

The presentation of the so-called Gross-Sobolev gradient avoids deliberately chaos
decomposition as in [8, 7]. It requires to invoke sophisticated theorems from func-
tional analysis but the reward will be apparent in the chapter about fractional Brow-
nian motion. For other approaches, see [4, 5]. The definition of the gradient without
cylindric functions has been investigated in [1, 2, 8].
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Chapter 3
Wiener chaos

Abstract Chaos are the eigenspaces of the 𝐿 = −𝛿∇. They play a major in the
Hilbertian analysis on the Wiener space as ∇ and 𝛿 have simple expressions on
chaos elements. They can also be constructed as iterated integrals with respect to
the Brownian motion and as such replace the orthonormal polynomials in the usual
deterministic calculus.

The next results will mainly be obtained by density reasoning. That means, the
desired formula is established for a small but dense subset of functionals. It is then
generalized to a wider set of functionals by passing to the limit. A small but rich
enough set is the set of Doléans-Dade exponentials: For ℎ ∈ H ,

Λℎ = exp
(
𝛿ℎ − 1

2
∥ℎ∥2

𝐻

)
.

Lemma 3.1 (Density of Doléans-Dade exponentials) The set of Doléans-Dade
exponentials:

E = span{Λℎ, ℎ ∈ H}

is dense in 𝐿2 (𝑊 → R; `
)
.

Proof Let 𝑍 ∈ 𝐿2 (W → R; `
)

orthogonal to all the elements of E. Let 𝑡0 = 0 <
𝑡1 . . . 𝑡𝑛 ≤ 1 and (𝑧1, · · · , 𝑧𝑛) ∈ C𝑛, for

ℎ =

𝑛∑︁
𝑗=1

𝑧 𝑗 (𝑡 𝑗 ∧ . − 𝑡 𝑗−1 ∧ .),

we have

Λℎ = exp ©«
𝑛∑︁
𝑗=1

𝑧 𝑗

(
𝐵(𝑡 𝑗 ) − 𝐵(𝑡 𝑗−1)

)
− 1

2

𝑛∑︁
𝑗=1

𝑧2
𝑗 (𝑡 𝑗 − 𝑡 𝑗−1)ª®¬ .

Consider the map

57



58 3 Wiener chaos

𝔊 : C𝑛 −→ C
𝑧 = (𝑧1, · · · , 𝑧𝑛) ↦−→ E [𝑍 exp(𝛿ℎ)] .

The hypothesis says that𝔊 is null on R𝑛. We now prove that𝔊 is holomorphic on C𝑛,
hence null everywhere. For any 𝑗 ∈ {1, · · · , 𝑛}, we can expand the exponential into
a series with respect to 𝑧 𝑗 ,

exp
(
𝑧 𝑗

(
𝐵(𝑡 𝑗 ) − 𝐵(𝑡 𝑗−1)

) )
=

∞∑︁
𝑘=0

1
𝑘!

(
𝐵(𝑡 𝑗 ) − 𝐵(𝑡 𝑗−1)

) 𝑘
𝑧𝑘𝑗 .

Since Gaussian random variables have finite moments of every order, multiple appli-
cations of Hölder inequality entail that 𝔊 has a series expansion valid on C𝑛, hence
is holomorphic.

It follows that 𝔊 is null on (𝑖R)𝑛, i.e.

E
𝑍 exp ©«𝑖

𝑛∑︁
𝑗=1
𝛼 𝑗

(
𝐵(𝑡 𝑗 ) − 𝐵(𝑡 𝑗−1)

)
− 1

2

𝑛∑︁
𝑗=1
𝛼2
𝑗 (𝑡 𝑗 − 𝑡 𝑗−1)ª®¬

 = 0,

for any 𝛼 = (𝛼1, · · · , 𝛼𝑛) ∈ R𝑛. If 𝜙 ∈ Schwartz(R𝑛), let 𝜙 denote its Fourier
transform, we have

E [𝑍 𝜙(𝐵(𝑡1), 𝐵(𝑡2) − 𝐵(𝑡1), · · · )]

=

∫
R𝑛
𝜙(𝛼1, · · · , 𝛼𝑛)E [𝑍𝔊(𝑖𝛼)] d𝛼1 . . . d𝛼𝑛 = 0.

This means that 𝑍 is orthogonal to cylindrical functions which are known to be dense
in 𝐿2 (𝑊 → R; `

)
, hence 𝑍 is null. □

3.1 Chaos decomposition

From Hermite to Wiener

In classical analysis, polynomials are interesting because there derivative is easy to
compute and the vector space they span is often dense. The first feature comes from
the identity

𝑡𝑛

𝑛!
=

∫ 𝑡

0

∫ 𝑡1

0
. . .

∫ 𝑡𝑛−1

0
d𝑡𝑛 . . . d𝑡1.

With this presentation, it is straightforward that(
𝑡𝑛

𝑛!

) ′
=

𝑡𝑛−1

(𝑛 − 1)!
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so that we can hope for a similar behavior if we find the good generalization. It is
natural to consider iterated integrals with respect to the Brownian motion:∫ 1

0

∫ 𝑡1

0
. . .

∫ 𝑡𝑛−1

0
d𝐵(𝑡𝑛) . . . d𝐵(𝑡1). (3.1)

The analog of putting a coefficient in front of the monomial 𝑡𝑛 is here to integrate
a deterministic function 𝑓 of 𝑛 variables as in (3.2). We so define the Wiener chaos
(of order 𝑛 if there are 𝑛 variables) which turn to be the analog of the Hermite
polynomials in R𝑛.

Definition 3.1 (Iterated integrals on a simplex) For 𝑡 ∈ (0, 1], let

T𝑛 (𝑡) =
{
(𝑡1, · · · , 𝑡𝑛) ∈ [0, 1]𝑛, 0 ≤ 𝑡1 < . . . < 𝑡𝑛 ≤ 𝑡

}
.

For 𝑓 ∈ 𝐿2 (T𝑛 (𝑡) → R; ℓ
)
, set

𝐽𝑛 ( 𝑓 ) (𝑡) =
∫ 𝑡

0
d𝐵(𝑡𝑛)

∫ 𝑡𝑛

0
d𝐵(𝑡𝑛−1) . . .

∫ 𝑡2

0
𝑓 (𝑡1, · · · , 𝑡𝑛)d𝐵(𝑡1), (3.2)

where the integrals are Itô integrals. For the sake of notations, set T𝑛 = T𝑛 (1) and
𝐽𝑛 ( 𝑓 ) = 𝐽𝑛 ( 𝑓 ) (1).

For 𝑛 = 0, T0 is reduced to one point and elements of 𝐿2 (T0 (𝑡) → R; ℓ
)

are
simply constant functions. Furthermore, 𝐽0 (𝑎) = 𝑎.

The structure of T𝑛 (𝑡) ensures that at each internal integral, the integrand is adapted.
Moreover,

𝐽𝑛 ( 𝑓 ) (𝑡) =
∫ 𝑡

0
𝐽𝑛−1 ( 𝑓 (., 𝑡𝑛)) (𝑡𝑛)d𝐵(𝑡𝑛). (3.3)

The Itô isometry then entails that

Theorem 3.1 We have

E [𝐽𝑛 ( 𝑓 )𝐽𝑚 (𝑔)] =
{

0 if 𝑛 ≠ 𝑚∫
T𝑛
𝑓 𝑔dℓ if 𝑛 = 𝑚.

(3.4)

Proof For 𝑛 = 0, Eqn. (3.3) entails that

E [1.𝐽𝑚 ( 𝑓 )] = E [𝐽𝑚 ( 𝑓 )] = 0 (3.5)

for any 𝑓 .
For 𝑛 = 1 and 𝑚 > 1, the Itô isometry formula states that
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E [𝐽1 ( 𝑓 )𝐽𝑚 (𝑔)] = E
[∫ 1

0
𝑓 (𝑠)d𝐵(𝑠)

∫ 1

0
𝐽𝑚−1 (𝑔(., 𝑠))d𝐵(𝑠)

]
= E

[∫ 1

0
𝑓 (𝑠)𝐽𝑚−1 (𝑔(., 𝑠))d𝑠

]
=

∫ 1

0
𝑓 (𝑠) E [𝐽𝑚−1 (𝑔(., 𝑠))] d𝑠 = 0

in view of the induction hypothesis for 𝑛 = 0.
For 1 < 𝑛 ≤ 𝑚, a repeated application of the Itô isometry formula yields

E [𝐽𝑛 ( 𝑓 )𝐽𝑚 (𝑔)] = E
[∫

T𝑛
𝑓 (𝑡1, · · · , 𝑡𝑛)𝐽𝑚−𝑛

(
𝑔(., 𝑡1, · · · , 𝑡𝑛)

)
d𝑡1 . . . d𝑡𝑛

]
.

In view of (3.5), this quantity is null if 𝑛 − 𝑚 ≠ 0 and is clearly equal to
∫
T 𝑓 𝑔dℓ if

𝑛 = 𝑚. □

We wish to extend this notion of iterated integral to function defined on the whole
cube [0, 1]𝑛 but we cannot get rid of the adaptability condition. It is then crucial to
remark that for 𝑓 : [0, 1]𝑛 → R symmetric,∫

[0,1]𝑛
𝑓 dℓ = 𝑛!

∫
T𝑛
𝑓 dℓ,

since for any permutation 𝜎 of {1, · · · , 𝑛}, the integral of 𝑓 on T𝑛 is equal to its
integral on

𝜎T𝑛 =
{
(𝑡1, · · · , 𝑡𝑛) ∈ [0, 1]𝑛, 0 ≤ 𝑡𝜎 (1) < . . . < 𝑡𝜎 (𝑛) ≤ 1

}
.

This motivates the following definition of the iterated integral:

Definition 3.2 (Generalized iterated integrals) Let 𝐿2
𝑠 = 𝐿2

𝑠 ( [0, 1]𝑛 → R; ℓ) be
the set of symmetric functions on [0, 1]𝑛, square integrable with respect to the
Lebesgue measure. For 𝑓 ∈ 𝐿2

𝑠 ,

𝐽𝑠𝑛 ( 𝑓 ) = 𝑛! 𝐽𝑛 ( 𝑓 1T𝑛 ).

If 𝑓 belongs to 𝐿2 ([0, 1]𝑛 → R; ℓ
)

but is not necessarily symmetric,

𝐽𝑠𝑛 ( 𝑓 ) = 𝐽𝑠𝑛 ( 𝑓 𝑠),

where 𝑓 𝑠 is the symmetrization of 𝑓 :

𝑓 𝑠 (𝑡1, · · · , 𝑡𝑛) =
1
𝑛!

∑︁
𝜎∈𝔖𝑛

𝑓 (𝑡𝜎 (1) , · · · , 𝑡𝜎 (𝑛) ).

In view of Eqn. (3.4), for 𝑓 , 𝑔 ∈ 𝐿2
𝑠 , we have
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E
[
𝐽𝑠𝑛 ( 𝑓 )𝐽𝑠𝑚 (𝑔)

]
=


0 if 𝑛 ≠ 𝑚

(𝑛!)2
∫
T𝑛
𝑓 𝑔dℓ = 𝑛!

∫
[0,1]𝑛

𝑓 𝑔dℓ if 𝑛 = 𝑚. (3.6)

Doléans-Dade exponentials behave as usual exponentials

The Doléans-Dade exponentials have mutas mutandis the same series expansion as
the usual exponential has.

Theorem 3.2 (Chaos expansion of Doléans-Dade exponentials) Let ℎ belongs
to H . Then,

Λℎ = 1 +
∞∑︁
𝑛=1

𝐽𝑛 ( ¤ℎ⊗𝑛1T𝑛 ) = 1 +
∞∑︁
𝑛=1

1
𝑛!
𝐽𝑠𝑛 ( ¤ℎ⊗𝑛), (3.7)

where the convergence holds in 𝐿2 (W → R; `
)
.

Proof Step 1. Let

Λℎ (𝑡) = exp
(∫ 𝑡

0
¤ℎ(𝑠)d𝐵(𝑠) − 1

2

∫ 1

0
¤ℎ(𝑠)2d𝑠

)
.

The Itô calculus says that

Λℎ (𝑡) = 1 +
∫ 𝑡

0
Λℎ (𝑠) ¤ℎ(𝑠)d𝐵(𝑠),

hence

Λℎ (𝑡) = 1 +
∫ 𝑡

0
Λℎ (𝑠) ¤ℎ(𝑠)d𝐵(𝑠)

= 1 +
∫ 𝑡

0

(
1 +

∫ 𝑠

0
Λℎ (𝑟) ¤ℎ(𝑟)d𝐵(𝑟)

)
¤ℎ(𝑠)d𝐵(𝑠)

= 1 +
∫ 𝑡

0
¤ℎ(𝑠)d𝐵(𝑠) +

∫ 𝑡

0

(∫ 𝑠

0
Λℎ (𝑟) ¤ℎ(𝑠) ¤ℎ(𝑟)d𝐵(𝑟)

)
d𝐵(𝑠)

= 1 +
𝑛∑︁
𝑘=1

𝐽𝑘 ( ¤ℎ⊗𝑘1T𝑘 ) +
∫
T𝑛

𝑛∏
𝑗=1

¤ℎ(𝑠 𝑗 ) Λℎ (𝑠1)d𝐵(𝑠1) . . . d𝐵(𝑠𝑛)

= 1 +
𝑛∑︁
𝑘=1

𝐽𝑘 ( ¤ℎ⊗𝑘1T𝑘 ) + 𝑅𝑛.

Step 2. It thus remains to show that 𝑅𝑛 tends to 0 as 𝑛 goes to infinity. According to
(3.4),

E
[
𝑅2
𝑛

]
=

∫
T𝑛

𝑛∏
𝑗=1

¤ℎ(𝑠 𝑗 )2E
[
Λℎ (𝑠𝑛)2] d𝑠1 . . . d𝑠𝑛. (3.8)
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Moreover,

E
[
Λℎ (𝑠)2] = E

[
exp

(
2
∫ 𝑠

0
¤ℎ(𝑢)d𝐵(𝑢) −

∫ 𝑠

0
¤ℎ2 (𝑢)d𝑢

)]
= E [Λ2ℎ (𝑠)] exp(∥ℎ∥2

H)
= exp(∥ℎ∥2

H).

Plug this new expression into Eqn. (3.8) to obtain

E
[
𝑅2
𝑛

]
= exp(∥ℎ∥2

H)
∫
T𝑛

𝑛∏
𝑗=1

¤ℎ(𝑠 𝑗 )2d𝑠1 . . . d𝑠𝑛

= exp(∥ℎ∥2
H) 1

𝑛!

∫
[0,1]𝑛

𝑛∏
𝑗=1

¤ℎ(𝑠 𝑗 )2 d𝑠1 . . . d𝑠𝑛

= exp(∥ℎ∥2
H) 1

𝑛!

𝑛∏
𝑗=1

∫
[0,1]

¤ℎ(𝑠 𝑗 )2 d𝑠 𝑗

= exp(∥ℎ∥2
H) 1

𝑛!
∥ℎ∥2𝑛

H
𝑛→∞−−−−→ 0.

The result follows. □

The Fock space plays the rôle of R[𝑋]

When dealing with polynomials of arbitrary degree, we need to consider R[𝑋] =⋃∞
𝑘=0 R𝑘 [𝑋]. The equivalent structure is the Fock space where the monomial 𝑋 is

replaced by a function ℎ of H and 𝑋𝑛 by the tensor product ℎ⊗(𝑛) .

Definition 3.3 (Fock space) The Fock space 𝔉` (H) is the completion of the direct
sum of the tensor powers of H :

𝔉` (H) = R ⊕
∞⊕
𝑛=1

H⊗𝑛.

It is an Hilbert space when equipped with the norm⊕∞
𝑛=0ℎ𝑛

2
𝔉` (H) =

∞∑︁
𝑛=0

1
𝑛!

∥ℎ𝑛∥2
H⊗𝑛 .

If we want to generalize the chaos decomposition of Doléans-Dade exponentials to
any random variables on W, we first need to express the right-hand-side of (3.7) in
an intrinsic way. Remark that for 𝐹 = Λℎ,
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∇(𝑛)𝐹 = 𝐹 ℎ⊗𝑛, hence E
[
∇(𝑛)𝐹

]
= ℎ⊗𝑛,

so that we have:

𝐹 = E [𝐹] +
∞∑︁
𝑛=1

1
𝑛!
𝐽𝑠𝑛

( .�E
[
∇(𝑛)𝐹

] )
. (3.9)

By linearity, the same holds true for any 𝐹 ∈ E . If we want to pass to the limit,
we must prove that each term in the expansion (3.9) is well defined and that the
application which maps a random variable 𝐹 to its series expansion is continuous.
The first difficulty is that we only assumed 𝐹 to be square integrable.

•! Expectation is a smoothing operator

There is no reason why 𝐹 should be infinitely differentiable hence, a priori, the
expression E

[
∇(𝑛)𝐹

]
has no signification. However, it turns out that the composition

of the derivation and of the expectation can be defined even when 𝐹 is only square
integrable.

Theorem 3.3 The map

Υ : E ⊂ 𝐿2 (W → R; `
)
−→ 𝔉` (H)

𝐹 ↦−→
∞⊕
𝑛=0

E
[
∇(𝑛)𝐹

]
,

admits a continuous extension defined on 𝐿2 (W → R; `
)
. We denote by Υ𝑛𝐹, the

𝑛-th term of the right-hand-side: Υ𝑛𝐹 = E
[
∇(𝑛)𝐹

]
for 𝐹 ∈ E.

Proof Start from (3.9), since the chaos are orthogonal, for any 𝐹 ∈ E,

E
[
𝐹2] = ∞∑︁

𝑛=0

1
𝑛!2 E

[
𝐽𝑠𝑛

( .�E
[
∇(𝑛)𝐹

] )2
]

=

∞∑︁
𝑛=0

1
𝑛!

 .�E
[
∇(𝑛)𝐹

]2

𝐿2
(
[0,1]𝑛→R; ℓ⊗𝑛

)
=

∞∑︁
𝑛=0

1
𝑛!

E [
∇(𝑛)𝐹

]2

H⊗𝑛
.

This is equivalent to say that

∥Υ𝐹∥𝔉` (H) = ∥𝐹∥
𝐿2

(
W→R; `

) . (3.10)

If (𝐹𝑛, 𝑛 ≥ 1) is a sequence of elements of E which converges to 𝐹 in 𝐿2 (W →
R; `

)
, the sequence (Υ𝐹𝑛, 𝑛 ≥ 1) is Cauchy in the Hilbert space 𝔉` (H), hence



64 3 Wiener chaos

convergent. Then, Υ𝐹 can be unambiguously defined as lim𝑛→∞ Υ𝐹𝑛 and (3.10)
holds for any 𝐹 ∈ 𝐿2 (W → R; `

)
. □

Chaos decomposition are valid for square integrable random variables

We are now ready to state and prove the chaos decomposition. Remark that a
necessary condition for a function of the real variable to have an infinite series
expansion is that it is infinitely many times differentiable. For chaos decomposition,
it is sufficient that 𝐹 is square integrable thanks to Theorem 3.3.

Theorem 3.4 (Chaos decomposition) For any 𝐹 ∈ 𝐿2 (W → R; `
)
,

𝐹 = E [𝐹] +
∞∑︁
𝑛=1

1
𝑛!
𝐽𝑠𝑛

( .

Υ̃𝑛𝐹
)
. (3.11)

This can be formally written as

𝐹 = E [𝐹] +
∞∑︁
𝑛=1

1
𝑛!
𝐽𝑠𝑛

( .�E
[
∇(𝑛)𝐹

] )
,

keeping in mind that E
[
∇(𝑛)𝐹

]
is defined through Υ for general random variables.

The chaos decomposition means that 𝔉` (H) is isometrically isomorphic to
𝐿2 (W → R; `

)
.

We denote by ℭ𝑘 , the 𝑘-th chaos, i.e.

ℭ𝑘 = span
{
𝐽𝑠𝑛 ( 𝑓𝑛), 𝑓𝑛 ∈ 𝐿2

𝑠 ( [0, 1]𝑛 → R, ℓ)
}
.

Proof Step 1. Eqn. (3.9) indicates that the result holds for 𝐹 ∈ E.
Step 2. Let (𝐹𝑘 , 𝑘 ≥ 1) a sequence of elements of E converging to 𝐹 in 𝐿2 (W →
R; `

)
. Since Υ is continuous from 𝐿2 (W → R; `

)
into 𝔉` (H),

Υ𝐹𝑘
𝔉` (H)
−−−−−→
𝑘→∞

Υ𝐹.

Since the chaos are orthogonal in 𝐿2 (W → R; `
)

E

����� ∞∑︁
𝑛=1

1
𝑛!
𝐽𝑠𝑛

(
Υ𝑛𝐹𝑘

)
−

∞∑︁
𝑛=1

1
𝑛!
𝐽𝑠𝑛

(
Υ𝑛𝐹

) �����2 =

∞∑︁
𝑛=1

1
𝑛!

E
[
|Υ𝑛𝐹𝑘 − Υ𝑛𝐹 |2

]
= ∥Υ(𝐹𝑘 − 𝐹)∥2

⊕∞
𝑛=0H⊗𝑛 .

This means that



3.1 Chaos decomposition 65

0 = 𝐹𝑘 −
∞∑︁
𝑛=0

1
𝑛!
𝐽𝑠𝑛

(
Υ𝑛𝐹𝑘

) 𝐿2
(
W→R; `

)
−−−−−−−−−−→

𝑘→∞
𝐹 −

∞∑︁
𝑛=0

1
𝑛!
𝐽𝑠𝑛

(
Υ𝑛𝐹

)
.

The proof is thus complete. □

•> Iterated integrals and iterated divergence coincide

We already know that Wiener integral and divergence of deterministic functions do
coincide. We can now close the loop and show that this still holds at any order :
iterated integrals and iterated divergence do coincide.

Theorem 3.5 (Iterated integrals and iterated divergence) For any ℎ ∈ H ,

𝐽𝑠𝑛 ( ¤ℎ⊗𝑛) = 𝛿𝑛ℎ⊗𝑛.

Hence, for any 𝐹 ∈ 𝐿2 (W → R; `
)
,

𝐹 = E [𝐹] +
∞∑︁
𝑛=1

1
𝑛!
𝛿𝑛

(
Υ𝑛𝐹

)
. (3.12)

Proof Step 1. For 𝐹 = Λ𝑘 , thanks to (1.15), we have

𝐹 (𝜔 + 𝜏ℎ) = 𝐹 (𝜔) exp
(
𝜏 ⟨ℎ, 𝑘⟩H

)
,

hence 𝜏 ↦→ 𝐹 (𝜔 + 𝜏ℎ) is analytic. Furthermore,

d𝑛

d𝜏𝑛
𝐹 (𝜔 + 𝜏ℎ)

����
𝜏=0

= 𝐹 (𝜔) ⟨ℎ, 𝑘⟩𝑛H

= 𝐹 (𝜔)
〈
ℎ⊗𝑛, 𝑘⊗𝑛

〉
H⊗𝑛

=

〈
∇(𝑛)𝐹 (𝜔), ℎ⊗𝑛

〉
H⊗𝑛

,

since ∇(𝑛)Λ𝑘 = Λ𝑘 𝑘
⊗𝑛.

Step 2. The Taylor-MacLaurin formula then says that

𝐹 (𝜔 + 𝜏ℎ) = 𝐹 (𝜔) +
∞∑︁
𝑛=1

𝜏𝑛

𝑛!
d𝑛

d𝜏𝑛
𝐹 (𝜔 + 𝜏ℎ)

����
𝜏=0

= 𝐹 (𝜔) +
∞∑︁
𝑛=1

𝜏𝑛

𝑛!

〈
∇(𝑛)𝐹 (𝜔), ℎ⊗𝑛

〉
H⊗𝑛

.

Hence,
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W
𝐹 (𝜔 + 𝜏ℎ) d`(𝜔) = E [𝐹] +

∞∑︁
𝑛=1

𝜏𝑛

𝑛!
E

[
𝐹 𝛿𝑛ℎ⊗𝑛

]
.

By linearity, this still holds for 𝐹 ∈ E.
Step 3. On the other hand, the Cameron-Martin theorem and Theorem 3.2 induce
that for 𝐹 ∈ E:∫

W
𝐹 (𝜔 + 𝜏ℎ) d`(𝜔) = E [𝐹 Λ𝜏ℎ]

= E [𝐹] +
∞∑︁
𝑛=1

1
𝑛!

E
[
𝐹 𝐽𝑠𝑛 ((𝜏 ¤ℎ)⊗𝑛)

]
= E [𝐹] +

∞∑︁
𝑛=1

𝜏𝑛

𝑛!
E

[
𝐹 𝐽𝑠𝑛 ( ¤ℎ⊗𝑛)

]
.

By identification of the coefficient of the two power series, we get

E
[
𝐹 𝐽𝑠𝑛 ( ¤ℎ⊗𝑛)

]
= E

[
𝐹 𝛿𝑛ℎ⊗𝑛

]
, ∀𝐹 ∈ E .

Since E⊥ = {0}, the result follows. □

Example 3.1 Chaos representation of 𝐵2
𝑡 In order to play with the notations, compute

the chaos decomposition of 𝐵2
𝑡 . First, we know that E

[
𝐵2
𝑡

]
= 𝑡. Then,

¤∇𝑠𝐵2
𝑡 = 2 𝐵𝑡1[0,𝑡 ] (𝑠) hence E

[ ¤∇𝑠𝐵2
𝑡

]
= 0.

As to the second derivative,

¤∇(2)
𝑟 ,𝑠𝐵

2
𝑡 = 2 ¤∇𝑟𝐵𝑡1[0,𝑡 ] (𝑠)
= 2 1[0,𝑡 ] (𝑟)1[0,𝑡 ] (𝑠).

We thus obtain,

𝐵2
𝑡 = 𝑡 +

1
2
𝐽𝑠2 (21[0,𝑡 ] ⊗ 1[0,𝑡 ])

= 𝑡 + 2 𝐽2 (1[0,𝑡 ]21T2 )

= 𝑡 + 2
∫ 𝑡

0

(∫ 𝑟

0
d𝐵(𝑠)

)
d𝐵(𝑟)

= 𝑡 + 2
∫ 𝑡

0
𝐵(𝑟)d𝐵(𝑟).

We retrieve the well known formula which may be obtained by the Itô formula.

The very same method of identification can be used to prove the next results.

Lemma 3.2 The vector space spanned by the pure tensors:
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span{ ¤ℎ⊗𝑛, ¤ℎ ∈ 𝐿2 ([0, 1] → R; ℓ
)
}

is dense in 𝐿2
𝑠 ( [0, 1]𝑛 → R; ℓ⊗𝑛).

Proof We already know (see Theorem 2.10) that tensor products ¤ℎ1 ⊗ . . . ⊗ ¤ℎ𝑛 with
¤ℎ𝑖 ∈ 𝐿2 ([0, 1] → R; ℓ

)
are dense in 𝐿2 ([0, 1]𝑛 → R; ℓ⊗𝑛

)
and that the symmetriza-

tion operation is continuous from 𝐿2 ([0, 1]𝑛 → R; ℓ
)

into 𝐿2
𝑠 ( [0, 1]𝑛 → R; ℓ⊗𝑛).

Apply the symmetrization to any approximating sequence to obtain a sequence of
linear combinations of pure tensors which converges to the symmetrization of 𝑓𝑛,
which is already 𝑓𝑛.

Definition 3.4 For 𝐴 a continuous linear map from H into itself, we denote by Γ𝐴
the map defined by

Γ𝐴 : 𝔉` (H) −→ 𝔉` (H)
ℎ1 ⊗ . . . ⊗ ℎ𝑛 ↦−→ 𝐴ℎ1 ⊗ . . . ⊗ 𝐴ℎ𝑛

and extended by density to 𝔉` (H).

Theorem 3.6 (Gradient and conditional expectation) For any 𝑡 ∈ [0, 1], for any
𝐹 ∈ 𝐿2 (W → R; `

)
,

E [𝐹 | F𝑡 ] = E [𝐹] +
∞∑︁
𝑛=1

1
𝑛!
𝛿𝑛

(
Γ𝜋𝑡Υ𝑛𝐹

)
(3.13)

where we recall that 𝜋𝑡 is the projection map

𝜋𝑡 : H −→ H
ℎ ↦−→ 𝐼1 ( ¤ℎ 1[0,𝑡 ]).

Proof The well known identity

E
[
exp

(∫ 1

0
¤ℎ(𝑠)d𝐵(𝑠) − 1

2

∫ 1

0
¤ℎ(𝑠)2 d𝑠

)
| F𝑡

]
= exp

(∫ 𝑡

0
¤ℎ(𝑠)d𝐵(𝑠) − 1

2

∫ 𝑡

0
¤ℎ(𝑠)2d𝑠

)
can be written as

E [Λℎ | F𝑡 ] = Λ𝜋𝑡ℎ .

Apply this equality to 𝜏ℎ and consider the chaos expansion of both terms. Since the
convergence of the series holds in 𝐿2 (W → R; `

)
, we can apply Fubini’s theorem

straightforwardly.
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1 +
∞∑︁
𝑛=1

𝜏𝑛

𝑛!
E

[
𝛿𝑛ℎ⊗𝑛 | F𝑡

]
= 1 +

∞∑︁
𝑛=1

𝜏𝑛

𝑛!
𝛿𝑛 (𝜋⊗𝑛𝑡 ℎ⊗𝑛).

This means that (3.13) holds for 𝐹 ∈ E and by density, it is true for any 𝐹 ∈ 𝐿2 (W →
R; `

)
. □

•> Fundamental theorem of calculus revisited

The fundamental theorem of calculus says that

𝑓 (𝑡) = 𝑓 (0) +
∫ 1

0
𝑓 ′ (𝑟𝑡) 𝑡d𝑟.

The so-called Clark formula plays the same rôle in the context of stochastic integrals.

Theorem 3.7 (Clark-Ocone formula) The map

𝜕W : E −→ 𝐿2 (W → R; `
)

𝐹 ↦−→
∫ 1

0
E

[ ¤∇𝑠𝐹 | F𝑠
]

d𝐵(𝑠)

can be extended as a continuous map from 𝐿2 (W → R; `
)

into 𝐿2 (W → R; `
)
.

Moreover,
𝐹 = E [𝐹] + 𝜕𝑊𝐹. (3.14)

For 𝐹 ∈ D1,2, this boils down to

𝐹 = E [𝐹] +
∫ 1

0
E

[ ¤∇𝑠𝐹 | F𝑠
]

d𝐵(𝑠). (3.15)

Martingale representation theorem made constructive

It is well known that a Brownian martingale can be represented as a stochastic
integral with respect to the said Brownian motion but the proof is not constructive
and the integrand which has to be considered is defined by a limit procedure from
which we cannot devise its value. The Clarke-Ocone formula fills this void and gives
the expression of this mysterious process. Actually, the proof of the Clark-Ocone
formula proceeds along the same lines as the proof of the martingale representation
theorem: establish the validity of the representation for Doléans-Dade exponentials
and then pass to the limit. The added value of the Malliavin calculus is that we can
express the integrand in an intrinsic way, i.e. as E

[ ¤∇𝑠𝐹 | F𝑠
]
, which is still well

defined even after the limit is taken.
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Proof Step 1. For 𝐹 = Λ𝑘 ,

𝜕W𝐹 =

∫ 1

0
Λ𝑘 (𝑠) ¤𝑘 (𝑠)d𝐵(𝑠) =

∫ 1

0
E

[ ¤∇𝑠𝐹 | F𝑠
]

d𝐵(𝑠)

and
𝐹 = E [𝐹] + 𝜕W𝐹. (3.16)

By linearity this remains valid for 𝐹 ∈ E.
Step 2. Then,

E
[
𝜕W𝐹

2] = E
[
(𝐹 − 1)2] = E

[
𝐹2] − E [𝐹]2 ≤ E

[
𝐹2] . (3.17)

Step 3. Let 𝐹 ∈ 𝐿2 (W → R; `
)

be the limit of (𝐹𝑛, 𝑛 ≥ 1) a sequence of elements
of E. Eqn. (3.17) implies that (𝜕W𝐹𝑛, 𝑛 ≥ 1) is Cauchy in 𝐿2 (W → R; `

)
, hence

convergent to a limit, we define to be 𝜕W𝐹.

Step 4. Then, (3.14) follows from (3.16) by density. □

Derivative of chaos

As polynomials behave well with derivation, so do the chaos for the Malliavin
derivative.

Theorem 3.8 (Gradient of chaos) For ¤ℎ𝑛 ∈ 𝐿2
𝑠 ( [0, 1]𝑛 → R, ℓ), let ¤ℎ(., 𝑟) be the

element of 𝐿2
𝑠 ( [0, 1]𝑛−1 → R, ℓ) defined by

¤ℎ𝑛 (., 𝑟) : [0, 1]𝑛−1 −→ R
(𝑠1, · · · , 𝑠𝑛−1) ↦−→ ¤ℎ𝑛 (𝑠1, · · · , 𝑠𝑛−1, 𝑟).

Then,
¤∇𝑟 𝐽𝑠𝑛 ( ¤ℎ𝑛) = 𝑛 𝐽𝑠𝑛−1 ( ¤ℎ𝑛 (., 𝑟)). (3.18)

Proof Step 1. In view of Lemma 3.2, it is sufficient to prove (3.18) for ¤ℎ𝑛 = ¤ℎ⊗𝑛. It
boils down to prove

¤∇𝑟 𝐽𝑠𝑛 ( ¤ℎ⊗𝑛) = 𝑛 𝐽𝑠𝑛−1 ( ¤ℎ
⊗𝑛−1) ¤ℎ.

Let ℎ ∈ H , we already know that Λℎ belongs to D1,2 and that ∇Λℎ = Λℎ ℎ. Apply
this reasoning to 𝜏ℎ:
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∇
( ∞∑︁
𝑛=0

𝜏𝑛

𝑛!
𝐽𝑠𝑛 ( ¤ℎ⊗𝑛)

)
=

∞∑︁
𝑛=0

𝜏𝑛+1

𝑛!
𝐽𝑠𝑛 ( ¤ℎ⊗𝑛) ℎ

=

∞∑︁
𝑛=1

𝜏𝑛

(𝑛 − 1)! 𝐽
𝑠
𝑛−1 ( ¤ℎ

⊗𝑛−1) ℎ

=

∞∑︁
𝑛=1

𝜏𝑛

𝑛!
𝑛 𝐽𝑠𝑛−1 ( ¤ℎ

⊗𝑛−1) ℎ. (3.19)

Step 2. We cannot show directly that we can differentiate term by term the chaos
expansion of Λℎ but we can do it in a weak sense: if𝑈 belongs to D1,2 (H),

E

[〈
∇

( ∞∑︁
𝑛=0

𝜏𝑛

𝑛!
𝐽𝑠𝑛 ( ¤ℎ⊗𝑛)

)
, 𝑈

〉
H

]
= E

[ ∞∑︁
𝑛=0

𝜏𝑛

𝑛!
〈
∇ 𝐽𝑠𝑛 ( ¤ℎ⊗𝑛), 𝑈

〉
H

]
. (3.20)

Consider

Λ
(𝑁 )
ℎ

=

𝑁∑︁
𝑛=0

1
𝑛!
𝐽𝑠𝑛 ( ¤ℎ⊗𝑛).

It holds that
Λ

(𝑁 )
ℎ

𝑁→∞−−−−−−−−−−→
𝐿2

(
W→R; ℓ

) Λℎ .

Consequently, (∇Λ(𝑁 )
ℎ

, 𝑛 ≥ 1) converges weakly in D1,2 (H) to ∇Λℎ: For 𝑈 ∈
D1,2 (H) ⊂ Dom2 𝛿,

E
[〈
∇Λ(𝑁 )

ℎ
, 𝑈

〉
H

]
= E

[
Λ

(𝑁 )
ℎ

𝛿𝑈

]
𝑁→∞−−−−−→ E [Λℎ 𝛿𝑈] = E

[
⟨∇Λℎ, 𝑈⟩H

]
.

Furthermore,

E
[〈
∇Λ(𝑁 )

𝜏ℎ
, 𝑈

〉
H

]
=

𝑁∑︁
𝑛=1

𝜏𝑛

𝑛!
E

[〈
∇𝐽𝑠𝑛 ( ¤ℎ⊗𝑛), 𝑈

〉
H

]
,

so (3.20) is satisfied.
Step 3. In view of (3.19), we also have

E

[
∇

( ∞∑︁
𝑛=0

𝜏𝑛

𝑛!
𝐽𝑠𝑛 ( ¤ℎ⊗𝑛)

)]
=

∞∑︁
𝑛=1

𝜏𝑛

𝑛!
𝑛E

[
𝐽𝑠𝑛−1 ( ¤ℎ

⊗𝑛−1) ⟨ℎ, 𝑈⟩H
]
.

Identify the coefficient of 𝜏𝑛: For any𝑈 ∈ D1,2 (H)

E
[〈
∇𝐽𝑠𝑛 ( ¤ℎ⊗𝑛), 𝑈

〉
H

]
= 𝑛E

[〈
𝐽𝑠𝑛−1 ( ¤ℎ

⊗𝑛−1) ℎ, 𝑈
〉
H

]
.

Since D1,2 (H) contains the H -valued cylindrical functions which are dense in
𝐿2 (W → H ; `

)
, we have
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∇𝐽𝑠𝑛 ( ¤ℎ⊗𝑛) = 𝑛 𝐽𝑠𝑛−1 ( ¤ℎ
⊗𝑛−1) ℎ, ` − a.s.

and the result follows. □

Corollary 3.1 A random variable 𝐹 ∈ 𝐿2 (W → R; `
)

belongs to D2,1 if and only if

∞∑︁
𝑛=1

1
(𝑛 − 1)! ∥Υ𝑛𝐹∥

2
𝐿2 ( [0,1]𝑛 ) < ∞, (3.21)

and ∇𝐹 is given by

¤∇𝑟𝐹 =

∞∑︁
𝑛=1

1
(𝑛 − 1)! 𝐽

𝑠
𝑛−1 (Υ𝑛𝐹 (., 𝑟)). (3.22)

Proof Step 1. For any 𝑁 > 0, let

𝐹𝑁 =

𝑁∑︁
𝑛=0

1
𝑛!
𝐽𝑠𝑛 (Υ𝑛𝐹).

According to the previous theorem, we have

¤∇𝑟

(
𝑁∑︁
𝑛=0

1
𝑛!
𝐽𝑠𝑛 (Υ𝑛𝐹)

)
=

𝑁∑︁
𝑛=1

1
(𝑛 − 1)! 𝐽

𝑠
𝑛−1 (Υ𝑛𝐹 (., 𝑟)).

Step 2. In view of (3.6), we get

E

∫ 1

0
¤∇𝑟

(
𝑁∑︁
𝑛=0

1
𝑛!
𝐽𝑠𝑛 (Υ𝑛𝐹)

)2

d𝑟


=

𝑁∑︁
𝑛=1

(𝑛 − 1)!
(𝑛 − 1)!2

∫
[0,1]𝑛

(Υ𝑛𝐹) (𝑟1, · · · , 𝑟𝑛−1, 𝑟)2d𝑟1 . . . d𝑟

=

𝑁∑︁
𝑛=1

1
(𝑛 − 1)! ∥Υ𝑛𝐹 (., 𝑟)∥

2
𝐿2

(
[0,1]𝑛→R; ℓ

) . (3.23)

Step 3. If 𝐹 ∈ D2,1 then

¤∇𝑟𝐹𝑁
𝑁→∞−−−−−−−−−−−−−−−−−−→

𝐿2
(
W×[0,1]→R; `⊗ℓ

) ¤∇𝑟𝐹

hence the right-hand-side of (3.23) converges and (3.21) is satisfied.
Step 4. Conversely, assume that the right-hand-side of (3.23) converges. This means
that sup𝑁 ∥𝐹𝑁 ∥D2,1 < ∞ and according to Lemma 2.3, 𝐹 belongs to D2,1 and its
gradient is given by (3.22). □
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Definition 3.5 For ¤𝑓 ∈ 𝐿2 ([0, 1]𝑛 → R; ℓ
)

and ¤𝑔 ∈ 𝐿2 ([0, 1]𝑚 → R; ℓ
)
, for

𝑖 ≤ 𝑛 ∧ 𝑚, the 𝑖-th contraction of ¤𝑓 and ¤𝑔 is defined by

( ¤𝑓 ⊗𝑖 ¤𝑔) (𝑡1, · · · , 𝑡𝑛−𝑖 , 𝑠1, · · · , 𝑠𝑚−𝑖)

=

∫
[0,1]𝑖

¤𝑓 (𝑡1, · · · , 𝑡𝑛−𝑖 , 𝑢1, · · · , 𝑢𝑖) ¤𝑔(𝑠1, · · · , 𝑠𝑚−𝑖 , 𝑢1, · · · , 𝑢𝑖)d𝑢1 . . . d𝑢𝑖 .

It is an element of 𝐿2 ([0, 1]𝑛+𝑚−2𝑖 → R; ℓ
)
. Its symmetrization is denoted by ¤𝑓

𝑠
⊗𝑖 𝑔.

By convention, ¤𝑓 ⊗0 ¤𝑔 = ¤𝑓 ⊗ ¤𝑔 and if 𝑛 = 𝑚, ¤𝑓 ⊗𝑛 ¤𝑔 = ⟨ 𝑓 , 𝑔⟩H⊗(𝑛) .

Theorem 3.9 (Multiplication of iterated integrals) For ¤𝑓 ∈ 𝐿2 ([0, 1]𝑛 → R; ℓ
)

and ¤𝑔 ∈ 𝐿2 ([0, 1]𝑚 → R; ℓ
)
,

𝐽𝑠𝑛 ( ¤𝑓 )𝐽𝑠𝑚 ( ¤𝑔) =
𝑛∧𝑚∑︁
𝑖=0

𝑛!𝑚!
𝑖!(𝑛 − 𝑖)!(𝑚 − 𝑖)! 𝐽𝑛+𝑚−2𝑖 ( ¤𝑓

𝑠
⊗𝑖 ¤𝑔). (3.24)

Proof We give the proof for 𝑛 = 1, the general case follows the same principle
with much involved notations and computations. Without loss of generality, we can
assume ¤𝑔 symmetric.

For 𝜓 ∈ E,

E
[
𝐽𝑠𝑚 ( ¤𝑔)𝐽𝑠1 ( ¤𝑓 )𝜓

]
= E [𝛿𝑚 (𝑔) 𝛿 𝑓 𝜓] = E

[〈
∇(𝑚) (𝜓 𝛿 𝑓 ), 𝑔

〉
H⊗𝑚

]
.

Recall that ∇𝛿 𝑓 = 𝑓 and that ∇𝑘𝛿 𝑓 = 0 if 𝑘 ≥ 2. The Leibniz formula then implies
that

∇(𝑚) (𝜓 𝛿 𝑓 ) = 𝛿 𝑓 ∇(𝑚)𝜓 + 𝑚 ∇(𝑚−1)𝜓 ⊗ 𝑓 .

On the one hand,

E
[
𝛿 𝑓

〈
∇(𝑚)𝜓, 𝑔

〉
H⊗𝑚

]
= E

[〈
∇(𝑚+1)𝜓, 𝑔 ⊗ 𝑓

〉
H⊗(𝑚+1)

]
= E

[
𝜓 𝛿𝑚+1 (𝑔⊗ 𝑓 )

]
.

On the other hand, a simple application of Fubini’s Theorem yields

E
[〈
∇(𝑚−1)𝜓 ⊗ 𝑓 , 𝑔

〉
H⊗𝑚

]
= E

[∫
[0,1]𝑚

¤∇(𝑚−1)
𝑠1 , · · · ,𝑠𝑚−1𝜓

¤𝑓 (𝑠𝑚) ¤𝑔(𝑠1, · · · , 𝑠𝑚)d𝑠1 . . . d𝑠𝑚
]

= E
[∫

[0,1]𝑚−1

¤∇(𝑚−1)
𝑠1 , · · · ,𝑠𝑚−1𝜓

( ¤𝑓 ⊗1 ¤𝑔
)
(𝑠1, · · · , 𝑠𝑚−1)d𝑠1 . . . d𝑠𝑚−1

]
.

Since 𝑔 is symmetric with respect to its (𝑚 − 1) first variables, the function ¤𝑓 ⊗1 ¤𝑔
is symmetric hence equals to ¤𝑓 ⊗𝑠1 ¤𝑔. Finally, we get
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E
[〈

¤∇(𝑚−1)𝜓 ⊗ 𝑓 , 𝑔

〉
H⊗𝑚

]
= E

[
𝜓 𝛿𝑚−1 ( ¤𝑓

𝑠
⊗1 ¤𝑔)

]
.

The result follows by the density of E in 𝐿2 (W → R; `
)
. □

Corollary 3.2 (Divergence on chaos) If ¤𝑈 admits the representation

¤𝑈 (𝑡) = 𝐽𝑠𝑛
(
¤ℎ𝑛 (., 𝑡)

)
where ¤ℎ𝑛 belongs to 𝐿2 ([0, 1]𝑛+1 → R; ℓ

)
and is symmetric with respect to its 𝑛

first variables. Then, we have

𝛿𝑈 = 𝐽𝑠𝑛+1 ( ℎ̃𝑛)

where

ℎ̃𝑛 (𝑡1, · · · , 𝑡𝑛, 𝑡𝑛+1) =
1

𝑛 + 1
[ ¤ℎ𝑛 (𝑡1, · · · , 𝑡𝑛, 𝑡𝑛+1)

+
𝑛∑︁
𝑖=1

¤ℎ𝑛 (𝑡1, · · · , 𝑡𝑖−1, 𝑡𝑛+1, 𝑡𝑖+1, · · · , 𝑡𝑖)
]
. (3.25)

Proof As before, we reduce the problem to ¤ℎ𝑛 (., 𝑡) = ¤ℎ⊗𝑛 ¤𝑔(𝑡). Then,

𝐽𝑠𝑛 ( ¤ℎ⊗𝑛 ¤𝑔(𝑡)) = 𝐽𝑠𝑛 ( ¤ℎ⊗𝑛) ¤𝑔(𝑡).

Eqn. (2.27), (3.24) and (3.18) imply

𝛿(𝐽𝑠𝑛 ( ¤ℎ⊗𝑛) 𝑔) = 𝐽𝑠𝑛 ( ¤ℎ⊗𝑛)𝐽1 ( ¤𝑔) −
〈
∇𝐽𝑠𝑛 ( ¤ℎ⊗𝑛), 𝑔

〉
H

= 𝐽𝑠𝑛+1 ( ¤ℎ
⊗𝑛 𝑠

⊗ ¤𝑔) + 𝑛𝐽𝑠𝑛−1 ( ¤ℎ
⊗𝑛 𝑠

⊗1 ¤𝑔) − 𝑛𝐽𝑠𝑛−1 ( ¤ℎ
⊗𝑛−1)

∫ 1

0
¤ℎ(𝑠) ¤𝑔(𝑠)d𝑠. (3.26)

By its very definition,

( ¤ℎ⊗𝑛 𝑠
⊗1 ¤𝑔

)
(𝑡1, · · · , 𝑡𝑛−1) =

𝑛−1∏
𝑗=1

¤ℎ(𝑡 𝑗 )
∫ 1

0
¤ℎ(𝑠) ¤𝑔(𝑠)d𝑠,

hence the last two terms of (3.26) do cancel each other. Since ¤ℎ⊗𝑛−1 is already
symmetric, the symmetrization of ¤ℎ⊗𝑛−1 ⊗ ¤𝑔 reduces to(

¤ℎ⊗𝑛−1 𝑠
⊗ ¤𝑔

)
(𝑡1, · · · , 𝑡𝑛+1)

=
1

𝑛 + 1


𝑛∏
𝑗=1

¤ℎ(𝑡 𝑗 ) ¤𝑔(𝑡𝑛+1) +
𝑛∑︁
𝑖=1

𝑛∏
𝑗=1
𝑗≠𝑖

¤ℎ(𝑡 𝑗 ) ¤𝑔(𝑡𝑖) ¤ℎ(𝑡𝑛+1)

 ,
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which corresponds to (3.26) for general ¤ℎ𝑛. □

3.2 Ornstein-Uhlenbeck operator

In R𝑛, the adjoint of the usual gradient is the divergence operator and the composition
of divergence and gradient is the ordinary Laplacian. Since we have at our disposal, a
notion of gradient and the corresponding divergence, we can consider the associated
Laplacian, sometimes called Gross Laplacian, defined as

𝐿 = 𝛿∇.

A simple calculation shows the following which justifies the physicists’ denomination
of 𝐿 as the number operator.

Another point of view for chaos

Chaos can be defined as iterated integrals. In a more functional manner, they can be
seen as the eigenfunctions of 𝐿.

Theorem 3.10 (Number operator) Let 𝐹 ∈ 𝐿2 (W → R; `
)
of chaos decomposition

𝐹 = E [𝐹] +
∞∑︁
𝑛=1

𝐽𝑠𝑛 ( ¤ℎ𝑛).

We say that 𝐹 belongs to Dom 𝐿 whenever

∞∑︁
𝑛=1

𝑛2∥𝐽𝑠𝑛 ( ¤ℎ𝑛)∥2
𝐿2

(
W→R; `

) < ∞.

Then, for such an 𝐹, we have

𝐿𝐹 =

∞∑︁
𝑛=1

𝑛 𝐽𝑠𝑛 ( ¤ℎ𝑛).

The map 𝐿 is invertible from 𝐿2
0 =

{
𝐹 ∈ 𝐿2 (W → R; `

)
, E [𝐹] = 0

}
into itself:

𝐿−1𝐹 =

∞∑︁
𝑛=1

1
𝑛
𝐽𝑠𝑛 ( ¤ℎ𝑛).

From there, it is customary to define the so-called Ornstein-Uhlenbeck operator from
its action on chaos.
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Definition 3.6 (Ornstein-Uhlenbeck operator) Let 𝐹 ∈ 𝐿2 (W → R; `
)

of chaos
decomposition

𝐹 = E [𝐹] +
∞∑︁
𝑛=1

𝐽𝑠𝑛 ( ¤ℎ𝑛).

For any 𝑡 > 0,

𝑃𝑡𝐹 = E [𝐹] +
∞∑︁
𝑛=1

𝑒−𝑛𝑡 𝐽𝑠𝑛 ( ¤ℎ𝑛).

Formally, we can write 𝑃𝑡 = 𝑒−𝑡𝐿 .
From these definitions, the following properties are straightforward
Theorem 3.11 For any 𝐹 ∈ 𝐿2 (W → R; `

)
, for any 𝑠, 𝑡 ≥ 0,

𝑃𝑡+𝑠𝐹 = 𝑃𝑠 (𝑃𝑡𝐹).

For any 𝐹 ∈ D2,1,
∇𝑃𝑡𝐹 = 𝑒−𝑡𝑃𝑡∇𝐹. (3.27)

The Ornstein-Uhlenbeck can be alternatively defined by the so-called Mehler for-
mula:
Theorem 3.12 For any 𝐹 ∈ 𝐿2 (W → R; `

)
𝑃𝑡𝐹 (𝜔) =

∫
W
𝐹

(
𝑒−𝑡𝜔 +

√︁
1 − 𝑒−2𝑡 𝑦

)
d`(𝑦). (3.28)

The Orstein-Uhlenbeck as a convolution

The Mehler formula presents the Ornstein-Uhlenbeck as a sort of convolution
operator. As such, it will benefit from strong regularizing properties which are often
useful for approximation procedures.

Part of the theorem consists in proving that the integral is well defined. Actually,
the law of 𝜔 + 𝐵 is singular with respect to the law of 𝐵 whenever 𝜔 does not
belong to H hence as such, the right-hand-side of (3.28) is not properly defined for a
measurable only 𝐹. We are going to prove that it is unambiguously defined when 𝐹
belongs to E and then define the integral by density thanks to an invariance property
of the Wiener measure.

In what follows, let 𝛽𝑡 =
√

1 − 𝑒−2𝑡 .
Lemma 3.3 For any 𝑡 > 0, consider the transformation

𝑅𝑡 : W × W −→ W × W
(𝜔, [) ↦−→

(
𝑒−𝑡𝜔 + 𝛽𝑡[, −𝛽𝑡𝜔 + 𝑒−𝑡[

)
.

Then the image of ` ⊗ ` by 𝑅𝑡 is still ` ⊗ `.
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Proof Let ℎ1 and ℎ2 belong to W∗. Then,∫
W×W

exp
(
𝑖 ⟨(ℎ1, ℎ2), 𝑅𝑡 (𝜔, [)⟩W∗×W∗ ,W×W

)
d`(𝜔) d`([)

=

∫
W

exp
(
𝑖
〈
𝑒−𝑡ℎ1 − 𝛽𝑡ℎ2, 𝜔

〉
W∗ ,W

)
d`(𝜔)

×
∫

W
exp

(
𝑖
〈
𝑒−𝑡ℎ2 + 𝛽𝑡ℎ1, [

〉
W∗ ,W

)
d`([)

= exp
(
−1

2

(
∥𝑒−𝑡ℎ1 − 𝛽𝑡ℎ2∥2

H + ∥𝑒−𝑡ℎ2 + 𝛽𝑡ℎ1∥2
H

))
= exp

(
−1

2
∥ℎ1∥2

H

)
exp

(
−1

2
∥ℎ2∥2

H

)
.

In view of the characterization of the Wiener measure, this completes the proof. □

Proof (Proof of Theorem 3.12) Step 1. For ℎ ∈ H ,

𝛿ℎ
(
𝑒−𝑡𝜔 + 𝛽𝑡[

)
= 𝛿(𝑒−𝑡ℎ) (𝜔) + 𝛿(𝛽𝑡ℎ) ([)

and
∥ℎ∥2

H = ∥𝑒−𝑡ℎ∥2
H + ∥𝛽𝑡ℎ∥2

H .

Hence,
Λℎ

(
𝑒−𝑡𝜔 + 𝛽𝑡[

)
= Λ𝑒−𝑡ℎ (𝜔)Λ𝛽𝑡ℎ ([).

It follows that∫
W
Λℎ

(
𝑒−𝑡𝜔 + 𝛽𝑡[

)
d`([) = Λ𝑒−𝑡ℎ (𝜔)

∫
W
Λ𝛽𝑡ℎ ([)d`([) = Λ𝑒−𝑡ℎ (𝜔).

Now then, the chaos decomposition of Λ𝑒−𝑡ℎ (𝜔) is given by

Λ𝑒−𝑡ℎ (𝜔) = 1 +
∞∑︁
𝑛=1

1
𝑛!
𝐽𝑠𝑛

(
(𝑒−𝑡 ¤ℎ)⊗𝑛

)
= 1 +

∞∑︁
𝑛=1

𝑒−𝑛𝑡

𝑛!
𝐽𝑠𝑛

( ¤ℎ⊗𝑛) .
We have thus proved that∫

W
𝐹

(
𝑒−𝑡𝜔 +

√︁
1 − 𝑒−2𝑡 𝑦

)
d`(𝑦)

is well defined for 𝐹 ∈ E and that (3.28) holds for such functionals 𝐹.
Step 2. For 𝐹 ∈ E, We have
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W

(∫
W
𝐹

(
𝑒−𝑡𝜔 +

√︁
1 − 𝑒−2𝑡 𝑦

)
d`(𝑦)

)2
d`(𝜔)

≤
∫

W2
𝐹 (𝑒−𝑡𝜔 +

√︁
1 − 𝑒−2𝑡[)2d`(𝜔)d`([)

=

∫
W2
�̄�
(
𝑅𝑡 (𝜔, [)

)2 d`(𝜔)d`([),

where

�̄� : W × W −→ R
(𝜔, [) ↦−→ 𝐹 (𝜔).

According to Lemma 3.3,∫
W2
�̄�
(
𝑅𝑡 (𝜔, [)

)2d`(𝜔) d`([) =
∫

W2
�̄� (𝜔, [)2d`(𝜔)d`([)

= ∥𝐹∥2
𝐿2

(
𝑊→R; `

) ,
or equivalently

∥
∫

W
𝐹

(
𝑒−𝑡𝜔 +

√︁
1 − 𝑒−2𝑡 𝑦

)
d`(𝑦)∥

𝐿2
(
𝑊→R; `

) ≤ ∥𝐹∥
𝐿2

(
𝑊→R; `

) . (3.29)

Thus, by a density argument, we can extend the integral to the whole of 𝐿2 (𝑊 →
R; `

)
.

Step 3. We know that for 𝐹 ∈ 𝐿2 (𝑊 → R; `
)
,

∞∑︁
𝑛=1

1
𝑛!

E
[
𝐽𝑠𝑛 ( ¤ℎ𝑛)2] < ∞.

If each kernel is multiplied by a constant smaller than 1, the convergence also holds,
hence for any 𝑡 ≥ 0,

∥𝑃𝑡𝐹∥𝐿2
(
𝑊→R; `

) ≤ ∥𝐹∥
𝐿2

(
𝑊→R; `

) .
We can then conclude by a density argument. □

Ornstein-Uhlenbeck as a Markov process

The Orstein-Uhlenbeck semi-group can also be seen as the semi-group associated
to a W-valued Markov process whose generator would be formally 𝐿, see (3.46)
for details. As such, it is interesting to note that the stationary distribution of this
Markov process is the Wiener measure.
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Theorem 3.13 The semi-group is ergodic and admits ` as stationary measure. As a
consequence, ∫

W
𝐹d` − 𝐹 = −

∫ ∞

0
𝐿𝑃𝑡𝐹d` (3.30)

and for 𝐹 centered,

𝐿−1𝐹 =

∫ ∞

0
𝑃𝑡𝐹d𝑡. (3.31)

Proof From the Mehler formula, we see by dominated convergence that

𝑃𝑡𝐹 (𝜔)
𝑡→∞−−−−→
w.p.1

∫
W
𝐹d`.

In view of Lemma 3.3,∫
W
𝑃𝑡𝐹 (𝜔)d`(𝜔) =

∫
W2
�̄�
(
𝑅𝑡 (𝜔, 𝑦)

)
d`(𝜔)d`(𝑦)

=

∫
W2
�̄� (𝜔, 𝑦)d`(𝜔)d`(𝑦) =

∫
W
𝐹 (𝜔)d`(𝜔).

This proves the stationarity of `. Now, it comes from the chaos decomposition that

𝑑

𝑑𝑡
𝑃𝑡𝐹 = −𝐿𝑃𝑡𝐹,

hence
𝑃𝑡𝐹 (𝜔) − 𝑃0𝐹 (𝜔) = −

∫ 𝑡

0
𝐿𝑃𝑡𝐹 (𝜔)d𝑡.

Let 𝑡 go to infinity to obtain (3.30). Eqn. (3.31) is a direct consequence of the chaos
decomposition. □

The Mehler formula shows that 𝑃𝑡𝐹 is a convolution operator and as such has some
strong regularization properties.

Definition 3.7 (Generalized Hermite polynomials) The generalized Hermite poly-
nomials are defined by their generating function:

exp(𝛼𝑥 − 𝛼2

2
𝑡) =

∞∑︁
𝑛=0

𝛼𝑛

𝑛!
ℌ𝑛 (𝑥, 𝑡).

We have
ℌ0 (𝑥, 𝑡) = 1, ℌ1 (𝑥, 𝑡) = 𝑥, ℌ2 (𝑥, 𝑡) = 𝑥2 − 𝑡.

The usual Hermite polynomials correspond to ℌ𝑛 (𝑥, 1).

Theorem 3.14 (Regularization) For 𝐹 ∈ 𝐿 𝑝
(
W → R; `

)
, for any 𝑡 > 0, 𝑃𝑡𝐹

belongs to ∩𝑘≥1D𝑘, 𝑝 . Moreover,
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∇(𝑘 )𝑃𝑡𝐹, ℎ

⊗𝑘
〉
H⊗𝑘

=

(
𝑒−𝑡

𝛽𝑡

) 𝑘 ∫
W
𝐹 (𝑒−𝑡𝜔+𝛽𝑡 𝑦) ℌ𝑘 (𝛿ℎ(𝑦), ∥ℎ∥2

H)d`(𝑦). (3.32)

Proof Step 1. For 𝑘 = 1, for 𝐹 ∈ S,

⟨∇𝑃𝑡𝐹, ℎ⟩H =
𝑑

𝑑Y
𝑃𝑡𝐹 (𝜔 + Yℎ)

����
Y=0

The trick is then to consider that the translation by ℎ operates not on 𝜔 but on 𝑦:

𝑃𝑡𝐹 (𝜔 + Yℎ) =
∫

W
𝐹
(
𝑒−𝑡 (𝜔 + Yℎ) + 𝛽𝑡 𝑦

)
d`(𝑦)

=

∫
W
𝐹
(
𝑒−𝑡𝜔 + 𝛽𝑡 (𝑦 +

Y𝑒−𝑡

𝛽𝑡
ℎ)

)
d`(𝑦).

According to the Cameron-Martin (Theorem 1.8),

𝑃𝑡𝐹 (𝜔 + Yℎ) =
∫

W
𝐹 (𝑒−𝑡𝜔 + 𝛽𝑡 𝑦) exp

(
Y
𝑒−𝑡

𝛽𝑡
𝛿ℎ − Y2𝑒−2𝑡

𝛽2
𝑡

∥ℎ∥2
H

)
d`(𝑦).

Since,
𝑑

𝑑Y

(
Y
𝑒−𝑡

𝛽𝑡
𝛿ℎ − Y2𝑒−2𝑡

𝛽2
𝑡

∥ℎ∥2
H

)����
Y=0

=
𝑒−𝑡

𝛽𝑡
𝛿ℎ,

the result follows by dominated convergence.
Step 2. For 𝑘 = 2, we proceed along the same lines

⟨∇𝑃𝑡𝐹 (𝜔 + Yℎ), ℎ⟩H =
𝑒−𝑡

𝛽𝑡

∫
W
𝐹
(
𝑒−𝑡𝜔 + 𝛽𝑡 (𝑦 +

Y𝑒−𝑡

𝛽𝑡
ℎ)

)
𝛿ℎ(𝑦)d`(𝑦)

=
𝑒−𝑡

𝛽𝑡

∫
W
𝐹
(
𝑒−𝑡𝜔 + 𝛽𝑡 𝑦

)
𝛿ℎ(𝑦 − Y𝑒−𝑡

𝛽𝑡
ℎ)Λ

Y 𝑒
−𝑡
𝛽𝑡
ℎ
(𝑦)d`(𝑦)

=
𝑒−𝑡

𝛽𝑡

∫
W
𝐹
(
𝑒−𝑡𝜔 + 𝛽𝑡 𝑦

)
(𝛿ℎ(𝑦) − Y𝑒−𝑡

𝛽𝑡
∥ℎ∥2

H) Λ
Y 𝑒

−𝑡
𝛽𝑡
ℎ
(𝑦)d`(𝑦)

Hence,〈
∇(2)𝑃𝑡𝐹 (𝜔), ℎ⊗2

〉
H

=
𝑑

𝑑Y
⟨∇𝑃𝑡𝐹 (𝜔 + Yℎ), ℎ⟩H

����
Y=0

=

(
𝑒−𝑡

𝛽𝑡

)2 ∫
W
𝐹
(
𝑒−𝑡𝜔 + 𝛽𝑡 𝑦

) (
𝛿ℎ(𝑦)2 − ∥ℎ∥2

H

)
d`(𝑦).

The formula for general 𝑘 follows by recursion.
Step 3. For 𝐹 ∈ 𝐿 𝑝

(
W → R; `

)
, let (𝐹𝑛, 𝑛 ≥ 1) be a sequence of cylindrical

functions converging in 𝐿 𝑝
(
W → R; `

)
to 𝐹. For any ℎ ∈ H , 𝛿ℎ(𝑦) is a Gaussian

random variable hence ℌ𝑘 (𝛿ℎ(𝑦), ∥ℎ∥2
H) belongs to 𝐿𝑞

(
W → R; `

)
and we have
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W
𝐹𝑛 (𝑒−𝑡𝜔 + 𝛽𝑡 𝑦) ℌ𝑘 (𝛿ℎ(𝑦), ∥ℎ∥2

H)d`(𝑦)
���� ≤ 𝑐𝑝 ∥𝐹𝑛∥𝐿𝑝 (W→R; `

) ∥ℎ∥2𝑘
H .

Hence,
sup
𝑛

∥∇(𝑘 )𝐹𝑛∥𝐿𝑝
(
W→H⊗𝑘 ; `

) < ∞

and we conclude by Lemma 2.3 □

•> Equivalence of norms

One of the most striking application of the properties of the Ornstein-Uhlenbeck
operator are the Meyer inequalities which merely state that the norm derived from
𝐿1/2 coincides with the Sobolev norms on D𝑝,𝑘 .

Theorem 3.15 (Meyer inequalities) For any 𝑝 > 1 and any 𝑘 ≥ 1, there exist 𝑐𝑝,𝑘
and 𝐶𝑝,𝑘 such that for any 𝐹 ∈ D𝑝,𝑘 ,

𝑐𝑝,𝑘 ∥𝐹∥ 𝑝,𝑘 ≤ E
[
| (I+𝐿)𝑘/2𝐹 |𝑝

]
≤ 𝐶𝑝,𝑘 ∥𝐹∥ 𝑝,𝑘 .

See Eqn. (2.7) for the definition of the norm on D𝑝,𝑘 .

•! The sequel can be omitted in a first reading

Essentially motivated by the development of the Stein method in W, we derive an
intrinsic representation of 𝐿 without chaos decomposition. To understand its interest,
we first consider the situation where ` is the standard Gaussian measure on R. The
gradient map is the usual derivative but the divergence which satisfies∫

R
𝑓 ′ (𝑥)𝑔(𝑥)d`(𝑥) =

∫
𝑅

𝑓 (𝑥)𝛿𝑔(𝑥)d`(𝑥)

is given by
𝛿𝑔(𝑥) = 𝑥𝑔(𝑥) − 𝑔′ (𝑥)

so that
𝐿𝑔(𝑥) = (𝛿∇)𝑔(𝑥) = 𝑥𝑔′ (𝑥) − 𝑔′′ (𝑥).

If ` denote the standard Gaussian measure on R𝑛, we keep the ordinary differential
as gradient and 𝐿 is then given by

𝐿𝑔(𝑥) = ⟨𝑥, ∇𝑔(𝑥)⟩R𝑛 − Δ𝑔(𝑥)
= ⟨𝑥, ∇𝑔(𝑥)⟩R𝑛 − trace(∇(2)𝑔(𝑥)).

In W, we have to replace R𝑛 by W and the intuition would lead to replace ∇𝑔
by the Malliavin derivative. We then face an unavoidable difficulty: 𝑥 belongs to
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W and ∇𝑔 belongs to H so that we can not take the scalar product of these two
elements. Moreover, in infinite dimensional space, it is a very stringent condition for
an operator, ∇(2)𝑔(𝑥) here, to be trace class. We thus have to find a good class of
functions for which not only the gradient belongs to W∗ ⊂ H but also the second
order gradient is trace class.

Lemma 3.4 Let ℎ ∈ 𝔢∗ (W∗) ⊂ H and consider 𝐹 (𝜔) = Λℎ (𝜔). Then,

𝐿𝐹 (𝜔) =
〈
𝜔, (𝔢∗)−1 (∇𝐹) (𝜔)

〉
W,W∗ − trace

(
∇(2)𝐹 (𝜔)

)
. (3.33)

Proof By the very definition of 𝐿 and according to (2.27), we have that

𝐿𝐹 = 𝛿∇𝐹
= 𝛿(𝐹 ℎ)
= 𝐹𝛿ℎ − ⟨∇𝐹, ℎ⟩H
= 𝐹𝛿ℎ − 𝐹 ⟨ℎ, ℎ⟩H .

Since the divergence extends the Wiener integral, we get

𝐹 (𝜔)𝛿ℎ(𝜔) =
〈
𝐹 (𝜔) (𝔢∗)−1 (ℎ), 𝜔

〉
W∗ ,W =

〈
(𝔢∗)−1 (∇𝐹) (𝜔), 𝜔

〉
W∗ ,W .

On the other hand,

trace
(
∇(2)𝐹 (𝜔)

)
=

∞∑︁
𝑗=1

〈
∇(2)𝐹 (𝜔), ℎ 𝑗 ⊗ ℎ 𝑗

〉
H⊗2

where (ℎ 𝑗 , 𝑗 ≥ 1) is a CONB of H . For the particular choice of 𝐹, we get

trace(∇(2)𝐹 (𝜔)) = 𝐹 (𝜔)
∞∑︁
𝑗=1

〈
ℎ ⊗ ℎ, ℎ 𝑗 ⊗ ℎ 𝑗

〉
H⊗2

= 𝐹 (𝜔)
∞∑︁
𝑗=1

〈
ℎ, ℎ 𝑗

〉2
H⊗2

= 𝐹 (𝜔) ∥ℎ∥2
H ,

according to the Parseval identity. Thus, (3.46) holds true. □

For 𝑓 : R𝑛 → R twice differentiable, we set

𝐿𝑛 𝑓 (𝑥) = ⟨𝑥, 𝐷𝑛 𝑓 (𝑥)⟩R𝑛 − Δ𝑛 𝑓 (𝑥)

=

𝑛∑︁
𝑗=1
𝑥 𝑗 𝜕 𝑗 𝑓 (𝑥) −

𝑛∑︁
𝑗=1
𝜕2
𝑗 𝑗 𝑓 (𝑥).
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Lemma 3.5 For 𝐹 (𝜔) = 𝑓
(
𝛿ℎ1 (𝜔), · · · , 𝛿ℎ𝑛 (𝜔)

)
where 𝑓 ∈ C2 (R𝑛, R),

𝐿𝐹 (𝜔) = (𝐿𝑛 𝑓 )
(
𝛿ℎ1 (𝜔), · · · , 𝛿ℎ𝑛 (𝜔)

)
.

Proof According to (2.27), we have

𝛿∇𝐹 (𝜔) = 𝛿 ©«
𝑛∑︁
𝑗=1
𝜕 𝑗 𝑓 (𝛿ℎ1 (𝜔), · · · )ℎ 𝑗ª®¬

=

𝑛∑︁
𝑗=1
𝜕 𝑗 𝑓 (𝛿ℎ1 (𝜔), · · · ) 𝛿ℎ 𝑗 −

𝑛∑︁
𝑗=1

〈
∇𝜕 𝑗 𝑓 (𝛿ℎ1 (𝜔), · · · ), ℎ 𝑗

〉
H

=

𝑛∑︁
𝑗=1
𝜕 𝑗 𝑓 (𝛿ℎ1 (𝜔), · · · ) 𝛿ℎ 𝑗 −

𝑛∑︁
𝑗=1

𝑛∑︁
𝑘=1

𝜕2
𝑗𝑘 𝑓 (𝛿ℎ1 (𝜔), · · · )

〈
ℎ𝑘 , ℎ 𝑗

〉
H

=

𝑛∑︁
𝑗=1
𝜕 𝑗 𝑓 (𝛿ℎ1 (𝜔), · · · ) 𝛿ℎ 𝑗 −

𝑛∑︁
𝑗=1
𝜕2
𝑗 𝑗 𝑓 (𝛿ℎ1 (𝜔), · · · ),

since we have assumed the ℎ 𝑗 ’s to be orthonormal. □

To extend these results to a larger class of random variables, we need to be sure
that ∇𝐹 takes its values not only in H but in the smaller space W∗ so that the duality
bracket is well defined. Moreover, we must ensure that ∇(2)𝐹 is trace-class. Recall
the diagram

W∗ H ∗ = (𝐼1,2)∗

𝐿2 ([0, 1] → R; ℓ
)

H = 𝐼1,2 W

𝔢∗

≃

𝐼1 𝔢

We can then establish the following result.

Theorem 3.16 For 𝐹 ∈ D2,2 such that

∇𝐹 : W → 𝔢∗ (W∗) and ∇(2)𝐹 : W → 𝔢∗ (W∗) ⊗ 𝔢∗ (W∗).

We denote by ∇̃𝐹, respectively ∇̃(2)𝐹, the unique element of W∗, respectively W∗⊗W∗,
such that

∇𝐹 = 𝔢∗ (∇̃𝐹), respectively ∇(2)𝐹 = (𝔢∗ ⊗ 𝔢∗) (∇̃(2)𝐹).

Assume furthermore that

E
[
∥∇̃𝐹∥2

W∗
]
+ E

[
∥∇̃(2)𝐹∥2

W∗⊗W∗

]
< ∞.

Then, we have
𝐿𝐹 =

〈
𝜔, ∇̃𝐹

〉
W,W∗ − trace

(
∇(2)𝐹

)
. (3.34)
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The proof relies on an approximation procedure which is interesting by itself hence
we detail it.

For 𝑓 : R𝑛 → R twice differentiable, we set

𝐿𝑛 𝑓 (𝑥) = ⟨𝑥, 𝐷𝑛 𝑓 (𝑥)⟩R𝑛 − Δ𝑛 𝑓 (𝑥)

=

𝑛∑︁
𝑗=1
𝑥 𝑗 𝜕 𝑗 𝑓 (𝑥) −

𝑛∑︁
𝑗=1
𝜕2
𝑗 𝑗 𝑓 (𝑥). (3.35)

Lemma 3.6 For 𝐹 (𝜔) = 𝑓
(
𝛿ℎ1 (𝜔), · · · , 𝛿ℎ𝑛 (𝜔)

)
where 𝑓 ∈ C2 (R𝑛, R),

𝐿𝐹 (𝜔) = (𝐿𝑛 𝑓 )
(
𝛿ℎ1 (𝜔), · · · , 𝛿ℎ𝑛 (𝜔)

)
.

Proof According to (2.27), we have

𝛿∇𝐹 (𝜔) = 𝛿 ©«
𝑛∑︁
𝑗=1
𝜕 𝑗 𝑓 (𝛿ℎ1 (𝜔), · · · )ℎ 𝑗

ª®¬
=

𝑛∑︁
𝑗=1
𝜕 𝑗 𝑓 (𝛿ℎ1 (𝜔), · · · ) 𝛿ℎ 𝑗 −

𝑛∑︁
𝑗=1

〈
∇𝜕 𝑗 𝑓 (𝛿ℎ1 (𝜔), · · · ), ℎ 𝑗

〉
H

=

𝑛∑︁
𝑗=1
𝜕 𝑗 𝑓 (𝛿ℎ1 (𝜔), · · · ) 𝛿ℎ 𝑗 −

𝑛∑︁
𝑗=1

𝑛∑︁
𝑘=1

𝜕2
𝑗𝑘 𝑓 (𝛿ℎ1 (𝜔), · · · )

〈
ℎ𝑘 , ℎ 𝑗

〉
H

=

𝑛∑︁
𝑗=1
𝜕 𝑗 𝑓 (𝛿ℎ1 (𝜔), · · · ) 𝛿ℎ 𝑗 −

𝑛∑︁
𝑗=1
𝜕2
𝑗 𝑗 𝑓 (𝛿ℎ1 (𝜔), · · · ),

since we have assumed the ℎ 𝑗 ’s to be orthonormal. □

Definition 3.8 Let 𝑉 be a closed subspace of H , we denote by 𝑝𝑉 the orthogonal
projection on 𝑉 . If 𝑉 is finite dimensional, i.e. 𝑉 = span{ℎ𝑖 , 𝑖 = 1, · · · , 𝑛}, then

𝑝𝑉 : H −→ H

ℎ ↦−→
𝑛∑︁
𝑖=1

⟨ℎ, ℎ𝑖⟩H ℎ𝑖

Gradient and conditional expectation commute

If 𝑓 ∈ Schwartz(R2) and ℎ1, ℎ2 are two orthonormal elements of H .

∇ 𝑓 (𝛿ℎ1, 𝛿ℎ2) =
2∑︁
𝑗=1
𝜕 𝑗 𝑓 (𝛿ℎ1, 𝛿ℎ2) ℎ 𝑗 .

Let V = 𝜎(𝛿ℎ1). Since 𝛿ℎ1 and 𝛿ℎ2 are independent
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E [ 𝑓 (𝛿ℎ1, 𝛿ℎ2) | V] =
∫
𝑅

𝑓 (𝛿ℎ1, 𝑥)𝑒−𝑥
2/2 d𝑥

√
2𝜋

·

Thus, on the one hand, we have

∇E [ 𝑓 (𝛿ℎ1, 𝛿ℎ2) | V] =
∫
𝑅

𝜕1 𝑓 (𝛿ℎ1, 𝑥)𝑒−𝑥
2/2 d𝑥

√
2𝜋

ℎ1,

and on the other hand,

E [∇ 𝑓 (𝛿ℎ1, 𝛿ℎ2) | V] =
2∑︁
𝑗=1

E
[
𝜕 𝑗 𝑓 (𝛿ℎ1, 𝛿ℎ2) | V

]
ℎ 𝑗

=

2∑︁
𝑗=1

∫
𝑅

𝜕 𝑗 𝑓 (𝛿ℎ1, 𝑥)𝑒−𝑥
2/2 d𝑥

√
2𝜋

ℎ 𝑗 .

Thus, applying the projection on span(ℎ1) we get

𝑝𝑉E [∇ 𝑓 (𝛿ℎ1, 𝛿ℎ2) | V] =
∫
𝑅

𝜕 𝑗 𝑓 (𝛿ℎ1, 𝑥)𝑒−𝑥
2/2 d𝑥

√
2𝜋

ℎ1

= E [ 𝑓 (𝛿ℎ1, 𝛿ℎ2) | V] . (3.36)

The proof of the general case in finding a convenient approximation of 𝐹 which
is cylindrical and which is stable with respect to the operation of gradient and the
conditional expectation.

Lemma 3.7 Let (ℎℎ, 𝑛 ≥ 1) a CONB of H . Let V𝑛 = 𝜎{𝛿ℎ𝑚, 𝑚 = 1, · · · , 𝑛}. For
any 𝐹 ∈ D2,𝑘 , the sequence of functionals

𝐹𝑛 = E
[
𝑃1/𝑛𝐹 | V𝑛

]
converges in D2,𝑘 to 𝐹 and

𝐹𝑛 = 𝑓𝑛 (𝛿ℎ1, · · · , 𝛿ℎ𝑛)

where 𝑓𝑛 is C∞.

Proof Step 1. Since 𝐵 =
∑
𝑛 𝛿ℎ𝑛 𝔢(ℎ𝑛), the 𝜎-field ∨𝑛≥1V𝑛 is the whole 𝜎-field

generated by the sample-paths of 𝐵. Thus the martingale theorem states that 𝐹𝑛
converges in 𝐿2 (W → R; `

)
to 𝐹.

𝐿 commutes with conditional expectation

Step 2. By the Mehler formula, we see that for 𝐹 ∈ 𝐿2 (W → R; `
)
,

𝑃𝑡E [𝐹 | V𝑛] = E [𝑃𝑡𝐹 |𝑉𝑛] . (3.37)
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By differentiation this gives

𝐿E [𝐹 | V𝑛] = E [𝐿𝐹 |𝑉𝑛] . (3.38)

Hence for 𝑘 = 2𝑚,

(Id+𝐿)𝑚E [𝐹 | V𝑛] =
𝑚∑︁
𝑗=0

(
𝑚

𝑗

)
𝐿 𝑗E [𝐹 | V𝑛]

= E

𝑚∑︁
𝑗=0

(
𝑚

𝑗

)
𝐿 𝑗𝐹 | V𝑛

 = E [(Id+𝐿)𝑚𝐹 | V𝑛] .

Remark that for 𝑎 > 0, from the normalization condition of a Gamma distributed
random variable, we have

1
Γ(𝑎)

∫ ∞

0
𝑡𝑎−1𝑒−_𝑡d𝑡 = _−𝑎 .

Apply this identity to each chaos yields

1
Γ(1/2)

∫ ∞

0
𝑡−1/2𝑒−𝑡𝑃𝑡𝐹d𝑡 = (Id+𝐿)−1/2𝐹,

and according to (3.37),

(Id+𝐿)−1/2E [𝐹 | V𝑛] = E
[
(Id+𝐿)−1/2𝐹 |𝑉𝑛

]
.

Consequently,

(Id+𝐿)𝑚+1/2E [𝐹 | V𝑛] = (Id+𝐿) (2𝑚+2)/2 (Id+𝐿)−1/2E [𝐹 | V𝑛]

= E
[
(Id+𝐿)𝑚+1/2𝐹 |𝑉𝑛

]
.

Hence, for any integer 𝑘 ,

(Id+𝐿)𝑘/2E [𝐹 | V𝑛] = E
[
(Id+𝐿)𝑘/2𝐹 | V𝑛

]
.

Step 3. It is thus sufficient to prove the claim for 𝑘 = 0. But, according to the Jensen
inequality, we have
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∥𝐹 − 𝐹𝑛∥𝐿2
(
W→R; `

)
≤ ∥𝐹 − E [𝐹 | V𝑛] ∥𝐿2

(
W→R; `

) + ∥E
[
(𝐹 − 𝑃1/𝑛𝐹) | V𝑛

]
∥
𝐿2

(
W→R; `

)
≤ ∥𝐹 − E [𝐹 | V𝑛] ∥𝐿2

(
W→R; `

) + ∥𝐹 − 𝑃1/𝑛𝐹∥𝐿2
(
W→R; `

)
The first term tends to zero by the martingale convergence theorem. The second term
tends to zero in 𝐿2 (W → R; `

)
as shown by the expression of 𝑃1/𝑛 over the chaos.

Step 4. We have already seen that for 𝐹 ∈ 𝐿2 (W → R; `
)
, 𝑃1/𝑛𝐹 belongs to all

D2,𝑘 for any 𝑘 ≥ 1. Since E [𝐹 | V𝑛] also belongs to 𝐿2 (W → R; `
)

when 𝐹 does,
we know for sure that E

[
𝑃1/𝑛𝐹 | V𝑛

]
= 𝑃1/𝑛E [𝐹 | V𝑛] belongs to all D2,𝑘 for any

𝑘 ≥ 1. From Doob lemma, we know that

𝐹𝑛 = 𝑓𝑛

(
𝛿ℎ1, , · · · , 𝛿ℎ𝑛

)
where 𝑓𝑛 is measurable. Since 𝐹𝑛 is square integrable for the Wiener measure, 𝑓𝑛 is
square integrable with respect to Gaussian measure on R𝑛 and we have

𝐿𝐹𝑛 = (𝐿𝑛 𝑓𝑛)
(
𝛿ℎ1, · · · , 𝛿ℎ𝑛

)
.

where 𝐿𝑛 is defined in (3.35). The derivative of 𝑓𝑛 are considered in the distribution
sense. According to the Meyer inequalities, we know that 𝐿𝐹𝑛 belongs to 𝐿2 (W →
R; `

)
hence 𝐿𝑛 𝑓𝑛 ∈ 𝐿2 (R𝑛 → R; `𝑛

)
and the same holds for 𝐿𝑘 𝑓𝑛 and 𝐿𝑘𝑛 𝑓𝑛. The

Schauder estimates then induce that

𝑓𝑛 ∈
⋂
𝑘≥1

Sobolev2,𝑘 (R𝑛, `𝑛).

The Sobolev embeddings then entails that 𝑓𝑛 is infinitely many times differentiable.□

As a consequence of (3.36) and of the previous lemma, we obtain the general
result of commutation between the gradient and the conditional expectation.
Lemma 3.8 Let (ℎℎ, 𝑛 ≥ 1) a CONB of H . Let V𝑛 = 𝜎{𝛿ℎ𝑚, 𝑚 = 1, · · · , 𝑛}. If
𝐹 ∈ D2,𝑘 then 𝐹𝑛 = E [𝐹 | V𝑛] converges in D2,𝑘 to 𝐹. We have

∇(𝑘 )E [𝐹 | V𝑛] = 𝑝 (𝑘 )V𝑛E
[
∇(𝑘 )𝐹 |𝑉𝑛

]
and

∇(𝑘 )E [𝐹 | V𝑛] = 𝑓𝑛

(
𝛿ℎ, ℎ ∈ 𝑉𝑛

)
for some 𝑓𝑛 𝑘-times differentiable.

Its adjoint is defined by

𝑝∗𝑉𝑛 : span
{
𝑅(𝑧 𝑗 ) 𝑖 = 1, · · · , 𝑛

}
⊂ W −→ H

𝑛∑︁
𝑗=1
𝛼 𝑗 𝑅(𝑧 𝑗 ) ↦−→

𝑛∑︁
𝑗=1
𝛼 𝑗 𝔢

∗ (𝑧 𝑗 ).
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In virtue of (2.7),
𝔢 ◦ 𝑝∗𝑉𝑛 = �𝔢∗ ◦ 𝑝𝑉𝑛

To finish the proof of Theorem 3.16, we need two very delicate results.

Definition 3.9 Let 𝐴 be a continuous operator from H into itself: it can be written

𝐴 : H −→ H

ℎ ↦−→
∑︁
𝑛≥0

⟨ℎ, ℎ𝑛⟩H 𝐴ℎ𝑛

for (ℎ𝑛, 𝑛 ≥ 0) a CONB of H . We define �̂� its extension on W by

�̂� : W −→ W

𝜔 =
∑︁
𝑛≥0

𝛿ℎ𝑛 (𝜔) 𝔢(ℎ𝑛) ↦−→
∑︁
𝑛≥0

𝛿ℎ𝑛 (𝜔) (𝔢 ◦ 𝐴) (ℎ𝑛).

Then,
E

[
∥ �̂�(𝜔)∥ 𝑝W

]
≤ E

[
∥𝐵∥ 𝑝

𝑊

]
∥𝐴∥ 𝑝H→H . (3.39)

Note that (3.39) may not hold without the expectation. We denote by 𝑅 = 𝔢 ◦ 𝔢∗. We
have the non trivial theorem:

Theorem 3.17 Let 𝐴 ∈ W∗ ⊗W∗, i.e. 𝐴 is a bounded operator from W into W∗. Then
𝐴 is trace-class and��trace

(
(𝔢∗ ⊗ 𝔢∗)𝐴|H

) �� ≤ E
[
∥𝐵∥2

𝑊

]
∥𝐴∥W∗⊗W∗ . (3.40)

Proof (Proof of Theorem 3.16) Step 1. Let 𝐹𝑛 = E [𝐹 | V𝑛]. In virtue of (1.17) and
lemma 3.6, we have
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𝑛∑︁
𝑗=1
𝜕 𝑗 𝑓𝑛 (𝛿𝔢∗ (𝑧1) (𝜔), · · · ) 𝛿𝔢∗ (𝑧 𝑗 )

=

〈
𝑛∑︁
𝑚=1

𝛿𝔢∗ (𝑧𝑚) 𝔢∗ (𝑧𝑚),
𝑛∑︁
𝑗=1
𝜕 𝑗 𝑓𝑛 (𝛿𝔢∗ (𝑧1) (𝜔), · · · )𝔢∗ (𝑧 𝑗 )

〉
H

=

〈
𝑛∑︁
𝑚=1

𝛿𝔢∗ (𝑧𝑚) 𝔢∗ (𝑧𝑚), ∇E [𝐹 | V𝑛]
〉
H

=

〈
𝑛∑︁
𝑚=1

𝛿𝔢∗ (𝑧𝑚) 𝔢∗ (𝑧𝑚), (𝑝𝑉𝑛 ◦ 𝔢∗)E
[
∇̃𝐹 | V𝑛

]〉
H

=

〈
𝑛∑︁
𝑚=1

𝛿𝔢∗ (𝑧𝑚) (𝔢 ◦ 𝑝𝑉𝑛 ◦ 𝔢∗) (𝑧𝑚), E
[
∇̃𝐹 | V𝑛

]〉
W,W∗

=

〈
𝑛∑︁
𝑚=1

𝛿𝔢∗ (𝑧𝑚) 𝑅(𝑧𝑚), E
[
∇̃𝐹 | V𝑛

]〉
W,W∗

,

since 𝑝𝑉𝑛 ◦ 𝔢∗ (𝑧𝑚) = 𝔢∗ (𝑧𝑚) for 𝑚 ≤ 𝑛. Similarly, we have

𝑛∑︁
𝑗=1
𝜕 𝑗 𝑓𝑛

(
𝛿ℎ, ℎ ∈ 𝑉𝑛

)
= trace

(
(𝑝𝑉𝑛 ⊗ 𝑝𝑉𝑛 ) ◦ (𝔢∗ ⊗ 𝔢∗)E

[
∇̃(2)𝐹 | V𝑛

] )
so that we can write

𝐿𝐹𝑛 (𝜔) =
〈
�̂�𝑉𝑛 (𝜔), E

[
∇̃𝐹 | V𝑛

]〉
W,W∗

− trace
(
(𝑝𝑉𝑛 ⊗ 𝑝𝑉𝑛 ) ◦ (𝔢∗ ⊗ 𝔢∗)E

[
∇̃(2)𝐹 | V𝑛

] )
.

From (3.39), we know that

�̂�𝑉𝑛 (𝜔)
𝐿2

(
W→W; `

)
−−−−−−−−−−−→

𝑛→∞
𝜔. (3.41)

Since E
[
∥∇̃𝐹∥2

W∗
]
< ∞, the martingale convergence theorem implies that

E
[
∇̃𝐹 | V𝑛

] 𝐿2
(
W→W∗; `

)
−−−−−−−−−−−−→

𝑛→∞
∇̃𝐹. (3.42)

Moreover,
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(
(𝑝𝑉𝑛 ⊗ 𝑝𝑉𝑛 ) ◦ (𝔢∗ ⊗ 𝔢∗)E

[
∇̃(2)𝐹 | V𝑛

] )
− trace((𝔢∗ ⊗ 𝔢∗) (∇̃(2)𝐹))

���
≤

���trace
(
(𝑝𝑉𝑛 ⊗ 𝑝𝑉𝑛 ) ◦ (𝔢∗ ⊗ 𝔢∗)

[
E

[
∇̃(2)𝐹 | V𝑛

]
− ∇̃(2)𝐹

] )���
+

���trace
( (

Id ⊗ Id−𝑝𝑉𝑛 ⊗ 𝑝𝑉𝑛
)
◦ (𝔢∗ ⊗ 𝔢∗) (∇̃(2)𝐹)

)��� = 𝐴1 + 𝐴2.

In view of (3.40),

𝐴1 ≤ 𝑐∥𝑝𝑉𝑛 ∥2
H

E [
∇̃(2)𝐹 | V𝑛

]
− ∇̃(2)𝐹


W∗⊗W∗

.

Once again the martingale convergence theorem implies

𝐴1
𝐿2

(
W→W∗⊗W∗; `

)
−−−−−−−−−−−−−−−→

𝑛→∞
0.

Furthermore,

𝐴2 ≤ 𝑐
𝑝𝑉𝑛 ⊗ 𝑝V𝑛 − Id ⊗ Id


H⊗H

∇̃(2)𝐹


W∗⊗W∗
.

Hence, 𝐴2 also converges to 0 in 𝐿2 (W → W∗ ⊗ W∗; `
)
. □

3.3 Problems

3.1 Consider the Brownian sheet𝑊 which is the centered Gaussian process indexed
by [0, 1]2 with covariance kernel

E [𝑊 (𝑡1, 𝑡2)𝑊 (𝑠1, 𝑠2)] = 𝑠1 ∧ 𝑡1 𝑠2 ∧ 𝑡2 := 𝑅(𝑠, 𝑡). (3.43)

Let (𝑋𝑖 𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 𝑁) a family of 𝑁2 independent and identically distributed
random variables with mean 0 and variance 1. Define

𝑆𝑁 (𝑠, 𝑡) =
1
𝑁

[𝑁𝑠]∑︁
𝑖=1

[𝑁𝑡 ]∑︁
𝑗=1

𝑋𝑖 𝑗 .

1. Show that
(
𝑆𝑁 (𝑠1, 𝑠2), 𝑆𝑁 (𝑡1, 𝑡2)

)
converges to a Gaussian random vector of

covariance matrix
Γ =

(
𝑅(𝑠, 𝑠) 𝑅(𝑠, 𝑡)
𝑅(𝑠, 𝑡) 𝑅(𝑡, 𝑡)

)
2. Show that for fixed 𝑡, the process 𝑠 ↦−→ 𝑊 (𝑠, 𝛽2

𝑡 ) has the same distribution as
the process 𝑠 ↦−→ 𝛽𝑡𝐵(𝑠) where 𝐵 is the standard Brownian motion.

3. Derive that for 𝐹 ∈ 𝐿2 (W → R; `
)

and 𝜔 ∈ W, we have

𝑃𝑡𝐹 (𝜔) = E
[
𝐹
(
𝑒−𝑡𝜔 +𝑊 (., 𝛽2

𝑡 )
) ]
.
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Fig. 3.1 Simulation of a sample-path of 𝑆𝑁 .

3.2 From [5], we derive an alternative expression of the second order derivative of
𝑃𝑡𝐹. Assume that 𝐹 belongs to S and ℎ, 𝑘 are two elements of H .

1. Use the semi-group property to derive

⟨∇𝑃𝑡𝐹 (𝜔), ℎ⟩H

=
𝑒−𝑡/2

𝛽𝑡/2

∫
W

(∫
W
𝐹

(
𝑒−𝑡𝜔 + 𝑒−𝑡/2𝛽𝑡/2𝑦 + 𝛽𝑡/2𝑧

)
d`(𝑧)

)
𝛿ℎ(𝑦) d`(𝑦).

2. Show that〈
∇(2)𝑃𝑡𝐹 (𝜔), ℎ ⊗ 𝑘

〉
H

=
𝑒−3𝑡/2

𝛽2
𝑡/2

∫
W

∫
W
𝐹

(
𝑒−𝑡𝜔 + 𝑒−𝑡/2𝛽𝑡/2𝑦 + 𝛽𝑡/2𝑧

)
𝛿ℎ(𝑦)𝛿𝑘 (𝑧) d`(𝑦) d`(𝑧).

(3.44)

3. Show that (3.44) holds for 𝐹 ∈ 𝐿1 (W → R; `
)
.

Assume that 𝐹 ∈ 𝐿1 (W → R; `
)

and that 𝐹 is in Lip1 (𝑊): For any 𝜔′ ∈ W,

|𝐹 (𝜔 + 𝜔′) − 𝐹 (𝜔) | ≤ ∥𝜔′∥W.

4. Use Cauchy-Schwarz inequality to show that���〈∇(2)𝑃𝑡𝐹 (𝜔 + 𝛼𝔢(ℎ), ℎ ⊗ ℎ
〉
H

��� ≤ 𝛼 𝑒−5𝑡/2

𝛽2
𝑡/2

∥ℎ∥2
H ∥𝔢(ℎ)∥W. (3.45)

3.3 For 𝑓 : R𝑛 → R twice differentiable, we set
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𝐿𝑛 𝑓 (𝑥) = ⟨𝑥, 𝐷𝑛 𝑓 (𝑥)⟩R𝑛 − Δ𝑛 𝑓 (𝑥)

=

𝑛∑︁
𝑗=1
𝑥 𝑗 𝜕 𝑗 𝑓 (𝑥) −

𝑛∑︁
𝑗=1
𝜕2
𝑗 𝑗 𝑓 (𝑥).

1. For 𝐹 (𝜔) = 𝑓
(
𝛿ℎ1 (𝜔), · · · , 𝛿ℎ𝑛 (𝜔)

)
where 𝑓 ∈ C2 (R𝑛, R),

𝐿𝐹 (𝜔) = (𝐿𝑛 𝑓 )
(
𝛿ℎ1 (𝜔), · · · , 𝛿ℎ𝑛 (𝜔)

)
. (3.46)

3.4 Notes and comments

Chaos are interesting because the action of the gradient and of the divergence can be
readily seen on each chaos. They also give a convenient definition of the Ornstein-
Uhlenbeck semi-group as a diagonal operator. Actually, it can be said that the chaos
decomposition plays the rôle of the series expansion for ordinary functions, with the
same advantages and limitations.

There are some other probability measures for which the chaos decomposition is
known to hold. Beyond the Wiener measure [2, 6], we may consider the distribution
of the Poisson process possibly with marks [4], the Rademacher measure which
is the distribution of a sequence of independent Bernoulli random variables [4],
the distribution of Lévy processes [3] and the distribution of some finite Markov
chains [1]. There was a tremendous activity on this subject during the nineties but
to the best of my knowledge, it did not go much farther than these examples.

This version of the proof of the multiplication formula for iterated integrals can
be found in [7].
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Chapter 4
Fractional Brownian motion

Abstract In the nineties, statistical evidence, notably in finance and telecommuni-
cations, showed that Markov processes were too far away from the observations to
be considered as viable models. In particular, there were strong suspicions that the
data exhibit long range dependence. It is in this context that the fractional Brownian
motion, introduced by B. Mandelbrot in the late sixties and almost forgotten since,
enjoyed a new rise of interest. It is a Gaussian process with long range dependence.
Consequently, it cannot be a semi-martingale and we cannot apply the theory of Itô
calculus. As we have seen earlier, for the Brownian motion, the Malliavin divergence
generalizes the Itô integral and can be constructed for the fBm, so it is tempting to
view it as an ersatz of a stochastic integral. Actually, the situation is not that simple
and depends on what we call a stochastic integral.

4.1 Definition and sample-paths properties

Definition 4.1 For any 𝐻 in (0, 1), the fractional Brownian motion of index (Hurst
parameter)𝐻, {𝐵𝐻 (𝑡); 𝑡 ∈ [0, 1]} is the centered Gaussian process whose covariance
kernel is given by

𝑅𝐻 (𝑠, 𝑡) = E [𝐵𝐻 (𝑠)𝐵𝐻 (𝑡)] =
𝑉𝐻

2

(
𝑠2𝐻 + 𝑡2𝐻 − |𝑡 − 𝑠 |2𝐻

)
where

𝑉𝐻 =
Γ(2 − 2𝐻) cos(𝜋𝐻)

𝜋𝐻 (1 − 2𝐻) ·

Note that for 𝐻 = 1/2, we obtain

𝑅1/2 (𝑡, 𝑠) =
1
2
(𝑡 + 𝑠 − |𝑡 − 𝑠 |)

93
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which is nothing but the sophisticated way to write 𝑅1/2 (𝑡, 𝑠) = min(𝑡, 𝑠). Hence,
𝐵1/2 is the ordinary Brownian motion.
Theorem 4.1 Let 𝐻 ∈ (0, 1), the sample-paths of 𝑊𝐻 are Hölder continuous of
any order less than 𝐻 (and no more) and belong to 𝑊𝛼,𝑝 for any 𝑝 ≥ 1 and any
𝛼 ∈ (0, 𝐻).

We denote by `𝐻 , the measure on W𝛼,𝑝 which corresponds to the distribution of
𝐵𝐻 .
Proof Step 1. A simple calculations shows that, for any 𝑝 ≥ 0, we have

E [|𝐵𝐻 (𝑡) − 𝐵𝐻 (𝑠) |𝑝] = 𝐶𝑝 |𝑡 − 𝑠 |𝐻𝑝 .

Since 𝐵𝐻 is Gaussian, its 𝑝-th moment can be expressed as a power the variance,
hence we have

E
[∬

[0,1]2

|𝐵𝐻 (𝑡) − 𝐵𝐻 (𝑠) |𝑝
|𝑡 − 𝑠 |1+𝛼𝑝

d𝑡 d𝑠
]
= 𝐶𝛼

∬
[0,1]2

|𝑡 − 𝑠 |−1+𝑝 (𝐻−𝛼) d𝑡 d𝑠.

This integral is finite as soon as 𝛼 < 𝐻 hence, for any 𝛼 < 𝐻, any 𝑝 ≥ 1, 𝐵𝐻
belongs to 𝑊𝛼,𝑝 with probability 1. Choose 𝑝 arbitrary large and conclude that the
sample-paths are Hölder continuous of any order less than 𝐻, in view of the Sobolev
embeddings (see Theorem 1.4)
Step 2. As a consequence of the results in [1], we have

`𝐻

(
lim sup
𝑢→0+

𝐵𝐻 (𝑢)
𝑢𝐻

√︁
log log 𝑢−1

=
√︁
𝑉𝐻

)
= 1.

Hence it is impossible for 𝐵𝐻 to have sample-paths Hölder continuous of an order
greater than 𝐻. □

The difference of regularity is evident on simulations of sample-paths, see Figure 4.1.

Lemma 4.1 The process (𝑎−𝐻𝐵𝐻 (𝑎𝑡), 𝑡 ≥ 0) has the same distribution as 𝐵𝐻 .

Proof Consider the centered Gaussian process

𝑍 (𝑡) = 𝑎−𝐻𝐵𝐻 (𝑎𝑡).

Its covariance kernel is given

E [𝑍 (𝑡)𝑍 (𝑠)] = 𝑎−2𝐻𝑅𝐻 (𝑎𝑡, 𝑎𝑠) = 𝑅𝐻 (𝑡, 𝑠).

Since a covariance kernel determines the distribution of a Gaussian process, 𝑍 and
𝐵𝐻 have the same law. □

Theorem 4.2 With probability 1, we have:

lim
𝑛→∞

𝑛∑︁
𝑗=1

����𝐵𝐻 ( 𝑗
𝑛

)
− 𝐵𝐻

( 𝑗 − 1
𝑛

)����2 =

{
0 if 𝐻 > 1/2
∞ if 𝐻 < 1/2.
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Fig. 4.1 Sample-path example for 𝐻 = 0.2 (upper left), 𝐻 = 0.5 (below) and 𝐻 = 0.8 (upper
right).

Proof Lemma 4.1 entails that

𝑛∑︁
𝑗=1

����𝐵𝐻 ( 𝑗
𝑛

)
− 𝐵𝐻

( 𝑗 − 1
𝑛

)����1/𝐻
has the same distribution as

1
𝑛

𝑛∑︁
𝑗=1

���𝐵𝐻 (
𝑗

)
− 𝐵𝐻

(
𝑗 − 1

)���1/𝐻 .
The ergodic theorem entails that this converges in 𝐿1 (W → R; `𝐻

)
and almost-

surely to E
[
|𝐵𝐻 (1) |𝐻

]
. Hence the result. □

As a consequence, 𝐵𝐻 cannot be a semi-martingale as its quadratic variation is either
null or infinite.

4.2 Cameron-Martin space

The next step is to describe the Cameron-Martin space attached to the fBm of
index 𝐻. The general theory of Gaussian processes says that we must consider the
self-reproducing Hilbert space defined by the covariance kernel, see the appendix of
Chapter 1.

Definition 4.2 Let
H0 = span{𝑅𝐻 (𝑡, .), 𝑡 ∈ [0, 1]},
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equipped with the scalar product

⟨𝑅𝐻 (𝑡, .), 𝑅𝐻 (𝑠, .)⟩H0 = 𝑅𝐻 (𝑡, 𝑠). (4.1)

The Cameron-Martin space of the fBm of Hurst index 𝐻, denoted by H𝐻 , is the
completion of H0 for the scalar product defined in (4.1).

This is not a very practical definition but we can have a much better description of
H𝐻 thanks to the next theorems.

Lemma 4.2 (Representation of the RKHS) Assume that there exists a function
𝐾𝐻 : [0, 1] × [0, 1] → R such that

𝑅𝐻 (𝑠, 𝑡) =
∫
[0, 1]

𝐾𝐻 (𝑠, 𝑟) 𝐾𝐻 (𝑡, 𝑟) d𝑟, (4.2)

and that the linear map defined by 𝐾𝐻 is one-to-one on 𝐿2 ([0, 1] → R; ℓ
)
:(

∀𝑡 ∈ [0, 1],
∫
[0, 1]

𝐾𝐻 (𝑡, 𝑠)𝑔(𝑠) d𝑠 = 0
)
=⇒ 𝑔 = 0 ℓ − a.s. (4.3)

Then the Hilbert space H𝐻 can be identified to 𝐾𝐻
(
𝐿2 ([0, 1] → R; ℓ

) )
: The space

of functions of the form

𝑓 (𝑡) =
∫
[0, 1]

𝐾𝐻 (𝑡, 𝑠) ¤𝑓 (𝑠) d𝑠

for some ¤𝑓 ∈ 𝐿2 ([0, 1] → R; ℓ
)
, equipped with the inner product

⟨𝐾𝐻 𝑓 , 𝐾𝐻𝑔⟩𝐾𝐻 (𝐿2
(
[0, 1]→R; ℓ

) = ⟨ 𝑓 , 𝑔⟩
𝐿2

(
[0, 1]→R; ℓ

) .
Note that we abused the notations by denoting 𝐾−1

𝐻
( 𝑓 ) as ¤𝑓 . We will be rewarded

of this little infrigement below as all the formulas will look the same whatever the
value of 𝐻.

Proof Step 1. Eqn. (4.3) means that

𝔎𝐻 = span {𝐾𝐻 (𝑡, .), 𝑡 ∈ [0, 1]}

is dense in 𝐿2 ([0, 1] → R; ℓ
)
.

Step 2. Since 𝐾𝐻
(
𝐾𝐻 (𝑡, .)

)
(𝑠) = 𝑅𝐻 (𝑡, 𝑠),

𝐾𝐻

(
𝑛∑︁
𝑘=1

𝛼𝑘𝐾𝐻 (𝑡𝑘 , .)
)
=

𝑛∑︁
𝑘=1

𝛼𝑘𝑅𝐻 (𝑡𝑘 , .).

On the one hand, we have
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𝑘=1

𝛼𝑘𝑅𝐻 (𝑡𝑘 , .)
2

H𝐻

=

𝑛∑︁
𝑘=1

𝑛∑︁
𝑙=1

𝛼𝑘𝛼𝑙𝑅𝐻 (𝑡𝑘 , 𝑡𝑙) (4.4)

and on the other hand, we observe that 𝑛∑︁
𝑘=1

𝛼𝑘𝐾𝐻 (𝑡𝑘 , .)
2

𝐿2
(
[0, 1]→R; ℓ

)
=

∫
[0, 1]

( 𝑛∑︁
𝑘=1

𝛼𝑘𝐾𝐻 (𝑡𝑘 , 𝑠)
)2

d𝑠

=

𝑛∑︁
𝑘=1

𝑛∑︁
𝑙=1

𝛼𝑘𝛼𝑙

∬
[0, 1]×[0, 1]

𝐾𝐻 (𝑡𝑘 , 𝑠)𝐾𝐻 (𝑡𝑙 , 𝑠) d𝑠

=

𝑛∑︁
𝑘=1

𝑛∑︁
𝑙=1

𝛼𝑘𝛼𝑙𝑅𝐻 (𝑡𝑘 , 𝑡𝑙),

(4.5)

in view of (4.2).
Step 3. Equations (4.4) and (4.5) mean that the map 𝐾𝐻 :

𝐾𝐻 : 𝔎𝐻 −→ H0

𝐾𝐻 (𝑡, .) −→ 𝑅𝐻 (𝑡, .)

is a bĳective isometry, when these spaces are equipped with the topology of
𝐿2 ([0, 1] → R; ℓ

)
and H0 respectively. By density, 𝐾𝐻 is a bĳective isometry

from 𝐿2 ([0, 1] → R; ℓ
)

into H𝐻 . Otherwise stated, 𝐾𝐻
(
𝐿2 ([0, 1] → R; ℓ

) )
is

isometrically isomorphic, hence identified, to H𝐻 . □

Example 4.1 RKHS of the Brownian motion For 𝐻 = 1/2, we have

𝑡 ∧ 𝑠 =
∫ 1

0
1[0,𝑡 ] (𝑟)1[0,𝑠] (𝑟) d𝑟.

This means that the RKHS of the Brownian motion is equal to 𝐼1,2 since for
𝐾1/2 (𝑡, 𝑟) = 1[0,𝑡 ] (𝑟),

𝐾1/2 𝑓 (𝑡) =
∫ 1

0
1[0,𝑡 ] (𝑟) 𝑓 (𝑟) d𝑟 = 𝐼1 𝑓 (𝑡).

We now have to identify 𝐾𝐻 for our kernel 𝑅𝐻 .

Lemma 4.3 For 𝐻 > 1/2, Eqn. (4.2) is satisfied with

𝐾𝐻 (𝑡, 𝑟) =
𝑟1/2−𝐻

Γ(𝐻 − 1/2)

∫ 𝑡

𝑟

𝑢𝐻−1/2 (𝑢 − 𝑟)𝐻−3/2 d𝑢 1[0,𝑡 ] (𝑟). (4.6)
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Proof According to the fundamental theorem of calculus, applied twice, we can
write:

𝑅𝐻 (𝑠, 𝑡) =
𝑉𝐻

4𝐻 (2𝐻 − 1)

∫ 𝑡

0

∫ 𝑠

0
|𝑟 − 𝑢 |2𝐻−2 d𝑢 d𝑟 (4.7)

After a deep inspection of the handbooks of integrals or more simply, finding, with
a bit of luck, the reference [2], we see that

𝑉𝐻

4𝐻 (2𝐻 − 1) |𝑟 − 𝑢 |
2𝐻−2

= (𝑟𝑢)𝐻−1/2
∫ 𝑟∧𝑢

0
𝑣1/2−𝐻 (𝑟 − 𝑣)𝐻−3/2 (𝑢 − 𝑣)𝐻−3/2 d𝑣. (4.8)

Plug (4.8) into (4.7) and apply Fubini to put the integration with respect to 𝑣 in the
outer most integral. This implies that (4.2) is satisfied with 𝐾𝐻 given by (4.6). □

Unfortunately, this integral is not defined for 𝐻 < 1/2 because of the term (𝑢 −
𝑟)𝐻−3/2. Fortunately, the expression (4.6) can be expressed as an hypergeometric
function. These somehow classical functions can be presented in different manners
so that they are meaningful for a very wide range of parameters, including the domain
which is of interest for us.

Definition 4.3 The Gauss hypergeometric function 𝐹 (𝑎, 𝑏, 𝑐, 𝑧) (for details, see [6])
is defined for any 𝑎, 𝑏, any 𝑧, |𝑧 | < 1 and any 𝑐 ≠ 0,−1, . . . by

𝐹 (𝑎, 𝑏, 𝑐, 𝑧) =
+∞∑︁
𝑘=0

(𝑎)𝑘 (𝑏)𝑘
(𝑐)𝑘𝑘!

𝑧𝑘 , (4.9)

where (𝑎)0 = 1 and (𝑎)𝑘 = Γ(𝑎+𝑘)/Γ(𝑎) = 𝑎(𝑎+1) . . . (𝑎+𝑘−1) is the Pochhammer
symbol.

If 𝑎 or 𝑏 is a negative integer the series terminates after a finite number of terms
and 𝐹 (𝑎, 𝑏, 𝑐, 𝑧) is a polynomial in 𝑧.

The radius of convergence of this series is 1 and there exists a finite limit when 𝑧
tends to 1 (𝑧 < 1) provided that ℜ(𝑐 − 𝑎 − 𝑏) > 0.

For any 𝑧 such that | arg(1 − 𝑧) | < 𝜋, any 𝑎, 𝑏, 𝑐 such that ℜ(𝑐) > ℜ(𝑏) > 0, 𝐹
can be defined by

𝐹 (𝑎, 𝑏, 𝑐, 𝑧) = Γ(𝑐)
Γ(𝑏)Γ(𝑐 − 𝑏)

∫ 1

0
𝑢𝑏−1 (1 − 𝑢)𝑐−𝑏−1 (1 − 𝑧𝑢)−𝑎 d𝑢. (4.10)

Remark 4.1 The Gamma function is defined by an integral only on {𝑧, ℜ(𝑧) > 0}.
By the famous relation, Γ(𝑧 + 1) = 𝑧Γ(𝑧), it can be extended analytically to C\(−N)
even if the integral expression is no longer valid. The same but more involved kind
of reasoning can be done here to extend 𝐹.

Theorem 4.3 The hypergeometric function 𝐹 can be extended analytically to the
domain C × C × C\(−N) × {𝑧, | arg(1 − 𝑧) | < 𝜋}.
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Proof We won’t go into the details of the proof. Given (𝑎, 𝑏, 𝑐), consider Σ the
set of triples (𝑎′, 𝑏′, 𝑐′) such that |𝑎 − 𝑎′ | = 1 or |𝑏 − 𝑏′ | = 1 or |𝑐 − 𝑐′ | = 1.
Any hypergeometric function 𝐹 (𝑎′, 𝑏′, 𝑐′, 𝑧) with (𝑎′, 𝑏′, 𝑐′) in Σ is said to be
contiguous to 𝐹 (𝑎, 𝑏, 𝑐). For any two hypergeometric functions 𝐹1 and 𝐹2 contiguous
to 𝐹 (𝑎, 𝑏, 𝑐, 𝑧), there exists a relation of the type :

𝑃0 (𝑧)𝐹 (𝑎, 𝑏, 𝑐, 𝑧) + 𝑃1 (𝑧)𝐹1 (𝑧) + 𝑃2 (𝑧)𝐹2 (𝑧) = 0, for 𝑧, | arg(1 − 𝑧) | < 𝜋, (4.11)

where for any 𝑖, 𝑃𝑖 is a polynomial with respect to 𝑧. These relations permit to define
the analytic continuation of 𝐹 (𝑎, 𝑏, 𝑐, 𝑧) with respect to its four variables. □

If we want to have a representation similar to (4.6) for𝐻 < 1/2, we need to write𝐾 in
a form which can be extended to larger domain. The easiest way to proceed is to write
𝐾 as an entire function of its arguments 𝐻, 𝑡 and 𝑟 . That is where hypergeometric
function enters the scene.

Theorem 4.4 For any 𝐻 ∈ (0, 1), 𝑅𝐻 can be factorized as in (4.2) with

𝐾𝐻 : [0, 1]2 −→ R

(𝑡, 𝑠) ↦−→ (𝑡 − 𝑠)𝐻−1/2

Γ(𝐻 + 1/2) 𝐹
(
𝐻 − 1/2, 1/2 − 𝐻, 𝐻 + 1/2, 1 − 𝑡

𝑠

)
. (4.12)

If we identify integral operators and their kernel, this amounts to say that

𝑅𝐻 = 𝐾𝐻 ◦ 𝐾∗
𝐻 .

Proof For 𝐻 > 1/2, a change of variable in (4.6) transforms the integral term in

(𝑡 − 𝑟)𝐻−1/2𝑟𝐻−1/2
∫ 1

0
𝑢𝐻−3/2 (1 − (1 − 𝑡/𝑟)𝑢)𝐻−1/2 d𝑢.

By the definition (4.10) of hypergeometric functions, we see that (4.12) holds true
for 𝐻 > 1/2. According to the properties of the hypergeometric function, we have

𝐾𝐻 (𝑡, 𝑟) =
2−2𝐻√𝜋

Γ(𝐻) sin(𝜋𝐻) 𝑟
𝐻−1/2

+ 1
2Γ(𝐻 + 1/2) (𝑡 − 𝑟)

𝐻−1/2𝐹 (1/2 − 𝐻, 1, 2 − 2𝐻,
𝑟

𝑡
)·

If 𝐻 < 1/2 then the hypergeometric function of the latter equation is continuous
with respect to 𝑟 on [0, 𝑡] because 2 − 2𝐻 − 1 − 1/2 + 𝐻 = 1/2 − 𝐻 is positive.
Hence, for 𝐻 < 1/2, 𝐾𝐻 (𝑡, 𝑟) (𝑡 − 𝑟)1/2−𝐻𝑟1/2−𝐻 is continuous with respect to 𝑟 on
[0, 𝑡]. For 𝐻 > 1/2, the hypergeometric function is no more continuous in 𝑡 but we
have [6] :
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𝐹 (1/2 − 𝐻, 1, 2 − 2𝐻,
𝑟

𝑡
) = 𝐶1𝐹 (1/2 − 𝐻, 1, 𝐻 + 1/2, 1 − 𝑟

𝑡
)

+ 𝐶2 (1 − 𝑟

𝑡
)1/2−𝐻 ( 𝑟

𝑡
)2𝐻−1.

Hence, for 𝐻 ≥ 1/2, 𝐾𝐻 (𝑡, 𝑟)𝑟𝐻−1/2 is continuous with respect to 𝑟 on [0, 𝑡]. Fix
𝛿 ∈ [0, 1/2) and 𝑡 ∈ (0, 1], we have :

|𝐾𝐻 (𝑡, 𝑟) | ≤ 𝐶𝑟−|𝐻−1/2 | (𝑡 − 𝑟)−(1/2−𝐻 )+1[0,𝑡 ] (𝑟)

where 𝐶 is uniform with respect to 𝐻 ∈ [1/2 − 𝛿, 1/2 + 𝛿]. Thus, the two functions
defined on {𝐻 ∈ C, |𝐻 − 1/2| < 1/2} by

𝐻 ↦−→ 𝑅𝐻 (𝑠, 𝑡) and 𝐻 ↦−→
∫ 1

0
𝐾𝐻 (𝑠, 𝑟)𝐾𝐻 (𝑡, 𝑟) d𝑟

are well defined, analytic with respect to 𝐻 and coincide on [1/2, 1), thus they are
equal for any 𝐻 ∈ (0, 1) and any 𝑠 and 𝑡 in [0, 1]. □

In the previous proof we proved a result which is so useful in its own that it deserves
to be a theorem :

Theorem 4.5 For any 𝐻 ∈ (0, 1), for any 𝑡, the function

[0, 𝑡] −→ R

𝑟 ↦−→ 𝐾𝐻 (𝑡, 𝑟)𝑟 |𝐻−1/2 | (𝑡 − 𝑟) (1/2−𝐻 )+

is continuous on [0, 𝑡].
Moreover, there exists a constant 𝑐𝐻 such for any 0 ≤ 𝑟 ≤ 𝑡 ≤ 1

|𝐾𝐻 (𝑡, 𝑟) | ≤ 𝑐𝐻 𝑟−|𝐻−1/2 | (𝑡 − 𝑟)−(1/2−𝐻 )+ . (4.13)

These continuity results are illustrated by the following pictures.
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We made some progress with this new description of H𝐻 . However, for a given
element of 𝐿2 ([0, 1] → R; ℓ

)
, it is still difficult to determine whether it belongs

to H𝐻 . Since ∫ 1

0

∫ 1

0
𝐾 (𝑡, 𝑟)2 d𝑡 d𝑟 =

∫ 1

0
𝑅𝐻 (𝑡, 𝑡) d𝑡 < ∞,
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we already know that the integral map of kernel 𝐾𝐻 is Hilbert-Schmidt from
𝐿2 ([0, 1] → R; ℓ

)
into itself. Thanks to [8, page 187], we are in position to give a

fully satisfactory description of H𝐻 .

Theorem 4.6 Consider the integral transform of kernel 𝐾𝐻 , i.e.

𝐾𝐻 : 𝐿2 ([0, 1] → R; ℓ
)
−→ 𝐿2 ([0, 1] → R; ℓ

)
𝑓 ↦−→

(
𝑡 ↦→

∫ 𝑡

0
𝐾𝐻 (𝑡, 𝑠) 𝑓 (𝑠) d𝑠

)
.

The map 𝐾𝐻 is an isomorphism from 𝐿2 ([0, 1] → R; ℓ
)

onto 𝐼𝐻+1/2,2 (see Defini-
tion 1.7) and we have the following representations, which says that 𝐾𝐻 is in some
sense, close to the map 𝐼𝐻+1/2:

𝐾𝐻 𝑓 = 𝐼
2𝐻
0+ 𝑥

1/2−𝐻 𝐼1/2−𝐻
0+ 𝑥𝐻−1/2 𝑓 for 𝐻 ≤ 1/2,

𝐾𝐻 𝑓 = 𝐼
1
0+𝑥

𝐻−1/2𝐼
𝐻−1/2
0+ 𝑥1/2−𝐻 𝑓 for 𝐻 ≥ 1/2.

Note that if 𝐻 ≥ 1/2, 𝑟 → 𝐾𝐻 (𝑡, 𝑟) is continuous on (0, 𝑡] so that we can include 𝑡
in the indicator function.

Remark 4.2 We already know that the fBm is all the more regular than its Hurst index
is close to 1. However, we see that the kernel 𝐾𝐻 is more and more singular when
𝐻 goes to 1. This means that it is probably a bad idea to devise properties of 𝐵𝐻
using the properties of 𝐾𝐻 . On the other hand, as an operator, 𝐾𝐻 is more and more
regular as 𝐻 increases. This indicates that the efficient approach is to work with 𝐾𝐻
as an operator. We tried to illustrate this line of reasoning in the next results.

•> RKHS of the fBm

To summarize the previous considerations, we get

Theorem 4.7 The Cameron-Martin of the fractional Brownian motion is H𝐻 =

{𝐾𝐻 ¤ℎ; ¤ℎ ∈ 𝐿2 ([0, 1] → R; ℓ
)
}, i.e., any ℎ ∈ H𝐻 can be represented as

ℎ(𝑡) = 𝐾𝐻 ¤ℎ(𝑡) =
∫ 1

0
𝐾𝐻 (𝑡, 𝑠) ¤ℎ(𝑠) d𝑠,

where ¤ℎ belongs to 𝐿2 ([0, 1] → R; ℓ
)
. For any H𝐻–valued random variable 𝑢, we

hereafter denote by ¤𝑢 the 𝐿2 ([0, 1] → R; ℓ
)
)-valued random variable such that

𝑢(𝑤, 𝑡) =
∫ 𝑡

0
𝐾𝐻 (𝑡, 𝑠) ¤𝑢(𝑤, 𝑠) d𝑠.

The scalar product on H𝐻 is given by

(ℎ, 𝑔)H𝐻 = (𝐾𝐻 ¤ℎ, 𝐾𝐻 ¤𝑔)H𝐻 = ( ¤ℎ, ¤𝑔)
𝐿2

(
[0,1]→R; ℓ

) .
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Remark 4.3 Theorem 4.6 implies that as a vector space, H𝐻 is equal to 𝐼𝐻+1/2,2 but
the norm on each of these spaces are different since

∥𝐾𝐻 ¤ℎ∥H𝐻 = ∥ ¤ℎ∥
𝐿2

(
[0,1]→R; ℓ

)
and ∥𝐾𝐻 ¤ℎ∥𝐼𝐻+1/2,2 = ∥(𝐼−𝐻−1/2

0+ ◦ 𝐾𝐻 ) ¤ℎ∥𝐿2
(
[0,1]→R; ℓ

) .
4.3 Wiener space

We can now construct the fractional Wiener measure as we did for the ordinary
Brownian motion.

Theorem 4.8 Let ( ¤ℎ𝑚, 𝑚 ≥ 0) be a complete orthonormal basis of 𝐿2 ([0, 1] →
R; ℓ

)
and ℎ𝑚 = 𝐾𝐻 ¤ℎ𝑚. Consider the sequence

𝑆𝐻𝑛 (𝑡) =
𝑛∑︁
𝑚=0

𝑋𝑚ℎ𝑚 (𝑡)

where (𝑋𝑚, 𝑚 ≥ 0) is a sequence of independent standard Gaussian random vari-
ables. Then, (𝑆𝐻𝑛 , 𝑛 ≥ 0) converges, with probability 1, in𝑊𝛼,𝑝 for any 𝛼 < 𝐻 and
any 𝑝 > 1.

Proof The proof proceeds exactly as the proof of Theorem 1.5. The trick is to note
that

(ℎ𝑚 (𝑡) − ℎ𝑚 (𝑠))2 = ⟨𝐾𝐻 (𝑡, .) − 𝐾𝐻 (𝑠, .), ¤ℎ𝑚⟩2
H𝐻 ,

so that

∞∑︁
𝑚=0

(ℎ𝑚 (𝑡) − ℎ𝑚 (𝑠))2 = ∥𝐾𝐻 (𝑡, .) − 𝐾𝐻 (𝑠, .)∥2
𝐿2

(
[0,1]→R; ℓ

)
= 𝑅𝐻 (𝑡, 𝑡) − 𝑅𝐻 (𝑠, 𝑠) − 2𝑅𝐻 (𝑡, 𝑠) = 𝑉𝐻 |𝑡 − 𝑠 |2𝐻 .

Moreover, ∫
[0,1]2

|𝑡 − 𝑠 |𝑝𝐻−1−𝛼𝑝 d𝑠 d𝑡 < ∞ if and only if 𝛼 < 𝐻.

This means, by dominated convergence, that
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sup
𝑛≥𝑀

E
[
∥𝑆𝐻𝑛 − 𝑆𝐻𝑀 ∥ 𝑝

𝑊𝛼,𝑝

]
≤ 𝑐

∬
[0,1]2

( ∞∑︁
𝑚=𝑀+1

(ℎ𝑚 (𝑡) − ℎ𝑚 (𝑠))2) 𝑝/2 |𝑡 − 𝑠 |−1−𝛼𝑝 d𝑠 d𝑡
𝑀→∞−−−−−→ 0,

provided that 𝛼 < 𝐻. The proof is finished as in Theorem 1.5. □

In what follows, 𝑊 may be taken either as C0 ( [0, 1],R) or as any of the spaces
𝑊𝛾,𝑝 with

𝑝 ≥ 1, 1/𝑝 < 𝛾 < 𝐻.

For any 𝐻 ∈ (0, 1), `𝐻 is the unique probability measure on 𝑊 such that the
canonical process (𝐵𝐻 (𝑠); 𝑠 ∈ [0, 1]) is a centered Gaussian process with covariance
kernel 𝑅𝐻 :

E [𝐵𝐻 (𝑠)𝐵𝐻 (𝑡)] = 𝑅𝐻 (𝑠, 𝑡).

The canonical filtration is given by F 𝐻
𝑡 = 𝜎{𝐵𝐻 (𝑠), 𝑠 ≤ 𝑡} ∨N𝐻 and N𝐻 is the set

of the `𝐻–negligible events. The analog of the diagram 1.2 reads as

W∗ H𝐻
∗ = (𝐼𝐻+1/2,2 )∗

𝐿2 ([0, 1] → R; ℓ
)

H𝐻 = 𝐼𝐻+1/2,2 W

𝔢∗

𝐾𝐻 𝔢

Fig. 4.2 Embeddings and identification for the Gelfand triplet the fBm.

We can, as before, search for the image of Y𝑡 by 𝔢∗. We have, for ℎ ∈ H𝐻 , on the
one hand,

ℎ(𝑡) = ⟨Y𝑡 , 𝔢(ℎ)⟩W∗ ,W = ⟨𝔢∗ (Y𝑡 ), ℎ⟩H𝐻 .

On the other hand,

ℎ(𝑡) = 𝐾𝐻 ¤ℎ(𝑡) = ⟨𝐾𝐻 (𝑡, .), ¤ℎ⟩𝐿2
(
[0,1]→R; ℓ

) = ⟨𝑅𝐻 (𝑡, .), ℎ⟩H𝐻 .

Hence,
𝔢∗ (Y𝑡 ) = 𝑅𝐻 (𝑡, .) and 𝐾−1

𝐻 (𝔢∗ (Y𝑡 )) = 𝐾𝐻 (𝑡, .).

Recall that for the ordinary Brownian motion, we have

𝔢∗ (Y𝑡 ) = 𝑡 ∧ . = 𝑅1/2 (𝑡, .) and 𝐾−1
1/2 (𝔢

∗ (Y𝑡 )) = 1[0,𝑡 ] (.) = 𝐾1/2 (𝑡, .).

Theorem 4.9 For any 𝑧 in W∗,∫
W
𝑒𝑖⟨𝑧,𝜔⟩W∗ ,W d`𝐻 (𝜔) = exp

(
−1

2
∥𝔢∗ (𝑧)∥2

H𝐻

)
. (4.14)
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Proof By dominated convergence, we have∫
W
𝑒𝑖⟨𝑧,𝜔⟩W∗ ,W d`𝐻 (𝜔) = lim

𝑛→∞
E

[
exp

(
𝑖

𝑛∑︁
𝑚=0

𝑋𝑚
〈
𝑧, 𝔢(𝐾𝐻 ¤ℎ𝑚)

〉
W∗ ,W

)]
= lim
𝑛→∞

exp

(
−1

2

𝑛∑︁
𝑚=0

〈
𝔢∗ (𝑧), 𝐾𝐻 ¤ℎ𝑚

〉2
H𝐻

)
= exp

(
−1

2

∞∑︁
𝑚=0

〈
𝔢∗ (𝑧), 𝐾𝐻 ¤ℎ𝑚

〉2
H𝐻

)
= exp

(
−1

2
∥𝔢∗ (𝑧)∥2

H𝐻

)
,

according to the Parseval identity. □

The Wiener integral is constructed as before as the extension of the map

𝛿𝐻 : W∗ ⊂ 𝐼1,2 −→ 𝐿2 (`𝐻 )
𝑧 ↦−→ ⟨𝑧, 𝐵𝐻⟩W∗ ,W .

By construction of the Wiener measure, the random variable ⟨𝑧, 𝐵𝐻⟩W∗ ,W is Gaussian
with mean 0 and variance ∥𝑅𝐻 (𝑧)∥2

H𝐻 . For 𝑧 = Y𝑡 , we have

𝐵𝐻 (𝑡) = ⟨Y𝑡 , 𝐵𝐻⟩W∗ ,W = 𝛿𝐻
(
𝑅𝐻 (𝑡, .)

)
.

Eqn. (4.14) is the exact analog of Eqn. (1.13) hence the Cameron-Martin Theorem
can be proved identically:

Theorem 4.10 For any ℎ ∈ H𝐻 , for any bounded 𝐹 : W → R,

E [𝐹 (𝐵𝐻 + 𝔢(ℎ)] = E
[
𝐹 (𝐵𝐻 ) exp

(
𝛿𝐻 (ℎ) −

1
2
∥ℎ∥2

H𝐻

)]
. (4.15)

For the Brownian motion, it is often easier to work with elements of 𝐿2 ([0, 1] →
R; ℓ

)
instead of their image by 𝐾1/2, which belongs to 𝐼1,2. If we try to mimick this

approach for the fractional Brownian motion, we should write:

𝐵𝐻 (𝑡) = 𝛿𝐻
(
𝑅𝐻 (𝑡, .)

)
= 𝛿𝐻

(
𝐾𝐻 (𝐾𝐻 (𝑡, .))

)
=

∫ 1

0
𝐾𝐻 (𝑡, 𝑠) 𝛿𝐵𝐻 (𝑠),

which has to be compared to

𝐵(𝑡) = 𝐵1/2 (𝑡) =
∫ 1

0
1[0,𝑡 ] (𝑠) d𝐵1/2 (𝑠),

where the integral is taken in the Itô sense. Remark that these two equations are
coherent since 𝐾1/2 (𝑡, .) = 1[0,𝑡 ] .
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Lemma 4.4 The process 𝐵 =

(
𝛿𝐻 (𝐾𝐻 (1[0,𝑡 ])), 𝑡 ∈ [0, 1]

)
is a standard Brownian

motion. For 𝑢 ∈ 𝐿2 ([0, 1] → R; ℓ
)
,∫ 1

0
𝑢(𝑠) d𝐵(𝑠) = 𝛿𝐻 (𝐾𝐻𝑢). (4.16)

In particular,

𝐵𝐻 (𝑡) =
∫ 𝑡

0
𝐾𝐻 (𝑡, 𝑠) d𝐵(𝑠). (4.17)

Proof It is a Gaussian process by the definition of the Wiener integral. We just
have to verify that it has the correct covariance kernel: It suffices to see that
∥𝐾𝐻 (1[0,𝑡 ])∥2

H𝐻 = 𝑡. But,

∥𝐾𝐻 (1[0,𝑡 ])∥2
H𝐻 = ∥1[0,𝑡 ] ∥2

𝐿2
(
[0,1]→R; ℓ

) = 𝑡.
This means that (4.16) holds for 𝑢 = 1[0,𝑡 ] , hence for all piecewise constant functions
𝑢 and by density, for all 𝑢 ∈ 𝐿2 ([0, 1] → R; ℓ

)
. □

Remark 4.4 Eqn. (4.17) is known as the Karuhnen-Loeve representation. We could
have started by considering a process defined by the right-hand-side of (4.17) and
called it fractional Brownian motion. Actually, (4.17) is a stronger result: It says that
starting from an fBm, one can construct a Brownian motion on the same probability
space such that the representation (4.17) holds.

The following theorem is an easy consequence of the properties of the maps 𝐾𝐻 .

Theorem 4.11 The operator K𝐻 = 𝐾𝐻 ◦𝐾−1
1/2 is continuous and invertible from 𝐼𝛼,𝑝

into𝑊𝛼+𝐻−1/2, 𝑝 , for any 𝛼 > 0.

•> 𝐵 as a function of 𝐵𝐻

Formally, we have 𝐵𝐻 = 𝐾𝐻 ( ¤𝐵) = 𝐾𝐻 ◦ 𝐾−1
1/2 (𝐵) so we can expect that

Theorem 4.12 For any 𝐻, we have

𝐵𝐻
dist
= K𝐻 (𝐵) and 𝐵 dist

= K−1
𝐻 (𝐵𝐻 ) (4.18)

Proof Let ( ¤ℎ𝑚, 𝑚 ≥ 0) be a complete orthonormal basis of 𝐿2 ([0, 1] → R; ℓ
)
. The

series, which defines 𝐵,

𝐵 =

∞∑︁
𝑚=0

𝑋𝑚𝐼
1 ( ¤ℎ𝑚),

converges with `1/2-probability 1, in any 𝑊𝛼,𝑝 , provided that 0 < 𝛼 − 1/𝑝 < 1/2.
By continuity of K𝐻 ,



106 4 Fractional Brownian motion

K𝐻

( ∞∑︁
𝑚=0

𝑋𝑚𝐼
1 ( ¤ℎ𝑚)

)
=

∞∑︁
𝑚=0

𝑋𝑚𝐾𝐻 ( ¤ℎ𝑚)
dist
= 𝐵𝐻

converges on the same set of full measure in 𝐼𝛼+𝐻−1/2, 𝑝 . Note that when 𝛼 − 1/𝑝
runs through (0, 1/2), 𝛼 +𝐻 − 1/2− 1/𝑝 varies along (0, 𝐻). Hence, we retrieve the
desired regularity of the sample-paths of 𝐵𝐻 .

The same proof holds for the second identity. □

4.4 Gradient and divergence

The gradient is defined as for the usual Brownian motion. The only modification is
the Cameron-Martin space.

Definition 4.4 A function 𝐹 is said to be cylindrical if there exists an integer 𝑛,
𝑓 ∈ Schwartz(R𝑛), the Schwartz space on R𝑛, (ℎ1, · · · , ℎ𝑛), 𝑛 elements of H𝐻 such
that

𝐹 (𝜔) = 𝑓

(
𝛿𝐻ℎ1 (𝜔), · · · , 𝛿𝐻ℎ𝑛 (𝜔)

)
.

The set of such functionals is denoted by SH𝐻 .

Definition 4.5 Let 𝐹 ∈ SH𝐻 , ℎ ∈ H𝐻 , with 𝐹 (𝜔) = 𝑓

(
𝛿𝐻ℎ1 (𝜔), · · · , 𝛿𝐻ℎ𝑛 (𝜔)

)
.

Set

∇𝐹 =

𝑛∑︁
𝑗=1
𝜕 𝑗 𝑓

(
𝛿𝐻ℎ1, · · · , 𝛿𝐻ℎ𝑛

)
ℎ 𝑗 ,

so that

⟨∇𝐹, ℎ⟩H𝐻 =

𝑛∑︁
𝑗=1
𝜕 𝑗 𝑓

(
𝛿𝐻ℎ1, · · · , 𝛿𝐻ℎ𝑛

) 〈
ℎ 𝑗 , ℎ

〉
H𝐻 .

Example 4.2 Derivative of 𝑓 (𝐵𝐻 (𝑡)) This means that

∇ 𝑓
(
𝐵𝐻 (𝑡)

)
= 𝑓 ′

(
𝐵𝐻 (𝑡)

)
𝑅𝐻 (𝑡, .)

and if we denote ¤∇ = 𝐾−1
𝐻
∇ (which corresponds for 𝐻 = 1/2 to take the time

derivative of the gradient), we get

¤∇𝑠 𝑓
(
𝐵𝐻 (𝑡)

)
= 𝑓 ′

(
𝐵𝐻 (𝑡)

)
𝐾𝐻 (𝑡, 𝑠).

We can now improve Theorem 4.12.

Theorem 4.13 Let

𝐵𝐻 (𝑡) = 𝛿𝐻
(
𝑅𝐻 (𝑡, .)

)
and 𝐵(𝑡) = 𝛿𝐻

(
𝐾𝐻 (1[0,𝑡 ])

)
.
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For any 𝐻, we have
`𝐻

(
𝐵 = K−1

𝐻 (𝐵𝐻 )
)
= 1. (4.19)

Integrate by parts you shall

When facing stochastic integrals or divergence, it is always a good idea to proceed
to as many integration by parts as necessary to obtain ordinary integrals with respect
to the Lebesgue measure. Then, we can modify them by the usual tools (dominated
convergence, Fubini, etc.) and redo the integration by parts. This is the general
scheme of the following proof and of several others as the Itô formula.

Proof Step 1. The sample-paths of 𝐵 are known to be continuous and that of 𝐵𝐻
belong to 𝑊𝐻−Y,𝑝 for any 𝑝 ≥ 1 and Y sufficently small. Hence, according to
Theorem 4.11, K−1

𝐻
(𝐵𝐻 ) almost-surely belongs to 𝐼1/2−Y,𝑝 for any 𝑝 ≥ 1. Choose

𝑝 > 2 so that 𝐼1/2−Y,𝑝 ⊂ C0 ( [0, 1],R) to conclude that K−1
𝐻

(𝐵𝐻 ) has `𝐻 -a.s.
continuous sample-paths.
Step 2. To prove such an identity, it is necessary and sufficient to check that

E
[
𝜓

∫ 1

0
𝐵(𝑡)𝑔(𝑡) d𝑡

]
= E

[
𝜓

∫ 1

0
K−1
𝐻 (𝐵𝐻 ) (𝑡) 𝑔(𝑡) d𝑡

]
(4.20)

for any 𝑔 ∈ 𝐿2 ([0, 1] → R; ℓ
)

and any 𝜓 ∈ S𝐻 . Indeed, 𝐿2 ([0, 1] → R; ℓ
)
⊗ S𝐻

is a dense subset of 𝐿2 ([0, 1] → R; ℓ
)
⊗ 𝐿2 (W → R; `𝐻

)
≃ 𝐿2 ([0, 1] ⊗ W →

R; ℓ ⊗ `𝐻
)

and (4.20) entails that 𝐵 = K−1
𝐻

(𝐵𝐻 ) ℓ ⊗ `𝐻 -almost-surely. This means
that there exists 𝐴 ⊂ [0, 1] ×𝑊 such that∫

[0,1]×𝑊
1𝐴(𝑠, 𝜔) d𝑠 d`𝐻 (𝜔) = 0,

and
𝐵(𝜔, 𝑠) = K−1

𝐻 (𝐵𝐻 ) (𝜔, 𝑠) for (𝑠, 𝜔) ∉ 𝐴.

Hence, for any 𝑠 ∈ [0, 1], the section of 𝐴 at 𝑠 fixed, i.e. 𝐴𝑠 = {𝜔, (𝑠, 𝜔) ∈ 𝐴}, is a
`𝐻 -negligeable set. Now, consider

𝐴Q =
⋃

𝑡∈[0,1]∩Q
𝐴𝑡 .

It is a `𝐻 -negligeable set and for 𝜔 ∈ 𝐴𝑐Q, for 𝑡 ∈ [0, 1] ∩ Q, 𝐵(𝜔, 𝑠) =

K−1
𝐻

(𝐵𝐻 ) (𝜔, 𝑠). Thus, by continuity, this identity still holds for any 𝑡 ∈ [0, 1]
and any 𝜔 ∈ 𝐴𝑐Q. This means that Eqn. (4.19) holds.
Step 3. We now prove (4.20),
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E
[
𝜓

∫ 1

0
K−1
𝐻 (𝐵𝐻 ) (𝑡) 𝑔(𝑡) d𝑡

]
=

∫ 1

0
E [𝜓 𝐵𝐻 (𝑡)] (K−1

𝐻 )∗ (𝑔) (𝑡) d𝑡

=

∫ 1

0
E [𝜓 𝛿𝐻 (𝑅𝐻 (𝑡, .))] (K−1

𝐻 )∗ (𝑔) (𝑡) d𝑡

= E
[∫ 1

0
(K−1

𝐻 )∗ (𝑔) (𝑡)
∫ 1

0
¤∇𝑠𝜓 𝐾𝐻 (𝑡, 𝑠) d𝑠 d𝑡

]
= E

[∫ 1

0
¤∇𝑠𝜓

∫ 1

0
𝐾𝐻 (𝑡, 𝑠) (K−1

𝐻 )∗ (𝑔) (𝑡) d𝑡 d𝑠
]

= E
[∫ 1

0
¤∇𝑠𝜓 𝐾∗

𝐻 (K−1
𝐻 )∗ (𝑔) (𝑠) d𝑠

]
By the very definition of K𝐻 ,

𝐾∗
𝐻 ◦ (K−1

𝐻 )∗ = 𝐾∗
𝐻 ◦ (𝐾−1

𝐻 )∗ ◦ 𝐾∗
1/2 = 𝐾∗

1/2.

Thus, we have

E
[
𝜓

∫ 1

0
K−1
𝐻 (𝐵𝐻 ) (𝑡) 𝑔(𝑡) d𝑡

]
= E

[∫ 1

0
¤∇𝑠𝜓 𝐾∗

1/2𝑔(𝑠) d𝑠
]

= E
[∫ 1

0
¤∇𝑠𝜓

∫ 1

𝑠

𝑔(𝑡) d𝑡 d𝑠
]

= E
[∫ 1

0

∫ 1

0
¤∇𝑠𝜓 𝑔(𝑡) 1[𝑠,1] (𝑡) d𝑡 d𝑠

]
= E

[∫ 1

0

∫ 1

0
¤∇𝑠𝜓 𝑔(𝑡) 1[0,𝑡 ] (𝑠) d𝑡d𝑠

]
= E

[∫ 1

0
𝑔(𝑡)

∫ 1

0
¤∇𝑠𝜓 1[0,𝑡 ] (𝑠) d𝑠 d𝑡

]
.

On the other hand, 𝐵(𝑡) = 𝛿𝐻
(
𝐾𝐻 (1[0,𝑡 ])

)
hence,

E
[
𝜓

∫ 1

0
𝐵(𝑡)𝑔(𝑡) d𝑡

]
= E

[
𝜓

∫ 1

0
𝛿𝐻

(
𝐾𝐻 (1[0,𝑡 ])

)
𝑔(𝑡) d𝑡

]
= E

[∫ 1

0
𝑔(𝑡)

∫ 1

0
¤∇𝑠𝜓 1[0,𝑡 ] (𝑠) d𝑠 d𝑡

]
.

Then, (4.20) follows. □

We can even go further and show that 𝐵 and 𝐵𝐻 generate the same filtration.

Definition 4.6 Recall that ( ¤𝜋𝑡 , 𝑡 ∈ [0, 1]) are the projections defined by

¤𝜋𝑡 : 𝐿2 ([0, 1] → R; ℓ
)
−→ 𝐿2 ([0, 1] → R; ℓ

)
𝑓 ↦−→ 𝑓 1[0,𝑡 ) .
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Let 𝑉 be a closable map from Dom𝑉 ⊂ 𝐿2 ([0, 1] → R; ℓ
)

into 𝐿2 ([0, 1] → R; ℓ
)
.

Then, 𝑉 is ¤𝜋-causal if Dom𝑉 is ¤𝜋-stable, i.e. ¤𝜋𝑡 Dom𝑉 ⊂ Dom𝑉 for any 𝑡 ∈ [0, 1]
and if for any 𝑡 ∈ [0, 1],

¤𝜋𝑡𝑉 ¤𝜋𝑡 = ¤𝜋𝑡𝑉.

Consider also 𝜋𝐻𝑡 defined by

𝜋𝐻𝑡 : H𝐻 −→ H𝐻

ℎ ↦−→ 𝐾𝐻
(
𝜋𝑡𝐾

−1
𝐻 (ℎ)

)
= 𝐾𝐻

( ¤ℎ 1[0,𝑡 ]
)
.

Remark 4.5 An integral operator, i.e.

𝑉 𝑓 (𝑡) =
∫ 1

0
𝑉 (𝑡, 𝑠) 𝑓 (𝑠) d𝑠

is ¤𝜋-causal if and only if 𝑉 (𝑡, 𝑠) = 0 for 𝑠 > 𝑡. For 𝑉1, 𝑉2 two causal operators, their
composition 𝑉1𝑉2 is still causal:

𝜋𝑡𝑉1𝑉2𝜋𝑡 = (𝜋𝑡𝑉1𝜋𝑡 )𝑉2𝜋𝑡 = 𝜋𝑡𝑉1 (𝜋𝑡𝑉2𝜋𝑡 )
= 𝜋𝑡𝑉1 (𝜋𝑡𝑉2) = (𝜋𝑡𝑉1𝜋𝑡 )𝑉2 = 𝜋𝑡𝑉1𝑉2.

Corollary 4.1 The filtrations generated by 𝐵𝐻 and 𝐵 do coincide.

Proof From the representation

𝐵𝐻 (𝑡) =
∫ 𝑡

0
𝐾𝐻 (𝑡, 𝑠) d𝐵(𝑠),

we deduce that
𝜎 {𝐵𝐻 (𝑠), 𝑠 ≤ 𝑡} ⊂ 𝜎 {𝐵(𝑠), 𝑠 ≤ 𝑡} .

We have K−1
𝐻

= 𝐾1/2𝐾
−1
𝐻

. From Theorem 4.6, 𝐾−1
𝐻

appears as the composition of
fractional derivatives and multiplication operators:

𝑓 ↦→ 𝑥𝛼 𝑓 .

Time derivatives of any order (as in Definition 4.11) are clearly causal operators. It is
straightforward that multiplication operators are also causal. Thus, K−1

𝐻
appears as

the composition of causal operators hence it is causal. In view of (4.19), this means
that

𝐵(𝑡) =
∫ 𝑡

0
𝑉 (𝑡, 𝑠)𝐵𝐻 (𝑠) d𝑠

for some lower trianguler kernel 𝑉 . Hence,

𝜎 {𝐵𝐻 (𝑠), 𝑠 ≤ 𝑡} ⊃ 𝜎 {𝐵(𝑠), 𝑠 ≤ 𝑡} ,

and the equality of filtrations is proved. □
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We can now reap the fruits of our not so usual presentation of the Malliavin calculus
for the Brownian motion, in which we cautiously sidestepped chaos decomposition.
The Theorem 4.10 entails the integration by parts formula, pending of (2.5): For any
𝐹 and 𝐺 in S𝐻 , for any ℎ ∈ H𝐻 ,

E
[
𝐺 ⟨∇𝐹, ℎ⟩H𝐻

]
= −E

[
𝐹 ⟨∇𝐺, ℎ⟩H𝐻

]
+ E [𝐹𝐺 𝛿𝐻ℎ] . (4.21)

Definition 4.5 is formally the very same as Definition 2.2 so that the definition of the
Sobolev spaces are identical.

Definition 4.7 The space D𝐻
𝑝,1 is the closure of S𝐻 for the norm

∥𝐹∥ 𝑝,1,𝐻 = E [|𝐹 |𝑝]1/𝑝 + E
[
∥∇𝐹∥ 𝑝H𝐻

]1/𝑝
.

The iterated gradients are defined likewise and so do the Sobolev of higher order,
D𝐻
𝑝,𝑘

. We sill clearly have

∇(𝐹𝐺) = 𝐹∇𝐺 + 𝐺∇𝐹
∇𝜙(𝐹) = 𝜙′ (𝐹)∇𝐹

for 𝐹 ∈ D𝐻
𝑝,1, 𝐺 ∈ D𝐻

𝑞,1 and 𝜙 Lipschitz continuous. As long as we do not use the
temporal scale, there is no difference between the identities established for the usual
Brownian motion and those relative to the fractional Brownian motion.

Theorem 4.14 For any 𝐹 in 𝐿2 (W → R; `𝐻
)
,

Γ(𝜋𝐻𝑡 )𝐹 = E
[
𝐹 | F 𝐻

𝑡

]
,

in particular,

E
[
𝐵𝐻 (𝑡) | F 𝐻

𝑟

]
=

∫ 𝑡

0
𝐾𝐻 (𝑡, 𝑠)1[0,𝑟 ] (𝑠) 𝛿𝐵(𝑠), and

E
[
exp(𝛿𝐻𝑢 − 1/2∥𝑢∥2

H𝐻 ) | F
𝐻
𝑡

]
= exp(𝛿𝐻𝜋𝐻𝑡 𝑢 − 1/2∥𝜋𝐻𝑡 𝑢∥2

H𝐻 ),

for any 𝑢 ∈ H𝐻 .

Proof Let {ℎ𝑛, 𝑛 ≥ 0} be a denumerable family of elements of H𝐻 and let 𝑉𝑛 =

𝜎{𝛿𝐻ℎ𝑘 , 1 ≤ 𝑘 ≤ 𝑛}.Denote by 𝑝𝑛 the orthogonal projection on span{ℎ1, . . . , ℎ𝑛}.
For any 𝑓 bounded, for any 𝑢 ∈ H𝐻 , by the Cameron–Martin theorem we have

E
[
Λ𝑢1 𝑓 (𝛿𝐻ℎ1, . . . , 𝛿𝐻ℎ𝑛)

]
= E [ 𝑓 (𝛿𝐻ℎ1 (𝑤 + 𝑢), . . . , 𝛿𝐻ℎ𝑛 (𝑤 + 𝑢))]
= E

[
𝑓 (𝛿𝐻ℎ1 + (ℎ1, 𝑢)H𝐻 , . . . , 𝛿𝐻ℎ𝑛 + (ℎ𝑛, 𝑢)H𝐻 )

]
= E [ 𝑓 (𝛿𝐻ℎ1 (𝑤 + 𝑝𝑛𝑢), . . . , 𝛿𝐻ℎ𝑛 (𝑤 + 𝑝𝑛𝑢))]
= E

[
Λ
𝑝𝑛𝑢

1 𝑓 (𝛿𝐻ℎ1, . . . , 𝛿𝐻ℎ𝑛)
]
,
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hence
E

[
Λ𝑢1 |𝑉𝑛

]
= Λ

𝑝𝑛𝑢

1 . (4.22)

Choose ℎ𝑛 of the form 𝜋𝐻𝑡 (𝑒𝑛) where {𝑒𝑛, 𝑛 ≥ 0} is an orthonormal basis of H𝐻 ,
i.e., {ℎ𝑛, 𝑛 ≥ 0} is an orthonormal basis of 𝜋𝐻𝑡 (H𝐻 ). By the previous theorem,∨
𝑛 𝑉𝑛 = F 𝐻

𝑡 and it is clear that 𝑝𝑛 tends pointwise to 𝜋𝐻𝑡 , hence from (4.22) and
martingale convergence theorem, we can conclude that

E
[
Λ𝑢1 | F 𝐻

𝑡

]
= Λ

𝜋𝐻𝑡 𝑢

1 = Λ𝑢𝑡 .

Moreover, for 𝑢 ∈ H𝐻 ,
Γ(𝜋𝐻𝑡 ) (Λ𝑢1 ) = Λ

𝜋𝐻𝑡 𝑢

1 ,

hence by density of linear combinations of Wick exponentials, for any 𝐹 ∈ 𝐿2 (`𝐻 ),

Γ(𝜋𝐻𝑡 )𝐹 = E
[
𝐹 | F 𝐻

𝑡

]
,

and the proof is completed. □

Definition 4.8 For the sake of notations, we set, for ¤𝑢 such that 𝐾𝐻 ¤𝑢 belongs to
Dom𝑝 𝛿𝐻 for some 𝑝 > 1,∫ 1

0
¤𝑢(𝑠)𝛿𝐵(𝑠) = 𝛿𝐻 (𝐾𝐻 ¤𝑢) and

∫ 𝑡

0
¤𝑢(𝑠)𝛿𝐵(𝑠) = 𝛿𝐻 (𝜋𝐻𝑡 𝐾𝐻 ¤𝑢). (4.23)

Note that, for any 𝜓 ∈ D𝐻
𝑝/(𝑝−1) ,1

E
[
𝜓

∫ 1

0
¤𝑢(𝑠)𝛿𝐵(𝑠)

]
= E

[∫ 1

0
¤∇𝑠𝜓 ¤𝑢(𝑠) d𝑠

]
.

The next result is the Clark formula. It reads formally as (3.15) but we should take
care that the ¤∇ does not represent the same object. Here it is defined as ¤∇ = 𝐾−1

𝐻
∇.

Corollary 4.2 For any 𝐹 ∈ 𝐿2 (W → R; `𝐻
)
,

𝐹 = E [𝐹] +
∫ 1

0
E

[ ¤∇𝑠𝐹 | F𝑠
]
𝛿𝐵(𝑠).

Proof With the notations at hand, Theorem 4.14 implies that

E
[
Λℎ1 | F𝑡

]
= exp

(
𝛿𝐻 (𝜋𝐻𝑡 ℎ) −

1
2
∥𝜋𝐻𝑡 ℎ∥2

H𝐻

)
= exp

(∫ 𝑡

0
¤ℎ(𝑠) 𝛿𝐵(𝑠) − 1

2

∫ 𝑡

0
¤ℎ2 (𝑠) d𝑠

)
.

This means that we have the usual relation
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Λℎ𝑡 = 1 +
∫ 𝑡

0
Λ𝑠 ¤ℎ(𝑠) 𝛿𝐵(𝑠) = E

[
Λℎ1

]
+

∫ 1

0
E

[ ¤∇𝑠Λℎ1 | F𝑠
]
𝛿𝐵(𝑠).

By density of the Doléans exponentials, we obtain the result. □

Should we want to obfuscate everything, we could write

𝐹 = E [𝐹] + 𝛿𝐻
(
𝐾𝐻

(
E

[
(𝐾−1

𝐻 ∇).𝐹 | F.
] ))

.

4.5 Itô formula

Definition 4.9 Consider the operator K defined by K = 𝐼−1
0+ ◦ 𝐾𝐻 . For 𝐻 > 1/2,

it is a continuous map from 𝐿 𝑝
(
[0, 1] → R; ℓ

)
into 𝐼𝐻−1/2, 𝑝 , for any 𝑝 ≥ 1. Let

K∗
𝑡 be its adjoint in 𝐿 𝑝

(
[0, 𝑡] → R; ℓ

)
, i.e. for any 𝑓 ∈ 𝐿 𝑝

(
[0, 1] → R; ℓ

)
, any 𝑔

sufficently regular, ∫ 𝑡

0
K 𝑓 (𝑠) 𝑔(𝑠) d𝑠 =

∫ 𝑡

0
𝑓 (𝑠) K∗

𝑡 𝑔(𝑠) d𝑠.

The map K∗
𝑡 is continuous from (𝐼𝐻−1/2, 𝑝)∗ into 𝐿𝑞

(
[0, 𝑡] → R; ℓ

)
, where 𝑞 =

𝑝/(𝑝 − 1).

Scheme of proof

Before going into the details of the proof of the Itô formula, we explain how it
works. The basic idea is to compute

lim
Y→0

Y−1 (
𝑓
(
𝐵𝐻 (𝑡 + Y)

)
− 𝑓

(
𝐵𝐻 (𝑡)

) )
and use the fundamental theorem of calculus. As the sample paths of 𝐵𝐻 are nowhere
differentiable, we can not expect to use the classical chain rule formula. The idea is
to work with a weak formulation, i.e. for a sufficently rich class of nice functionals
𝜓, consider

lim
Y→0

Y−1E
[ (
𝑓
(
𝐵𝐻 (𝑡 + Y)

)
− 𝑓

(
𝐵𝐻 (𝑡)

) )
𝜓
]
,

make heavy use of integration by parts until we only have classical integrals with
respect to the Lebesgue measure, then take the limit and undo the integration by
parts to obtain a valid formula of the kind

E [ 𝑓 (𝐵𝐻 (𝑡))𝜓] = E [(something which depends on 𝑓 ′ and 𝑓 ′′) × 𝜓] .

The price to pay for using such a weak approach is that the identity

𝑓 (𝐵𝐻 (𝑡))𝜓 = something which depends on 𝑓 ′ and 𝑓 ′′ × 𝜓 (4.24)



4.5 Itô formula 113

holds almost-surely on a set which depends on 𝑡, hence we must take care of the
continuity of all the terms of the right-hand-side to construct a probability 1 set on
which (4.24) holds for any 𝑡. This is the rôle of Theorem 4.16.

Along the way, to simplify some technicalities, it is well inspired to symmetrize 𝑓
hence the introduction of the not so natural function 𝑔 in (4.28).

Remark 4.6 A similar proof can be done even for 𝐻 < 1/2 but to the price of
much higher technicalities. First, K is no longer an integral operator but rather a
fractional derivative so that the convergence of the different terms require more
stringent hypothesis on 𝑓 and are harder to show. Furthermore, we must push the
Taylor expansion up to 𝑛 such that 2𝐻𝑛 > 1 for the residual term to vanish. This
means that we have terms involving increments of 𝐵𝐻 up to the power [1/2𝐻] − 1,
which are handled by the same number of integrations by parts to obtain integrals
with respect to Lebesgue measure (as we would differentiate a polynomial function
as many times as it is necessary to obtain a constant function).

Theorem 4.15 Assume 𝐻 > 1/2. For 𝑓 ∈ C2
𝑏
,

𝑓 (𝐵𝐻 (𝑡)) = 𝑓 (0) +
∫ 𝑡

0
K∗
𝑡

(
𝑓 ′ ◦ 𝐵𝐻

)
(𝑠) 𝛿𝐵(𝑠) + 𝐻𝑉𝐻

∫ 𝑡

0
𝑓 ′′

(
𝐵𝐻 (𝑠)

)
𝑠2𝐻−1 d𝑠.

Proof We begin by the symmetrization trick.

Symmetrization

Introduce the function 𝑔 as

𝑔(𝑥) = 𝑓 ( 𝑎 + 𝑏
2

+ 𝑥) − 𝑓 ( 𝑎 + 𝑏
2

− 𝑥). (4.25)

This function is even, satisfies

𝑔 (2 𝑗+1) (0) = 2 𝑓 (2 𝑗+1) ((𝑎 + 𝑏)/2) and 𝑔( 𝑏 − 𝑎
2

) = 𝑓 (𝑏) − 𝑓 (𝑎).

Apply the Taylor formula to 𝑔 between the points 0 and (𝑏 − 𝑎)/2 to get

𝑓 (𝑏) − 𝑓 (𝑎) =
𝑛∑︁
𝑗=0

2−2 𝑗

(2 𝑗 + 1)! (𝑏 − 𝑎)
2 𝑗+1 𝑓 (2 𝑗+1) ( 𝑎 + 𝑏

2
)

+ (𝑏 − 𝑎)2(𝑛+1)

2

∫ 1

0
_2𝑛+1𝑔 (2(𝑛+1) ) (_𝑎 + (1 − _)𝑏) d_.

For any 𝜓 ∈ E of the form 𝜓 = exp(𝛿𝐻ℎ − 1
2 ∥ℎ∥

2
H𝐻 ) with ℎ ∈ C1

𝑏
⊂ H𝐻 . Note

that 𝜓 satisfies ∇𝜓 = 𝜓 ℎ ∈ 𝐿2 (W → H𝐻 ; `𝐻
)
. Since C1

𝑏
is dense into H𝐻 , these
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functionals are dense in 𝐿2 (W → R; `𝐻
)
. We then have

E
[ (
𝑓
(
𝐵𝐻 (𝑡 + Y)

)
− 𝑓

(
𝐵𝐻 (𝑡)

) )
𝜓
]

= E
[ (
𝐵𝐻 (𝑡 + Y) − 𝐵𝐻 (𝑡)

)
𝑓 ′

(
𝐵𝐻 (𝑡) + 𝐵𝐻 (𝑡 + Y)

2

)
𝜓

]
+1

2
E

[ (
𝐵𝐻 (𝑡 + Y) − 𝐵𝐻 (𝑡)

)2
∫ 1

0
𝑟 𝑔 (2) (𝑟𝐵𝐻 (𝑡) + (1 − 𝑟)𝐵𝐻 (𝑡 + Y)) d𝑟 𝜓

]
= 𝐴0 +

1
2
𝐴1. (4.26)

The term 𝐴1 is the simplest to handle. If 𝐻 > 1/2, Y−1𝐴1 does vanish. Actually,
recall that 𝐵𝐻 (𝑡 + Y) − 𝐵𝐻 (𝑡) is a centered Gaussian random variable of variance
proportional to Y2𝐻 , hence

Y−1 |𝐴1 | ≤ 𝑐 E
[
|𝐵𝐻 (𝑡 + Y) − 𝐵𝐻 (𝑡) |2

]
∥ 𝑓 (2) ∥𝐿∞

≤ 𝑐 Y2𝐻−1 ∥ 𝑓 (2) ∥𝐿∞
Y→0−−−−→ 0,

since 2𝐻 − 1 > 0.

Integration by parts

For 𝐴0, we have

𝐴0 = E
[ (
𝐵𝐻 (𝑡 + Y) − 𝐵𝐻 (𝑡)

)
𝑓 ′

(
𝐵𝐻 (𝑡) + 𝐵𝐻 (𝑡 + Y)

2

)
𝜓

]
= E

[∫ 1

0

(
𝐾𝐻 (𝑡 + Y, 𝑠) − 𝐾𝐻 (𝑡, 𝑠)

)
𝛿𝐵(𝑠) 𝑓 ′

(
𝐵𝐻 (𝑡) + 𝐵𝐻 (𝑡 + Y)

2

)
𝜓

]
= E

[∫ 1

0

(
𝐾𝐻 (𝑡 + Y, 𝑠) − 𝐾𝐻 (𝑡, 𝑠)

) ¤∇𝑠
(
𝑓 ′

(
𝐵𝐻 (𝑡) + 𝐵𝐻 (𝑡 + Y)

2

)
𝜓

)
d𝑠

]
.

Since ¤∇ is a true derivation operator

¤∇𝑠
(
𝑓 ′

(
𝐵𝐻 (𝑡) + 𝐵𝐻 (𝑡 + Y)

2

)
𝜓

)
= 𝑓 ′

(
𝐵𝐻 (𝑡) + 𝐵𝐻 (𝑡 + Y)

2

)
¤∇𝑠𝜓

+ 𝑓 ′′
(
𝐵𝐻 (𝑡) + 𝐵𝐻 (𝑡 + Y)

2

) (
𝐾𝐻 (𝑡 + Y, 𝑠) + 𝐾𝐻 (𝑡, 𝑠)

)
.

Now, we only have standard integrals so that we can proceed in a classical way:
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𝐴0 = E
[
𝑓 ′

(
𝐵𝐻 (𝑡) + 𝐵𝐻 (𝑡 + Y)

2

) ∫ 1

0

(
𝐾𝐻 (𝑡 + Y, 𝑠) − 𝐾𝐻 (𝑡, 𝑠)

) ¤∇𝑠𝜓 d𝑠
]

+ E
[
𝜓 𝑓 ′′

(
𝐵𝐻 (𝑡) + 𝐵𝐻 (𝑡 + Y)

2

)
×

∫ 1

0

(
𝐾𝐻 (𝑡 + Y, 𝑠) − 𝐾𝐻 (𝑡, 𝑠)

) (
𝐾𝐻 (𝑡 + Y, 𝑠) + 𝐾𝐻 (𝑡, 𝑠)

)
d𝑠

]
= 𝐵1 + 𝐵2.

By the very definition of ¤∇,

1
Y

∫ 1

0

(
𝐾𝐻 (𝑡 + Y, 𝑠) − 𝐾𝐻 (𝑡, 𝑠)

) ¤∇𝑠𝜓 d𝑠 =
1
Y

(
∇𝜓(𝑡 + Y) − ∇𝜓(𝑡)

)
Y→0−−−−→ d

d𝑡
∇𝜓(𝑡) = 𝐼−1

0+ ◦ 𝐾𝐻 ( ¤∇𝜓) (𝑡) = K( ¤∇𝜓) (𝑡).

Moreover, since ∇𝜓 belongs to 𝐿2 (𝑊 ; 𝐼𝐻+1/2,2),

E
[
|∇𝜓(𝑡 + Y) − ∇𝜓(𝑡) |2

]
≤ 𝑐 ∥K ¤∇𝜓∥𝐿2 (𝑊 ;𝐼𝐻−1/2,2 ) |Y |.

Hence,
Y−1 𝐵1

Y→0−−−−→ E
[
𝑓 ′ (𝐵𝐻 (𝑡)) K ¤∇𝜓(𝑡)

]
.

Here is the symmetrization

Thanks to the symmetrization, we only have simple calculations to do for 𝐵2:

𝐵2 = E
[
𝜓 𝑓 ′′

(
𝐵𝐻 (𝑡) + 𝐵𝐻 (𝑡 + Y)

2

) (
𝑅𝐻 (𝑡 + Y, 𝑡 + Y) − 𝑅𝐻 (𝑡, 𝑡)

)]
and that

Y−1
(
𝑅𝐻 (𝑡 + Y, 𝑡 + Y) − 𝑅𝐻 (𝑡, 𝑡)

)
= 𝑉𝐻

(𝑡 + Y)2𝐻 − 𝑡2𝐻
Y

Y→0−−−−−→ 2𝐻𝑉𝐻 𝑡2𝐻−1.

The dominated convergence theorem then yields

Y−1𝐵2
Y−→0−−−−−→ 𝐻𝑉𝐻E

[
𝜓 𝑓 ′′ (𝐵𝐻 (𝑡)) 𝑡2𝐻−1] .

We have proved so far that
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d
d𝑡

E
[
𝜓 𝑓

(
𝐵𝐻 (𝑡)

) ]
= E

[
𝑓 ′ (𝐵𝐻 (𝑡)) K ¤∇𝜓(𝑡)

]
+ 𝐻𝑉𝐻E

[
𝜓 𝑓 ′′

(
𝐵𝐻 (𝑡)

)
𝑡2𝐻−1] . (4.27)

It is straightforward that the right-hand-side of (4.27) is continuous as a function of 𝑡
on any interval [0, 𝑇]. Hence we can integrate the previous relation and we get

E
[
𝜓 𝑓

(
𝐵𝐻 (𝑡)

) ]
− E

[
𝜓 𝑓

(
𝐵𝐻 (0)

) ]
= E

[∫ 𝑡

0
𝑓 ′

(
𝐵𝐻 (𝑠)

)
K ¤∇𝜓(𝑠) d𝑠

]
+ 𝐻𝑉𝐻 E

[
𝜓

∫ 𝑡

0
𝑓 ′′

(
𝐵𝐻 (𝑠)

)
𝑠2𝐻−1 d𝑠

]
.

Remark now that

E
[∫ 𝑡

0
𝑓 ′

(
𝐵𝐻 (𝑠)

)
K ¤∇𝜓(𝑠) d𝑠

]
= E

[∫ 1

0
𝑓 ′

(
𝐵𝐻 (𝑠)

)
1[0,𝑡 ] (𝑠) K ¤∇𝜓(𝑠) d𝑠

]
= E

[∫ 1

0
K∗

1
(
𝑓 ′ ◦ 𝐵𝐻 1[0,𝑡 ]

) ¤∇𝑠𝜓 d𝑠
]
= E

[
𝜓

∫ 1

0
K∗

1
(
𝑓 ′ ◦ 𝐵𝐻 1[0,𝑡 ]

)
(𝑠) 𝛿𝐵(𝑠)

]
.

Note that

K∗
1 ( 𝑓

′1[0,𝑡 ]) (𝑠) =
d
d𝑠

∫ 1

𝑠

𝐾 (𝑟, 𝑠) 𝑓 ′ (𝑟)1[0,𝑡 ] (𝑟) d𝑟 = 0 if 𝑠 > 𝑡.

This means that
𝜋𝐻𝑡

(
K∗
𝑡 ( 𝑓 ′1[0,𝑡 ])

)
= K∗

𝑡 ( 𝑓 ′1[0,𝑡 ])

and by the definition (4.23),∫ 1

0
K∗
𝑡

(
𝑓 ◦ 𝐵𝐻 1[0,𝑡 ]

)
(𝑠) 𝛿𝐵(𝑠) =

∫ 𝑡

0
K∗
𝑡

(
𝑓 ◦ 𝐵𝐻

)
(𝑠) 𝛿𝐵(𝑠).

Consequently, we have

E
[
𝜓 𝑓

(
𝐵𝐻 (𝑡)

) ]
− E

[
𝜓 𝑓

(
𝐵𝐻 (0)

) ]
= E

[
𝜓

∫ 𝑡

0
K∗
𝑡 ( 𝑓 ◦ 𝐵𝐻 ) (𝑠)𝛿𝐵(𝑠)

]
+ 𝐻𝑉𝐻 E

[
𝜓

∫ 𝑡

0
𝑓 ′′

(
𝐵𝐻 (𝑠)

)
𝑠2𝐻−1 d𝑠

]
.

Since the functionals 𝜓 we considered form a dense subset in 𝐿2 (W → R; `𝐻
)
, we

have
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𝑓
(
𝐵𝐻 (𝑡)

)
− 𝑓

(
𝐵𝐻 (0)

)
=

∫ 𝑡

0
K∗
𝑡 ( 𝑓 ◦ 𝐵𝐻 ) (𝑠)𝛿𝐵(𝑠)

+ 𝐻𝑉𝐻
∫ 𝑡

0
𝑓 ′′

(
𝐵𝐻 (𝑠)

)
𝑠2𝐻−1 d𝑠, d𝑡 ⊗ `𝐻 -a.s. (4.28)

Admit for a while that

𝑡 −→
∫ 𝑡

0
K∗
𝑡 ( 𝑓 ′ ◦ 𝐵𝐻 ) (𝑠)𝛿𝐵(𝑠)

has almost-surely continuous sample-paths. It is clear that the other terms of (4.28)
have also continuous trajectories. Let 𝐴 be the negligeable set of 𝑊 × [0, 1] where
(4.28) does not hold. According to the Fubini theorem, for any 𝑡 ∈ [0, 1], the set

𝐴𝑡 = {𝜔 ∈ 𝑊, (𝜔, 𝑡) ∈} ∈ 𝐴}

is negligeable and so does 𝐴Q = ∪𝑡∈[0,1]∩Q𝐴𝑡 . For any 𝑡 ∈ Q ∩ [0, 1], Eqn. (4.28)
holds on 𝐴𝑐Q, i.e. holds `𝐻 -almost surely. By continuity, this is still true for any
𝑡 ∈ [0, 1]. □

Theorem 4.16 For any 𝐻 ∈ [1/2, 1). Let 𝑢 belong to D𝐻
𝑝,1 (𝐿

𝑝) with 𝐻𝑝 > 1. The
process

𝑈 (𝑡) =
∫ 𝑡

0
K∗
𝑡 𝑢(𝑠)𝛿𝐵(𝑠), 𝑡 ∈ [0, 1]

admits a modification with (𝐻 − 1/𝑝)-Hölder continuous paths and we have the
maximal inequality :

E


sup

𝑟≠𝑡∈[0,1]2

����∫ 1

0

(
K∗
𝑡 𝑢(𝑠) − K∗

𝑟 𝑢(𝑠)
)
𝛿𝐵(𝑠)

����
|𝑡 − 𝑟 |𝑝𝐻

𝑝 
1/𝑝

≤ 𝑐∥K∗
1 ∥𝐻,2∥𝑢∥D𝐻𝑝,1 .

Proof For 𝑔 ∈ C∞ and 𝜓 a cylindric real-valued functional,

E
[∫ 1

0

∫ 𝑡

0
K∗
𝑡 𝑢(𝑠)𝛿𝐵(𝑠) 𝑔(𝑡) d𝑡 𝜓

]
= E

[∬
[0,1]2

K∗
1 (𝑢1[0,𝑡 ]) (𝑟)𝑔(𝑡) ¤∇𝑟𝜓 d𝑡 d𝑟

]
= E

[∫ 1

0
K∗

1 (𝑢𝐼
1
1−𝑔) (𝑟) ¤∇𝑟𝜓 d𝑟

]
= E

[
𝛿(K∗

1 (𝑢.𝐼
1
1−𝑔)𝜓

]
.

Thus,∫ 1

0

∫ 𝑡

0
K∗
𝑡 𝑢(𝑠) 𝛿𝐵(𝑠) 𝑔(𝑡) d𝑡 =

∫ 1

0
K∗

1 (𝑢.𝐼
1
1−𝑔) (𝑠) 𝛿𝐵(𝑠) `𝐻 − a.s. (4.29)

Since 𝐻 > 1/2, it is clear that K is continuous from 𝐿2 ([0, 1] → R; ℓ
)

into
𝐼𝐻−1/2,2 thus that K∗

1 is continuous from 𝐼∗
𝐻−1/2,2 in 𝐿2 ([0, 1] → R; ℓ

)
. Since
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𝐼𝐻−1/2,2 is continuously embedded in 𝐿 (1−𝐻 )−1 ([0, 1] → R; ℓ
)
, it follows that

𝐿1/𝐻 (
[0, 1] → R; ℓ

)
= (𝐿 (1−𝐻 )−1 ([0, 1] → R; ℓ

)
)∗ is continuously embedded in

𝐼1/2−𝐻,2. Since 𝑢 belongs to D𝐻
𝑝,1 (𝐿

𝑝), the generalized Hölder inequality implies
that

∥𝑢𝐼1
1−𝑔∥𝐿1/𝐻 ≤ ∥𝑢∥𝐿𝑝 ∥𝐼1

1−𝑔∥𝐿 (𝐻−1/𝑝)−1 .

It follows that𝑈 belongs to 𝐿 𝑝
(
W → 𝐼+1, (1−𝐻+1/𝑝)−1 ; `𝐻

)
with

∥𝑈∥
𝐿𝑝

(
W→𝐼+

1, (1−𝐻+1/𝑝)−1 ; `𝐻
) ≤ 𝑐∥K∗

1 ∥𝐻,2∥𝑢∥D𝐻𝑝,1 .

The proof is completed remarking that 1 − 1/(1 − 𝐻 + 1/𝑝)−1 = 𝐻 − 1/𝑝 so that
𝐼+1, (1−𝐻+1/𝑝)−1 is embedded in Hol(𝐻 − 1/𝑝). □

Deterministic fractional calculus

We now consider some basic aspects of the deterministic fractional calculus – the
main reference for this subject is [8].

Definition 4.10 Let 𝑓 ∈ 𝐿1 ([𝑎, 𝑏] → R; ℓ
)
, the integrals

(𝐼𝛼𝑎+ 𝑓 ) (𝑥) =
1

Γ(𝛼)

∫ 𝑥

𝑎

𝑓 (𝑡) (𝑥 − 𝑡)𝛼−1 d𝑡 , 𝑥 ≥ 𝑎,

(𝐼𝛼𝑏− 𝑓 ) (𝑥) =
1

Γ(𝛼)

∫ 𝑏

𝑥

𝑓 (𝑡) (𝑥 − 𝑡)𝛼−1 d𝑡 , 𝑥 ≤ 𝑏,

where 𝛼 > 0, are respectively called right and left fractional integral of the order 𝛼.

For any 𝛼 ≥ 0, any 𝑓 ∈ 𝐿 𝑝
(
[0, 1] → R; ℓ

)
and 𝑔 ∈ 𝐿𝑞

(
[0, 1] → R; ℓ

)
where

𝑝−1 + 𝑞−1 ≤ 𝛼, we have :∫ 𝑡

0
𝑓 (𝑠) (𝐼𝛼0+𝑔) (𝑠) d𝑠 =

∫ 𝑡

0
(𝐼𝛼𝑡− 𝑓 ) (𝑠)𝑔(𝑠) d𝑠. (4.30)

Moreover, the family of fractional integrals constitute a semi-group of transforma-
tions: For any 𝛼, 𝛽 > 0,

𝐼𝛼0+ ◦ 𝐼
𝛽

0+ = 𝐼
𝛼+𝛽
0+ . (4.31)

Definition 4.11 For 𝑓 given in the interval [𝑎, 𝑏], each of the expressions

(D𝛼
𝑎+ 𝑓 ) (𝑥) =

(
𝑑

𝑑𝑥

) [𝛼]+1
𝐼

1−{𝛼}
𝑎+ 𝑓 (𝑥),

(D𝛼
𝑏− 𝑓 ) (𝑥) =

(
− 𝑑

𝑑𝑥

) [𝛼]+1
𝐼

1−{𝛼}
𝑏− 𝑓 (𝑥),
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are respectively called the right and left fractional derivative (provided they exist),
where [𝛼] denotes the integer part of 𝛼 and {𝛼} = 𝛼 − [𝛼].

Theorem 4.17 We have the following embeddings and continuity results:

1. If 0 < 𝛾 < 1, 1 < 𝑝 < 1/𝛾, then 𝐼𝛾0+ is a bounded operator from 𝐿 𝑝
(
[0, 1] →

R; ℓ
)

into 𝐿𝑞
(
[0, 1] → R; ℓ

)
with 𝑞 = 𝑝(1 − 𝛾𝑝)−1.

2. For any 0 < 𝛾 < 1 and any 𝑝 ≥ 1, 𝐼+𝛾,𝑝 is continuously embedded in Hol(𝛾−1/𝑝)
provided that 𝛾 − 1/𝑝 > 0.

3. For any 0 < 𝛾 < 𝛽 < 1, Hol(𝛽) is compactly embedded in 𝐼𝛾,∞.

4.6 Problems

4.1 (About causality) Let𝑉 be a causal operator from 𝐿2 ([0, 1] → R; ℓ
)

into itself.
Let

𝑉𝑡 = ¤𝜋𝑡 ◦𝑉 ◦ ¤𝜋𝑡 : 𝐿2 ([0, 1] → R; ℓ
)
−→ 𝐿2 ([0, 𝑡] → R; ℓ

)
𝑓 ↦−→ 𝑉 ( 𝑓 1[0,𝑡 ])1[0,𝑡 ] .

Let 𝑉∗
𝑡 be the adjoint of 𝑉𝑡 .

1. Show that 𝑉∗
𝑡 is continuous from 𝐿2 ([0, 𝑡] → R; ℓ

)
into 𝐿2 ([0, 1] → R; ℓ

)
.

(We here identify 𝐿2 ([0, 1] → R; ℓ
)

with its dual)

Consider the situation where

𝑉 𝑓 (𝑟) =
∫ 𝑡

0
𝑉 (𝑟, 𝑠) 𝑓 (𝑠) d𝑠

with 𝑉 (𝑟, 𝑠) = 0 whenever 𝑠 > 𝑟. Note that this is the case of K𝐻 for 𝐻 > 1/2.

2. Show that
𝑉∗
𝑡 𝑓 = 𝑉

∗
1 ( ¤𝜋𝑡 𝑓 ).

3. Derive the same identity using solely the causality of 𝑉 .

𝑉 = K𝐻 for 𝐻 < 1/2 corresponds to this last situation.

4.2 (Riemann sums for fBm) One approach to define a stochastic integral with
respect to 𝐵𝐻 for 𝐻 > 1/2 is to look at Riemann like sums:

𝑅𝑆𝑛 (𝑈) =
𝑛−1∑︁
𝑖=0
𝑈 (𝑖/𝑛)

(
𝐵𝐻

(
𝑖 + 1
𝑛

)
− 𝐵𝐻

(
𝑖

𝑛

))

Consider that 𝑈 (𝑠) = 𝛿𝐻ℎ 𝑢(𝑠) where 𝑢 is deterministic and continuous on [0, 1]
and ℎ is C1, hence belongs to H𝐻 .
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1. Show that
¤∇𝑟𝑈 (𝑠) = 𝑢(𝑠) ¤ℎ(𝑟).

where ¤ℎ = 𝐾−1
𝐻

(ℎ).
2. Derive (

𝐾−1
1/2 ◦ 𝐾𝐻 ◦ ¤∇

)
𝑟
¤𝑈 (𝑠) = 𝑢(𝑠)ℎ′ (𝑟).

3. Show that

𝑅𝑆𝑛 (𝑈) =
∫ 1

0

𝑛−1∑︁
𝑖=0
𝑈 ( 𝑖
𝑛
)
(
𝐾𝐻 (

𝑖 + 1
𝑛
, 𝑟) − 𝐾𝐻 (

𝑖

𝑛
, 𝑟)

)
𝛿𝐵(𝑟)

+
𝑛−1∑︁
𝑖=0

𝑢( 𝑖
𝑛
)
(
ℎ( 𝑖 + 1

𝑛
) − ℎ( 𝑖

𝑛
)
)
.

4. Assume for the next two questions only that 𝐾𝐻 is a regular as it needs to be.
Show that

𝑛−1∑︁
𝑖=0
𝑈 ( 𝑖
𝑛
)
(
𝐾𝐻 (

𝑖 + 1
𝑛
, 𝑟) − 𝐾𝐻 (

𝑖

𝑛
, 𝑟)

)
𝑛→∞−−−−→

∫ 1

0
𝑈 (𝑠) d

d𝑠
𝐾𝐻 (Y𝑟 ) (𝑠) d𝑠

where Y𝑟 is the Dirac measure at 𝑟 .
5. Derive the following identity:∫ 1

0
𝑈 (𝑠) d

d𝑠
𝐾𝐻 (Y𝑟 ) (𝑠) d𝑠 = K̂𝐻

∗
𝑈 (𝑟),

where K̂𝐻 = 𝐾−1
1/2 ◦ 𝐾𝐻 .

6. Show that

𝑛−1∑︁
𝑖=0

𝑢( 𝑖
𝑛
)
(
ℎ( 𝑖 + 1

𝑛
) − ℎ( 𝑖

𝑛
)
)
𝑛→∞−−−−→

∫ 1

0
𝑢(𝑠)ℎ′ (𝑠) d𝑠 = trace

(
K̂𝐻

¤∇𝑈
)
.

The map K̂𝐻 = 𝐾−1
1/2 ◦ 𝐾𝐻 is a continuous map from 𝐿2 ([0, 1] → R; ℓ

)
into

𝐼𝐻−1/2,2 so that a possible definition of a stochastic integral (in the sense of Riemann
integrals) could be

𝛿𝐻 (K̂𝐻

∗
𝑈) + trace(K̂𝐻

¤∇𝑈)

provided that𝑈 has the necessary regularity for these terms to make sense.

4.7 Notes and comments

The paper [5] was the first to construct the Malliavin calculus for fractional Brownian
motion. The activity on this subject has been frantic during the first ten years of the
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millenium. One question was to establish an Itô formula for the smallest possible
value of 𝐻. The proof here is done for 𝐻 > 1/2 for the sake of simplicity but can be
adapted (to the price of an increased complexity) to any 𝐻 ∈ (0, 1/2) (see [3]). In
the end, the Itô formula for fBm is not as fruitful as its counterpart for the ordinary
Brownian motion, since it cannot be read as a stability result: the operators which
appear in the right-hand-side of the Itô formula are not local but more of the sort of
integro-differential maps.

There exists an other presentation of the Cameron-Martin space of the fBm in
[7], the similarity and difference between the two approaches are explained in [4,
Chapter 10].

The last difficulty encountered with the fBm is that the divergence cannot be
considered as a stochastic integral in the usual sense as it does not coincide with any
limit of Riemann-like or Stratonovitch-like sums. All these constructions lead to a
trace term whose existence itself requires strong hypothesis on the integrand.
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Chapter 5
Poisson space

Abstract The Poisson process on the half-line shares many properties with the Brow-
nian motion due to the fact that it also has stationary and independent increments.
As such it has been the second process for which a Malliavin structure has been
constructed. It turns out that the underlying time scale is not necessary to develop
this theory. Hence, we consider Poisson point processes in (almost) any topological
space.

5.1 Point processes

Let us define what is a configuration, the basic element of our random experiments,
which play the rôle of the trajectories of the Brownian motion.

Definition 5.1 Let 𝐸 a metrizable, separable and complete space, i.e. a Polish space
(actually we could be more general but it is of no use here). A configuration is a
locally finite set (i.e. there is a finite number of points in any bounded set) of points
of a set 𝐸 . We denote 𝔑𝐸 the set of configurations of 𝐸 . A generic element of 𝔑𝐸
is then a sequence 𝜙 = (𝑥𝑛, 𝑛 ≥ 1) of elements of 𝐸 .

•> Set or measure ?

It is often convenient to see configurations as atomic measures: We can view the set
𝜙 = (𝑥𝑛, 𝑛 = 1, · · · , 𝑀) (where 𝑀 ∈ N ∪ {+∞}) as the measure

𝜙 =

𝑀∑︁
𝑛=1

Y𝑥𝑛

where Y𝑎 is the Dirac mass at point 𝑎. We abuse the notation and keep the same letter
𝜙 for both descriptions. If order to keep in mind that there is no privileged order in
the enumeration of the elements of 𝜙, we prefer to write

123



124 5 Poisson space∑︁
𝑥∈𝜙

Y𝑥 instead of
𝑀∑︁
𝑛=1

Y𝑥𝑛 .

When we want to count the number of points of 𝜙 which fall in a subset 𝐴, we can
alternatively write

𝜙(𝐴) = card{𝑥 ∈ 𝜙, 𝑥 ∈ 𝐴} =
∫
𝐴

d𝜙(𝑥).

For 𝐴 ⊂ 𝐸 , we denote by 𝜙𝐴 the restriction of 𝜙 to 𝐴:

𝜙𝐴 = {𝑥 ∈ 𝜙, 𝑥 ∈ 𝐴} =
∑︁
𝑥∈𝜙

1𝐴(𝑥) Y𝑥 .

To make 𝔑𝐸 a topological space, we furnish it with the topology induced by the
semi-norms

𝑝 𝑓 (𝜙) :=
����∫
𝐸

𝑓 d𝜙
���� = �����∑︁

𝑥∈𝜙
𝑓 (𝑥)

�����
for 𝑓 ∈ C𝐾 (𝐸 → R), the set of continuous functions with compact support from 𝐸

to R. This means that

𝜙𝑛
vaguely
−⇀ 𝜙 ⇐⇒ 𝑝 𝑓 (𝜙 − 𝜙𝑛)

𝑛→∞−−−−→ 0, ∀ 𝑓 ∈ C𝐾 (𝐸 → R).

Then, 𝔑𝐸 is in turn a metrizable, separable and complete space.

Remark 5.1 The locally finite hypothesis entails that a configuration is a finite or
denumerable set of points of𝐸 . However, a set like {1/𝑛, 𝑛 ≥ 1} is not a configuration
in 𝐸 = [0, 1] since 0 is an accumulation point.

Remark 5.2 The vague convergence of 𝜙𝑛 towards 𝜙 means that each atom of 𝜙 is
the limit of a sequence of atoms of 𝜙𝑛. However, since thetest functions which define
the semi-norms have compact support, there is no uniformity in this convergence.
For instance, the sequence (Y𝑛, 𝑛 ≥ 1) converges vaguely to the null measure.

Definition 5.2 A point process 𝑁 is an 𝔑𝐸-valued random variable.

According to the general theory of points processes, the rôle of the characteristic
function is played by the Laplace transform Φ𝑁 .

Definition 5.3 For 𝑁 a point process on a Polish space 𝐸 , its Laplace transform is
defined by

Φ𝑁 : 𝑓 ∈ C𝐾 (𝐸 → R) ↦−→ E
[
exp

(
−

∫
𝐸

𝑓 d𝑁
)]
.

Theorem 5.1 Let 𝑁 and 𝑁 ′ be two point processes on 𝐸 . Then, they have the same
distribution if and only if Φ𝑁 = Φ𝑁 ′ .
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Example 5.1 Bernoulli point process The Bernoulli point process is a process based
on a finite set 𝐸 = {𝑥1, · · · , 𝑥𝑚}. We introduce 𝑋1, · · · , 𝑋𝑚 some random inde-
pendent variables of Bernoulli distribution with parameter 𝑝. The Bernoulli point
process is then defined by

𝑁 =

𝑛∑︁
𝑖=1

𝑋𝑖 Y𝑥𝑖 .

Example 5.2 Binomial process The number of points is fixed to 𝑚 and a probability
measure �̃� on 𝐸 is given. The𝑚 atoms are independently drawn randomly according
to �̃�. It is straightforward that

P
(
𝑁 (𝐴) = 𝑘

)
=

(
𝑚

𝑘

)
�̃�(𝐴)𝑘

(
1 − �̃�(𝐴)

)𝑚−𝑘

and for 𝐴1, · · · , 𝐴𝑛, a partition of 𝐸 and (𝑘1, · · · , 𝑘𝑛) such that
∑𝑛
𝑖=1 𝑘𝑖 = 𝑚,

P
(
𝑁 (𝐴1) = 𝑘1, · · · , 𝑁 (𝐴𝑛) = 𝑘𝑛

)
=

𝑚!
𝑘1! . . . 𝑘𝑛!

�̃�(𝐴1)𝑘1 . . . �̃�(𝐴𝑛)𝑘𝑛 . (5.1)

Theorem 5.2 The Laplace transform of the binomial process is given by

E
[
exp

(
−

∫
𝐸

𝑓 d𝑁
)]

= exp
(
−𝑚

∫
𝐸

𝑓 (𝑥)d�̃�(𝑥)
)
.

Proof Denote by (𝑋1, · · · , 𝑋𝑛) the locations of the points of 𝑁 . By independence,
we have

E
[
exp

(
−

∫
𝐸

𝑓 d𝑁
)]

= E

[
exp

(
−

𝑚∑︁
𝑖=1

𝑓 (𝑋𝑖)
)]

=

𝑚∏
𝑖=1

exp
(
−

∫
𝐸

𝑓 (𝑥)d�̃�(𝑥)
)
.

Hence the result. □

5.2 Poisson point process

The point process, mathematically the richest, is the spatial Poisson process which
generalises the Poisson process on the real line (see Section 5.4 for some a very quick
refresher on the Poisson process on R+). It is defined as a binomial point process
with a random number of points 𝑀 , independent of the locations. The distribution of
the number of points is chosen to be Poisson for the process to have nice properties.
This amounts to say that we consider the probability space
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Ω = N × 𝐸N

equipped with the measure ( ∞∑︁
𝑚=0

𝑒−𝑎
𝑎𝑛

𝑛!
Y𝑛

)
⊗ �̃�⊗N. (5.2)

The process 𝑁 is defined as the map

𝑁 : Ω = N × 𝐸N −→ 𝔑𝐸

𝜔 = (𝑚, 𝑥1, 𝑥2, · · · ) ↦−→
𝑚∑︁
𝑘=1

Y𝑥𝑘

with the convention that
∑0
𝑘=1 . . . = ∅. It is then straightforward that

E
[
exp

(
−

∫
𝐸

𝑓 d𝑁
)]

=

∞∑︁
𝑚=0

exp
(
−𝑚

∫
𝐸

𝑓 (𝑥)d𝜎(𝑥)
)

P(𝑀 = 𝑚)

= exp
(
−

∫
𝐸

(
1 − 𝑒− 𝑓 (𝑥 )

)
𝑎d�̃�(𝑥)

)
.

This leads to the following definition.

Definition 5.4 Let 𝜎 be a finite measure on a Polish space 𝐸 . The Poisson process
with intensity 𝜎, denoted by 𝑁 , is defined by its Laplace transform: for any function
𝑓 ∈ C𝐾 (𝐸 → R),

Φ𝑁 ( 𝑓 ) = exp
(
−

∫
𝐸

(
1 − 𝑒− 𝑓 (𝑥 )

)
d𝜎(𝑥)

)
. (5.3)

We denote by 𝜋𝜎 , the Poisson measure of intensity 𝜎 which is the law of the Poisson
process of intensity 𝜎.

Remark 5.3 To construct the Poisson measure of intensity 𝜎, set 𝑎 = 𝜎(𝐸) and
�̃� = 𝑎−1𝜎 in (5.2).

•> Finite Poisson point process

The general definition of a Poisson point process does not need that its intensity is
a finite measure. For the sake of simplicity, we here assume that

𝜎(𝐸) < ∞.

We also assume that 𝜎 is diffuse, i.e. 𝜎({𝑥}) = 0 for any 𝑥 ∈ 𝐸 .
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As usual with Laplace transforms, by derivation, we obtain expression of moments.
The subtlety lies in the diagonal terms: For an integral with respect to the Lebesgue
measure, the diagonal does not weigh(∫

R
𝑓 (𝑠)d𝑠

)2
=

∬
R×R

𝑓 (𝑠) 𝑓 (𝑡) d𝑠d𝑡 =
∬

R×R\Δ
𝑓 (𝑠) 𝑓 (𝑡) d𝑠d𝑡

where Δ = {(𝑥, 𝑦) ∈ R2, 𝑥 = 𝑦}. When we have integrals with respect to atomic
measures, we must take care of the diagonal terms:(∑︁

𝑥∈𝜙
𝑓 (𝑥)

)2

=
∑︁

𝑥∈𝜙,𝑦∈𝜙
𝑓 (𝑥) 𝑓 (𝑦)

=
∑︁

𝑥∈𝜙,𝑦∈𝜙,𝑥≠𝑦
𝑓 (𝑥) 𝑓 (𝑦) +

∑︁
𝑥∈𝜙

𝑓 (𝑥)2.

We thus introduce the notation

𝜙
(2)
≠ = {(𝑥, 𝑦) ∈ 𝜙 × 𝜙, 𝑥 ≠ 𝑦} .

Theorem 5.3 (Campbell Formula) Let 𝑓 ∈ 𝐿1 (𝐸 → R; 𝜎
)
,

E
[∫
𝐸

𝑓 d𝑁
]
=

∫
𝐸

𝑓 d𝜎 (5.4)

and if 𝑓 ∈ 𝐿2 (𝐸 × 𝐸 → R; 𝜎 ⊗ 𝜎
)
, then

E


∑︁

𝑥,𝑦∈𝑁 (2)
≠

𝑓 (𝑥, 𝑦)
 =

∬
𝐸×𝐸

𝑓 (𝑥, 𝑦)d𝜎(𝑥)d𝜎(𝑦). (5.5)

Proof By the very definition of 𝑁 , for any \, we have:

E
[
exp

(
−\

∫
𝐸

𝑓 d𝑁
)]

= exp
(
−

∫
𝐸

(
1 − 𝑒−\ 𝑓 (𝑥 )

)
d𝜎(𝑥)

)
.

On the one hand,

d
d\

E
[
exp

(
−\

∫
𝐸

𝑓 d𝑁
)]

= −E
[∫
𝐸

𝑓 d𝑁 exp
(
−\

∫
𝐸

𝑓 d𝑁
)]
,

and on the other hand,
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d
d\

exp
(
−

∫
𝐸

(
1 − 𝑒−\ 𝑓 (𝑥 )

)
d𝜎(𝑥)

)
= −

∫
𝐸

𝑓 (𝑥)𝑒−\ 𝑓 (𝑥 )d𝜎(𝑥) exp
(
−

∫
𝐸

(
1 − 𝑒−\ 𝑓 (𝑥 )

)
d𝜎(𝑥)

)
.

Take \ = 0 to obtain (5.4).
Similarly,

d2

d\2 E
[
exp

(
−\

∫
𝐸

𝑓 d𝑁
)]

= E
[(∫

𝐸

𝑓 d𝑁
)2

exp
(
−\

∫
𝐸

𝑓 d𝑁
)]
,

and

d2

d\2 exp
(
−

∫
𝐸

(
1 − 𝑒−\ 𝑓 (𝑥 )

)
d𝜎(𝑥)

)
=

[(∫
𝐸

𝑓 (𝑠)𝑒−\ 𝑓 (𝑥 )d𝜎(𝑥)
)2

+
∫
𝐸

𝑓 (𝑥)2d𝜎(𝑥)
]

× exp
(
−

∫
𝐸

(
1 − 𝑒−\ 𝑓 (𝑥 )

)
d𝜎(𝑥)

)
.

For \ = 0, we obtain

E
[(∫

𝐸

𝑓 d𝑁
)2

]
=

(∫
𝐸

𝑓 (𝑠)𝑒−\ 𝑓 (𝑥 )d𝜎(𝑥)
)2

+
∫
𝐸

𝑓 (𝑥)2d𝜎(𝑥).

By the definition of the stochastic integral with respect to 𝑁:(∫
𝐸

𝑓 d𝑁
)2

=
∑︁

𝑥∈𝑁,𝑦∈𝑁
𝑓 (𝑥) 𝑓 (𝑦) =

∑︁
𝑥,𝑦∈𝑁 (2)

≠

𝑓 (𝑥) 𝑓 (𝑦) +
∑︁
𝑥∈𝑁

𝑓 (𝑥)2.

From the first part of the proof, we know that

E

[∑︁
𝑥∈𝑁

𝑓 (𝑥)2

]
=

∫
𝐸

𝑓 (𝑥)2d𝜎(𝑥).

Hence,

E


∑︁
𝑥,𝑦∈𝑁≠

𝑓 (𝑥) 𝑓 (𝑦)
 =

∫
𝐸2
𝑓 (𝑥) 𝑓 (𝑦)d𝜎(𝑥)d𝜎(𝑦).

Then, (5.5) follows by polarisation and density of simple tensor products in
𝐿2 (𝐸 × 𝐸 → R; 𝜎 ⊗ 𝜎

)
□

An alternative definition of the Poisson process is as follows:

Theorem 5.4 A point process 𝑁 is a Poisson process with intensity 𝜎 if and only if



5.2 Poisson point process 129

i) For every set 𝐾 ⊂ 𝐸 , 𝑁 (𝐾) follows a Poisson distribution with parameter 𝜎(𝐾).
ii) For 𝐾1 and 𝐾2 two disjoint subsets of (𝐸, B(𝐸)), the random variables 𝑁 (𝐾1)

and 𝑁 (𝐾2) are independent.

Proof Step 1. Consider 𝑓 = \11𝐾1 + \21𝐾2 . If 𝐾1 ∩ 𝐾2 = ∅, then

𝑒− 𝑓 (𝑥 ) = 𝑒−\11𝐾1 (𝑥) + 𝑒−\21𝐾2 (𝑥) + 1(𝐾1∪𝐾2 )𝑐 (𝑥). (5.6)

Then, according to (5.3),

E
[
𝑒−\1𝑁 (𝐾1 )𝑒−\2𝑁 (𝐾2 )

]
= exp

(
−
(
𝜎(𝐸) − 𝑒−\1𝜎(𝐾1) − 𝑒−\2𝜎(𝐾2) − 𝜎((𝐾1 ∪ 𝐾2)𝑐)

) )
=

∏
𝑖=1,2

exp
(
𝜎(𝐾𝑖) − 𝑒−\𝑖𝜎(𝐾𝑖)

)
.

We recognize the product of the Laplace transforms of two independent Poisson
random variables of respective parameter 𝜎(𝐾1) and 𝜎(𝐾2).
Step 2. In the converse direction, assume that the properties i) and ii) hold true.
Consider 𝑓 a step function:

𝑓 (𝑥) =
𝑛∑︁
𝑖=1

\𝑖1𝐾𝑖

where (𝐾𝑖 , 1 ≤ 𝑖 ≤ 𝑛) are measurable sets of 𝐸 , two by two disjoint. By indepen-
dence,

E
[
exp

(
−

∫
𝐸

𝑓 d𝑁
)]

=

𝑛∏
𝑗=1

E
[
exp

(
−\𝑖 𝑁 (𝐾𝑖)

)]
.

Since, 𝑁 (𝐾𝑖) is a Poisson random variable of parameter 𝜎(𝐾𝑖), we get

E
[
exp

(
−

∫
𝐸

𝑓 d𝑁
)]

=

𝑛∏
𝑗=1

exp
(
𝜎(𝐾𝑖) − 𝑒−\𝑖𝜎(𝐾𝑖)

)
.

Using the trick of (5.6), we see that

E
[
exp

(
−

∫
𝐸

𝑓 d𝑁
)]

= exp
(
−

∫
𝐸

(
1 − 𝑒− 𝑓

)
d𝜎

)
(5.7)

for non-negative finite valued functions. By monotone convergence, (5.7) still holds
for non-negative measurable functions, hence 𝑁 is a Poisson process.

Operations on configurations

There a few transformations which can be made on configurations.
The superposition of 𝜙1 and 𝜙2 is the union of the two sets counting the points

with multiplicity or more clearly the sum of the two measures.



130 5 Poisson space

For 𝑝 a map from 𝐸 to [0, 1], the 𝑝-thinning of 𝜙 = {𝑥1, · · · , 𝑥𝑛} is the random
measure

𝑝 ◦ 𝜙 :=
𝑛∑︁
𝑖=1

1{𝑈𝑖≤𝑝 (𝑥𝑖 ) } Y𝑥𝑖

where (𝑈𝑖 , 𝑖 ≥ 1) is a family of independent uniform random variables over [0, 1].
If 𝐸 is a cone, i.e. if we can multiply each 𝑥 ∈ 𝐸 by a non-negative scalar 𝑎, then

the dilation of 𝜙 is the configuration whose atoms are {𝑎𝑥, 𝑥 ∈ 𝐸}.

It is clear from (5.3) that the following theorem holds.

Theorem 5.5 Let 𝑁1 and 𝑁2 be two independent Poisson processes with respective
intensities 𝜎1 and 𝜎2, their superposition 𝑁 is a Poisson process with intensity
𝜎1 + 𝜎2.

Theorem 5.6 A 𝑝-thinned Poisson process of intensity 𝜎 is a Poisson process of
intensity 𝜎𝑝 defined by:

𝜎𝑝 (𝐴) =
∫
𝐴

𝑝(𝑥)d𝜎(𝑥).

Proof We have to prove that

E
[
𝑒−

∫
𝐸
𝑓 d(𝑝◦𝑁 )

]
= exp

(
−

∫
𝐸

(
1 − 𝑒− 𝑓

)
𝑝d𝜎

)
. (5.8)

For 𝑌 a 0/1 Bernoulli random variable of success probability 𝑝, let

𝐿𝑌 (𝑡) = E
[
𝑒𝑠𝑌

]
= 𝑒𝑠𝑝 + (1 − 𝑝) := 𝑙 (𝑠, 𝑝)

We denote by (𝑌𝑥 , 𝑥 ∈ 𝐸) a family the Bernoulli random variables which decides
whether we keep the atom located at 𝑥. For the sake of notations, we denote tem-
porarily 𝜎𝑛 = 𝜋𝜎 (𝑁 (𝐸) = 𝑛).
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E
[
𝑒−

∫
𝐸
𝑓 d(𝑝◦𝑁 )

]
= E

[
𝑒−

∑
𝑥∈𝑁 𝑌𝑥 𝑓 (𝑥 )

]
= 1 +

∞∑︁
𝑛=1

E
[
𝑒−

∑
𝑥∈𝑁 𝑌𝑥 𝑓 (𝑥 ) | 𝑁 (𝐸) = 𝑛

]
𝜎𝑛

= 1 +
∞∑︁
𝑛=1

𝑛∏
𝑗=1

1
𝜎(𝐸)

∫
𝐸

E
[
𝑒
−𝑌𝑥 𝑗 𝑓 (𝑥 𝑗 )

]
d𝜎(𝑥 𝑗 ) 𝜎𝑛

= 1 +
∞∑︁
𝑛=1

𝑛∏
𝑗=1

1
𝜎(𝐸)

∫
𝐸

𝑙 (− 𝑓 (𝑥 𝑗 ), 𝑝(𝑥 𝑗 )) d𝜎(𝑥 𝑗 ) 𝜎𝑛

= 1 +
∞∑︁
𝑛=1

exp ©«
𝑛∑︁
𝑗=1

1
𝜎(𝐸) log

∫
𝐸

𝑙
(
𝑓 (−𝑥 𝑗 ), 𝑝(𝑥 𝑗 )

)
d𝜎(𝑥 𝑗 )

ª®¬ 𝜎𝑛
= E

[
exp

(∫
𝐸

log 𝑙 (− 𝑓 (𝑥), 𝑝(𝑥))d𝑁 (𝑥)
)]

= exp
(
−

∫
𝐸

1 − 𝑙 ( 𝑓 (𝑥), 𝑝(𝑥))d𝜎(𝑥)
)

= exp
(
−

∫
𝐸

(
1 − 𝑒− 𝑓 (𝑥 )

)
𝑝(𝑥)d𝜎(𝑥)

)
,

which is (5.8). □

Example 5.3 M/M/∞ queue The M/M/∞ queue is the queue with Poisson arrivals,
independent and identically distributed from exponential distribution service times,
and an infinite number of servers (without buffer). It is initially a theoretical object
which is particularly simple to analyze and also a model to which we can compare
other situations.

The process of interest is 𝑋 which counts the number of occupied servers. It may
be studied through the framework of continuous time Markov chains but with some
difficulties since the coefficients of the infinitesimal generator are not bounded so
that the associated semi-group is not continuous from 𝑙∞ (N) into itself.

Let (𝑡𝑛, 𝑛 ≥ 1) be the arrival times and (𝑧𝑛, 𝑛 ≥ 1) the service times. This means
that the 𝑛-th customer arrives at 𝑡𝑛 and leaves the system at time 𝑡𝑛 + 𝑧𝑛. It is fruitful
to represent this phenomenon by the following picture, see Figure 5.3

This representation means that a customer which arrives at 𝑠 < 𝑡 is still in the
system at 𝑡 if and only its service duration is larger than 𝑡 − 𝑠. This corresponds to
points in the upper trapezoid

T𝑡 =
{
(𝑠, 𝑧) ∈ R+ × R+, 0 ≤ 𝑠 ≤ 𝑡, 𝑧 ≥ 𝑡 − 𝑠

}
.

Consider that the arrivals occur according to a Poisson process on the half-line
of intensity 𝜎 = 𝜌ℓ where 𝜌 > 0 and that the service times follow an exponential
distribution of parameter 1. The number of points in the rectangle [0, 𝑡] × R+, is the
number of arrivals before 𝑡. A customer arrived before 𝑡 has its representative point
in the upper trapezoid with probability
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Time

Service time

𝑡𝑡1

𝑧1

𝑡2

𝑡2 + 𝑧2

𝑡4

𝑧4

𝑡4 + 𝑧4

T𝑡

𝑋 (𝑡 ) = 2

P(service time > 𝑡 − arrival time) = exp
(
−(𝑡 − arrival time)

)
.

Hence the number of points in T𝑡 is the 𝑝𝑡 -thinning of the arrival process where

𝑝𝑡 (𝑠) = exp
(
−(𝑡 − 𝑠)

)
.

According to 5.6, this means that 𝑋 (𝑡) follows a Poisson distribution of parameter∫ 𝑡

0
exp

(
−(𝑡 − 𝑠)

)
𝜌d𝑠 = 𝜌(1 − 𝑒−𝑡 ). (5.9)

Definition 5.5 For 𝑋 an integer valued random variable and 𝑝 ∈ [0, 1], the 𝑝-
thinning of 𝑋 is the random variable we also denote by 𝑝 ◦ 𝑋 (as there is no risk of
confusion with the thinning of a configuration) defined by

𝑝 ◦ 𝑋 dist.
=

𝑋∑︁
𝑗=1

𝐵 𝑗

where (𝐵 𝑗 , 𝑗 ≥ 1) is a family of independent (and independent of 𝑋) Bernoulli
random variables of success parameter 𝑝. By convention,

∑0
𝑗=1 . . . = 0.

A short computation shows that

Lemma 5.1 If 𝑋 is a Poisson random variable of parameter_ then 𝑝◦𝑋 is distributed
as a Poisson distribution of parameter _𝑝.

Proof Compute the generating function of 𝑝 ◦ 𝑋:
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E
[
𝑠𝑝◦𝑋

]
=

∞∑︁
𝑘=0

E

𝑘∏
𝑗=1

𝑠𝐵 𝑗

 P(𝑋 = 𝑘)

= 𝑒−_
∞∑︁
𝑘=0

(
𝑝𝑠 + 1 − 𝑝

) 𝑘 _𝑘
𝑘!

= exp (−_ + _(𝑝𝑠 + 1 − 𝑝))
= exp (_𝑝(𝑠 − 1))

and the result follows. □

By its very construction, we see that

𝑋 (𝑡) dist.
=

(
1 − 𝑒−𝑡

)
◦ Poisson(𝜌)

and if 𝑋 (0) is not null, following the same reasoning, we have

𝑋 (𝑡) dist.
= 𝑒−𝑡 ◦ 𝑋 (0) +

(
1 − 𝑒−𝑡

)
◦ Poisson(𝜌). (5.10)

If 𝑋 (0) is distributed as a Poisson distribution of parameter 𝜌, then 𝑋 (𝑡) is distributed
as the sum of two independent Poisson random variables of respective parameter
𝜌𝑒−𝑡 and 𝜌(1 − 𝑒−𝑡 ), hence 𝑋 (𝑡) has the distribution of 𝑋 (0). We retrieve that the
Poisson distribution of parameter 𝜌 is the invariant and stationary measure of 𝑋 .

5.3 Stochastic analysis

5.3.1 Discrete gradient and divergence

Theorem 5.7 (Cameron-Martin theorem) Let 𝑁 and 𝑁 ′ be two Poisson point
processes, with respective intensity 𝜎 and 𝜎′. Let us assume that 𝜎′ ≪ 𝜎 and let
us denote 𝑝 = d𝜎′/d𝜎. Moreover, if 𝑝 belongs to 𝐿1 (𝐸 → R; 𝜎

)
, then for every

bounded function 𝐹, we have

E [𝐹 (𝑁 ′)] = E
[
𝐹 (𝑁) exp

(∫
𝐸

ln 𝑝 d𝑁 +
∫
𝐸

(1 − 𝑝)d𝜎
)]
.

Proof Step 1. We verify this identity for the exponential functions 𝐹 of the form
exp(−

∫
𝐸
𝑓 d𝑁). According to the definition [5.1],
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E
[
exp

(
−

∫
𝐸

𝑓 d𝑁
)

exp
(∫
𝐸

ln 𝑝 d𝑁 +
∫
𝐸

(
1 − 𝑝

)
d𝜎

)]
= E

[
exp

(
−

∫
𝐸

(
𝑓 − ln 𝑝

)
d𝑁

)]
exp(

∫
𝐸

(1 − 𝑝)d𝜎)

= exp
(
−

∫
𝐸

(
1 − exp

(
− 𝑓 + ln 𝑝

) )
d𝜎 +

∫
𝐸

(
1 − 𝑝

)
d𝜎

)
= exp

(
−

∫
𝐸

(
1 − 𝑒− 𝑓

)
𝑝d𝜎

)
= E [𝐹 (𝑁 ′)] .

Step 2. As a result, the measures on 𝔑𝐸 , 𝜋𝜎
𝑁 ′ and 𝑅d𝜋𝜎

𝑁
where

𝑅 = exp
(∫
𝐸

ln 𝑝 d𝑁 +
∫
𝐸

(1 − 𝑝)d𝜎
)

have the same Laplace transform. Therefore, in view of Theorem 5.1, they are equal
and the result follows for any bounded function 𝐹 . □

•> New notations

In what follows, for a configuration 𝜙

𝜙 ⊕ 𝑥 =
{
𝜙, if 𝑥 ∈ 𝜙,
𝜙 ∪ {𝑥}, if 𝑥 ∉ 𝜙.

Similarly,

𝜙 ⊖ 𝑥 =
{
𝜙\{𝑥}, if 𝑥 ∈ 𝜙,
𝜙, if 𝑥 ∉ 𝜙.

One of the essential formulas for the Poisson process is the following.

Theorem 5.8 (Campbell-Mecke formula) Let 𝑁 be a Poisson process with inten-
sity 𝜎. For any random field 𝐹 : 𝔑𝐸 × 𝐸 → R such that

E
[∫
𝐸

|𝐹 (𝑁, 𝑥) |d𝜎(𝑥)
]
< ∞

then
E

[∫
𝐸

𝐹
(
𝑁 ⊕ 𝑥, 𝑥

)
d𝜎(𝑥)

]
= E

[∫
𝐸

𝐹
(
𝑁, 𝑥

)
d𝑁 (𝑥)

]
. (5.11)

Proof Step 1. According to the first definition of the Poisson process, for 𝑓 with
compact support and 𝐾 a compact 𝐸 , for any 𝑡 > 0,
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E
[
exp

(
−

∫
𝐸

(
𝑓 + \1𝐾

)
d𝑁

)]
= exp

(
−

∫
𝐸

1 − 𝑒− 𝑓 (𝑥 )−\1𝐾 (𝑥 )d𝜎(𝑥)
)
.

According to the theorem of derivation under the summation sign, on one hand, we
have

d
d\

E
[
exp

(
−

∫
𝐸

(
𝑓 + \1𝐾

)
d𝑁

)] ����
\=0

= −E
[
𝑒−

∫
𝐸
𝑓 d𝑁

∫
𝐸

1𝐾 d𝑁
]

and on the other hand,

d
d\

exp
(
−

∫
𝐸

1 − 𝑒− 𝑓 (𝑥 )−\1𝐾 (𝑥 )d𝜎(𝑥)
)����
\=0

= −E
[∫
𝐸

𝑒−
∫
𝐸
𝑓 d𝑁+ 𝑓 (𝑥 )1𝐾 (𝑥) d𝜎(𝑥)

]
. (5.12)

As
∫
𝐸
𝑓 d𝑁 + 𝑓 (𝑥) =

∫
𝐸
𝑓 d(𝑁 ⊕ 𝑥), (5.11) is true for functions of the form 1𝐾 ⊗

𝑒−
∫
𝐸
𝑓 d𝑁 .

Step 2. The measure

ℭ : B(𝔑𝐸 × 𝐸) −→ R+

Γ × 𝐾 ↦−→ E
[
1Γ (𝑁)

∫
𝐸

1𝐾 (𝑥)d𝑁 (𝑥)
]

is the so-called Campbell measure. If we consider the map

𝔗 : 𝔑𝐸 × 𝐸 −→ 𝔑𝐸 × 𝐸
(𝜙, 𝑥) ↦−→ (𝜙 ⊕ 𝑥, 𝑥),

Eqn. (5.11) is equivalent to say that

𝔗∗ (𝜋𝜎 ⊗ 𝜎) = ℭ.

Moreover, (5.12) means that∫
𝐸

𝑒−
∫
𝐸
𝑓 d𝜙1𝐾 (𝑥) dℭ(𝜙, 𝑥) =

∫
𝐸

𝑒−
∫
𝐸
𝑓 d𝜙1𝐾 (𝑥) d𝔗∗ (𝜋𝜎 ⊗ 𝜎) (𝜙, 𝑥).

Since a measure on 𝔑𝐸 is characterized by its Laplace transform, Eqn. (5.12) is then
sufficient to imply that (5.11) holds for any function 𝐹 for which the two terms are
meaningful. □

Definition 5.6 (Discrete gradient) Let 𝑁 be a Poisson process with intensity 𝜎. Let
𝐹 : 𝔑𝐸 −→ R be a measurable function such that E

[
𝐹 (𝑁)2] < ∞. We define

Dom𝐷 as the set of square integrable random variables such that
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E
[∫
𝐸

|𝐹 (𝑁 ⊕ 𝑥) − 𝐹 (𝑁) |2d𝜎(𝑥)
]
< ∞.

For 𝐹 ∈ Dom𝐷, we set

𝐷𝑥𝐹 (𝑁) = 𝐹 (𝑁 ⊕ 𝑥) − 𝐹 (𝑁).

Example 5.4 Computation of 𝐷𝑥𝐹 For example, for 𝑓 deterministic belonging to
𝐿2 (𝐸 → R; 𝜎

)
, 𝐹 =

∫
𝐸
𝑓 d𝑁 belongs to Dom𝐷 and 𝐷𝑥𝐹 = 𝑓 (𝑥) because

𝐹 (𝑁 ⊕ 𝑥) =
∑︁

𝑦∈𝑁∪{𝑥}
𝑓 (𝑦) =

∑︁
𝑦∈𝑁

𝑓 (𝑦) + 𝑓 (𝑥).

Similarly, if 𝐹 = max𝑦∈𝑁 𝑓 (𝑦) then

𝐷𝑥𝐹 (𝑁) =
{

0 if 𝑓 (𝑥) ≤ 𝐹 (𝑁),
𝑓 (𝑥) − 𝐹 if 𝑓 (𝑥) > 𝐹 (𝑁).

Definition 5.7 (Poisson divergence) We denote by Dom2 𝛿, the set of vector fields
such that

E

[(∫
𝐸

𝑈
(
𝑁 ⊖ 𝑥, 𝑥

) (
d𝑁 (𝑥) − d𝜎(𝑥)

) )2
]
< ∞.

Then, for such vector fields𝑈,

𝛿𝑈 (𝑁) =
∫
𝐸

𝑈 (𝑁 ⊖ 𝑥, 𝑥)d𝑁 (𝑥) −
∫
𝐸

𝑈 (𝑁, 𝑥)d𝜎(𝑥).

A consequence of Campbell-Mecke formula is the integration by parts formula.

Theorem 5.9 (Integration by parts for Poisson process) For 𝐹 ∈ Dom𝐷 and any
𝑈 ∈ Dom2 𝛿,

E
[∫
𝐸

𝐷𝑥𝐹 (𝑁) 𝑈 (𝑁, 𝑥)d𝜎(𝑥)
]
= E [𝐹 (𝑁) 𝛿𝑈 (𝑁)] .

Proof By the very definition of 𝐷,

E
[∫
𝐸

𝐷𝑥𝐹 (𝑁)𝑈 (𝑁, 𝑥) d𝜎(𝑥)
]

= E
[∫
𝐸

𝐹 (𝑁 ⊕ 𝑥)𝑈
(
(𝑁 ⊖ 𝑥) ⊕ 𝑥, 𝑥

)
d𝜎(𝑥)

]
− E

[∫
𝐸

𝐹 (𝑁)𝑈 (𝑁, 𝑥) d𝜎(𝑥)
]
.

The Campbell-Mecke formula says that
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E
[∫
𝐸

𝐹 (𝑁 ⊕ 𝑥)𝑈
(
(𝑁 ⊖ 𝑥) ⊕ 𝑥, 𝑥

)
d𝜎(𝑥)

]
= E

[∫
𝐸

𝐹 (𝑁)𝑈 (𝑁 ⊖ 𝑥, 𝑥) d𝑁 (𝑥)
]
. (5.13)

Since we have assumed 𝜎 diffuse, for any 𝑥 ∈ 𝐸 , 𝜋𝜎
(
𝑁

(
{𝑥}

)
≥ 1

)
= 0 hence

𝑈 (𝑁, 𝑥) = 𝑈
(
𝑁 ⊖ 𝑥, 𝑥

)
, 𝜋𝜎 ⊗ 𝜎-a.s. (5.14)

The result follows from the combination of (5.13) and (5.14). □

Moreover, we have the analog to (2.34)
Corollary 5.1 For any𝑈 ∈ Dom2 𝛿,

E
[
𝛿𝑈2] = E

[∫
𝐸

𝑈 (𝑁, 𝑥)2 d𝜎(𝑥)
]

+ E
[∫
𝐸

∫
𝐸

𝐷𝑥𝑈 (𝑁, 𝑦) 𝐷𝑦𝑈 (𝑁, 𝑥) d𝜎(𝑥)d𝜎(𝑦)
]
.

Proof We use the integration by parts formula to write

E
[
𝛿𝑈2] = E

[∫
𝐸

𝐷𝑥𝛿𝑈𝑈 (𝑁, 𝑥) d𝜎(𝑥)
]
.

From the definition of 𝐷 and 𝛿,

𝐷𝑥𝛿𝑈 =

∫
𝐸

𝑈 (𝑁 ⊖ 𝑦 ⊕ 𝑥, 𝑦)
(
d(𝑁 ⊕ 𝑥) (𝑦) − d𝜎(𝑦)

)
−

∫
𝐸

𝑈 (𝑁 ⊖ 𝑦, 𝑦)
(
d𝑁 (𝑦) − d𝜎(𝑦)

)
.

Recal the definition of the stochastic integral as a sum:∫
𝐸

𝑈
(
𝑁 ⊖ 𝑦 ⊕ 𝑥, 𝑦

)
d(𝑁 ⊕ 𝑥) (𝑦) =

∑︁
𝑦∈𝑁∪{𝑥}

𝑈
(
𝑁 ⊖ 𝑦 ⊕ 𝑥, 𝑦

)
=

∑︁
𝑦∈𝑁

𝑈
(
𝑁 ⊕ 𝑥 ⊖ 𝑦, 𝑦

)
+𝑈 (𝑁, 𝑥) =

∫
𝐸

𝑈
(
𝑁 ⊕ 𝑥 ⊖ 𝑦, 𝑦

)
d𝑁 (𝑦) +𝑈 (𝑁, 𝑥)

Hence, we get

𝐷𝑥𝛿𝑈

=

∫
𝐸

(
𝑈

(
𝑁 ⊕ 𝑥 ⊖ 𝑦, 𝑦

)
−𝑈 (𝑁 ⊖ 𝑦, 𝑦)

) (
d𝑁 (𝑦) − d𝜎(𝑦)

)
+𝑈 (𝑁, 𝑥)

= 𝛿(𝐷𝑥𝑈) +𝑈 (𝑁, 𝑥).
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Thus,

E
[
𝛿𝑈2] = E

[∫
𝐸

(
𝛿(𝐷𝑥𝑈) +𝑈 (𝑁, 𝑥)

)
𝑈 (𝑁, 𝑥) d𝜎(𝑥)

]
= E

[∫
𝐸

𝑈 (𝑁, 𝑥)2d𝜎(𝑥)
]
+

∫
𝐸

E [𝛿(𝐷𝑥𝑈)𝑈 (𝑁, 𝑥)] d𝜎(𝑥).

We may integrate by parts in the rightmost expectation, taking care to not mix the
variables:

E [𝛿(𝐷𝑥𝑈)𝑈 (𝑁, 𝑥)] = E
[∫
𝐸

𝐷𝑥𝑈 (𝑁, 𝑢) 𝐷𝑦𝑈 (𝑁, 𝑥)d𝜎(𝑦)
]
.

This yields

E
[
𝛿𝑈2] = E

[∫
𝐸

𝑈 (𝑁, 𝑥)2d𝜎(𝑥)
]
+ E

[∫
𝐸

𝐷𝑥𝑈 (𝑁, 𝑢) 𝐷𝑦𝑈 (𝑁, 𝑥)d𝜎(𝑦)
]
.

Hence the result. □

5.3.2 Functional calculus

Glauber point process

The Glauber point process, denoted by G, is a Markov process with values in 𝔑𝐸
whose stationary and invariance measure is 𝜋𝜎 . Its generator is L = −𝛿𝐷. Its semi-
group satisfies a Mehler-like description. It is the key stone of the Dirichlet structure
associated to 𝜋𝜎 .

Definition 5.8 The Markov process G is constructed as follows:
• G(0) = 𝜙 ∈ 𝔑𝐸 ,
• Each atom of 𝜙 has a life duration, independent of that of the other atoms,

exponentially distributed with parameter 1.
• Atoms are born at moments following a Poisson process on the half-line, with

intensity 𝜎(𝐸). On its appearance, each atom is localised independently from all
the others according to 𝜎/𝜎(𝐸). It is also assigned in an independent manner,
a life duration exponentially distributed with parameter 1.

At every instant, G(𝑡) is a configuration of 𝐸 . We first observe that the total
number of atoms of G(𝑡) follows exactly the same dynamics as the number of busy
servers in a M/M/∞ queue with parameters 𝜎(𝐸) and 1.

Theorem 5.10 (Glauber process) For any 𝑡 > 0, the process G(𝑡) has the distribu-
tion of
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Time

E N(t)

N(0)

Fig. 5.1 Realisation of a trajectory of G. In green, the arrival times of the Poisson process of
intensity 𝜎 (𝐸 ) . In purple, the state of G at time 𝑡 . In orange, the initial state of G.

𝑒−𝑡 ◦ G(0) ⊕ (1 − 𝑒−𝑡 ) ◦ 𝑁 ′ (5.15)

where 𝑁 ′ is an independent copy of 𝑁 .
Assume that G(0) is a point Poisson process with intensity 𝜎. Then, G(𝑡) has the

distribution of 𝑁 for any 𝑡.

Proof We can separate the atoms of G in two sets: G𝑜 is the set of particles which
were present at the origin and are still alive, G† is the set of fresh particles which were
born after time 0 and are still alive. By construction, these two sets are independent.

Moreover, the particles of G𝑜 alive at 𝑡 corresponds to an 𝑒−𝑡 -thinning of the
original configuration, thus

G𝑜 (𝑡) dist.
= 𝑒−𝑡 ◦ G(0). (5.16)

For two disjoint parts 𝐴 and 𝐵 of 𝐸 , by construction, the atoms of G† which
belong to 𝐴 (respectively 𝐵) appear as a 1𝐴-thinning (respectively 1𝐵-thinning) of
the Poisson process which represents the birth dates. Then, Theorem 5.6 says that
the date of birth G† ∩ 𝐴 is a Poisson point process of intensity 𝜎(𝐴), independent
of G† ∩ 𝐵.

Following the computations made for the M/M/∞ queue, we see that

(G† ∩ 𝐴) (𝑡) dist
= Poisson

(
(1 − 𝑒−𝑡 )𝜎(𝐴)

)
.

Hence, according to Theorem 5.4,

G† ∩ 𝐴 dist
= (1 − 𝑒−𝑡 ) ◦ (𝑁 ′ ∩ 𝐴). (5.17)
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Then (5.15) follows from (5.16)and (5.17).
If G(0) is distributed as 𝑁 , then Theorem 5.6 entails that 𝑒−𝑡 ◦ G(0) is a Poisson

process of intensity 𝑒−𝑡𝜎. Thus, the superposition theorem 5.5 implies that G has
the distribution of 𝑁 . □

As all the sojourn time are exponentially distributed, G is a Markov process with
values in𝔑𝐸 . Far from the idea of developing the general theory of Markov processes
in the space of measures, we can study its infinitesimal generator and its semi group.
Eqn. (5.17) means that we have the Poisson-Mehler formula.

Theorem 5.11 For any 𝑡 ≥ 0, for 𝐹 ∈ 𝐿1 (𝔑𝐸 → R; 𝜋𝜎
)
:

P𝑡 (𝜙) := E
[
𝐹
(
G(𝑡)

)
| G(0) = 𝜙

]
= E

[
𝐹

(
𝑒−𝑡 ◦ 𝜙 ⊕ (1 − 𝑒−𝑡 ) ◦ 𝑁 ′

)]
(5.18)

where the expectation is taken which respect to the law of 𝑁 ′.

Theorem 5.12 The infinitesimal generator of G, denoted by L, is given by

− L𝐹 (𝜙) =
∫
𝐸

(
𝐹 (𝜙 ⊕ 𝑥) − 𝐹 (𝜙)

)
d𝜎(𝑥)

+
∫ (

𝐹 (𝜙 ⊖ 𝑥) − 𝐹 (𝜙)
)
d𝜙(𝑥) (5.19)

for 𝐹 bounded from 𝔑𝐸 into R.

Proof At time 𝑡, there may be a either a death or a birth. At a death time, we
choose the atom to kill uniformly among the existing ones, so that each atom has a
probability 𝜙(𝐸)−1 of being killed. Since all atoms have a lifetime which follows a
unit exponential distribution, the death rate is 𝜙(𝐸). Therefore, the transition from
𝜙 to 𝜙 ⊖ 𝑥 takes place at rates of 1 for any 𝑥 ∈ 𝜙.

The birth rate is 𝜎(𝐸) and the position of the new atom is distributed according
to the measure 𝜎/𝜎(𝐸) so the transition from 𝜙 to 𝜙 ⊕ 𝑥 occurs at a rate d𝜎(𝑥) for
each 𝑥 ∈ 𝐸 . From this reasoning, we deduce (5.19). □

Theorem 5.13 (Ergodicity) The semi-group P is ergodic. Moreover, L is invertible
from 𝐿2

0 in 𝐿2
0 = 𝐿2 (𝔑𝐸 → R; 𝜋𝜎

)
∩ {𝐹, E [𝐹] = 0} and we have

L−1𝐹 =

∫ ∞

0
P𝑡𝐹d𝑡. (5.20)

For any 𝑥 ∈ 𝐸 and any 𝑡 > 0,

𝐷𝑥P𝑡𝐹 = 𝑒−𝑡P𝑡𝐷𝑥𝐹. (5.21)

If, in addition, 𝐹 is such that

sup
𝜙∈𝔑𝐸

∫
𝐸

|𝐷𝑥𝐹 (𝜙) |2d𝜎(𝑥) < ∞.
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Then, with probability 1, we have∫
𝐸

���𝐷𝑥 (L−1𝐹 (𝜙)
)���2 d𝜎(𝑥) ≤ sup

𝜙∈𝔑𝐸

∫
𝐸

|𝐷𝑥𝐹 (𝜙) |2d𝜎(𝑥). (5.22)

Proof Step 1. By dominated convergence, we deduce from (5.18) that

P𝑡𝐹 (𝜙)
𝑡→∞−−−−→ E [𝐹 (𝑁)] ,

that is to say, P is ergodic.
Step 2. The property (5.20) is a well-known relation between the semi-group and
infinitesimal generator. Formally, without worrying about the convergence of the
integrals, we have

L
(∫ ∞

0
P𝑡𝐹 d𝑡

)
=

∫ ∞

0
LP𝑡𝐹d𝑡

= −
∫ ∞

0

𝑑

𝑑𝑡
P𝑡𝐹d𝑡

= 𝐹 − E [𝐹] = 𝐹

according to ergodicity of P and as 𝐹 is centered.
Step 3. Starting from the formula (5.18),

𝐷𝑥P𝐹 (𝑡) = E
[
𝐹

(
𝑒−𝑡 ◦ (𝜙 ⊕ 𝑥) ⊕ (1 − 𝑒−𝑡 ) ◦ 𝑁 ′

)]
− E

[
𝐹

(
𝑒−𝑡 ◦ 𝜙 ⊕ (1 − 𝑒−𝑡 ) ◦ 𝑁 ′

)]
.

Since the thinning operation is distributive on the superposition of point processes,
we get

𝐷𝑥P𝐹 (𝑡) = E
[
𝐹

(
𝑒−𝑡 ◦ 𝜙 ⊕ 𝑒−𝑡 ◦ 𝑥 ⊕ (1 − 𝑒−𝑡 ) ◦ 𝑁 ′

)]
− E

[
𝐹

(
𝑒−𝑡 ◦ 𝜙 ⊕ (1 − 𝑒−𝑡 ) ◦ 𝑁 ′

)]
.

At time 𝑡, either 𝑒−𝑡 ◦ 𝑥 = 𝑥 or 𝑒−𝑡 ◦ 𝑥 = ∅, the former event appears with probability
𝑒−𝑡 and the latter with the complementary probability, hence

E
[
𝐹

(
𝑒−𝑡 ◦ 𝜙 ⊕ 𝑒−𝑡 ◦ 𝑥 ⊕ (1 − 𝑒−𝑡 ) ◦ 𝑁 ′

)]
= 𝑒−𝑡 E

[
𝐹

(
𝑒−𝑡 ◦ 𝜙 ⊕ 𝑥 ⊕ (1 − 𝑒−𝑡 ) ◦ 𝑁 ′

)]
+ (1 − 𝑒−𝑡 ) E

[
𝐹

(
𝑒−𝑡 ◦ 𝜙 ⊕ (1 − 𝑒−𝑡 ) ◦ 𝑁 ′

)]
.

It follows that
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𝐷𝑥P𝐹 (𝑡) = 𝑒−𝑡 E
[
𝐹

(
𝑒−𝑡 ◦ 𝜙 ⊕ 𝑥 ⊕ (1 − 𝑒−𝑡 ) ◦ 𝑁 ′

)]
− 𝑒−𝑡 E

[
𝐹

(
𝑒−𝑡 ◦ 𝜙 ⊕ (1 − 𝑒−𝑡 ) ◦ 𝑁 ′

)]
= 𝑒−𝑡P𝐷𝑥𝐹 (𝑡).

Step 4. As a consequence of the previous part of this proof,∫
𝐸

���𝐷𝑥 (L−1𝐹 (𝑁)
) ���2d𝜎(𝑥) =

∫
𝐸

(∫ ∞

0
𝑒−𝑡P𝑡𝐷𝑥𝐹 (𝑁)d𝑡

)2
d𝜎(𝑥).

According to the Jensen formula, we get∫
𝐸

���𝐷𝑥 (L−1𝐹 (𝑁)
) ���2d𝜎(𝑥) ≤

∫
𝐸

∫ ∞

0
𝑒−𝑡

���P𝑡𝐷𝑥𝐹 (𝑁)���2d𝑡 d𝜎(𝑥).

The representation (5.18) and Jensen’s inequality imply that |P𝑡𝐺 |2 ≤ P𝑡𝐺2 thus,∫
𝐸

���𝐷𝑥 (L−1𝐹 (𝑁)
) ���2d𝜎(𝑥)

≤
∫
𝐸

∫ ∞

0
𝑒−𝑡E

[
(𝐷𝑥𝐹)2 (𝑒−𝑡 ◦ 𝑁 ⊕ (1 − 𝑒−𝑡 ) ◦ 𝑁 ′) | 𝑁 ]

d𝑡 d𝜎(𝑥)

=

∫ ∞

0
𝑒−𝑡

∫
𝐸

E
[
(𝐷𝑥𝐹)2 (𝑒−𝑡 ◦ 𝑁 ⊕ (1 − 𝑒−𝑡 ) ◦ 𝑁 ′) | 𝑁 ]

d𝜎(𝑥)d𝑡

=

∫ ∞

0
𝑒−𝑡 sup

𝜙∈𝔑𝐸

∫
𝐸

(𝐷𝑥𝐹)2 (𝜙)d𝜎(𝑥) d𝑡

= sup
𝜙∈𝔑𝐸

∫
𝐸

(𝐷𝑥𝐹)2 (𝜙) d𝜎(𝑥).

The proof is thus complete. □

Theorem 5.14 (Covariance identity) Let 𝐹 and 𝐺 be two functions belonging to
Dom𝐷. The following identity is satisfied:

E
[∫
𝐸

𝐷𝑥𝐹 (𝑁) 𝐷𝑥𝐺 (𝑁)d𝜎(𝑥)
]
= E [𝐹 (𝑁) L𝐺 (𝑁)] .

In particular, if 𝐺 is centered

E [𝐹 (𝑁)𝐺 (𝑁)] = E
[∫
𝐸

𝐷𝑥𝐹 (𝑁) 𝐷𝑥
(
L−1𝐺

)
(𝑁) d𝜎(𝑥)

]
. (5.23)

Proof Let 𝐹 and 𝐺 belong to Dom𝐷. We are going to show the most important
formula

L = 𝛿𝐷. (5.24)

By definition,
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𝛿𝐷𝐹 (𝑁) =
∫
𝐸

𝐷𝑥𝐹 (𝑁 ⊖ 𝑥) d𝑁 (𝑥) −
∫
𝐸

𝐷𝑥𝐹 (𝑁) d𝜎(𝑥)

=

∫
𝐸

(
𝐹 (𝑁) − 𝐹 (𝑁 ⊖ 𝑥)

)
d𝑁 (𝑥) −

∫
𝐸

(
𝐹 (𝑁 ⊕ 𝑥) − 𝐹 (𝑁)

)
d𝜎(𝑥). (5.25)

It remains to compare (5.25) and (5.19). □

Concentration inequality scheme of proof

The proof of the concentration inequality follows a classical scheme which can be
applied to Wiener functionals as well. Consider that 𝑋 is a centered random variable
and 𝑟 > 0, the well known trick is to use the Markov inequality in a subtle manner:

P(𝑋 > 𝑟) = P(𝑒\𝑋 > 𝑒\𝑟 ) ≤ 𝑒−\𝑟E
[
𝑒\𝑋

]
. (5.26)

The goal is then to find a somehow explicit bound of E
[
𝑒\𝑋

]
and optimize the right

hand side of (5.26) with respect to \.
The computation of the upper-bound of E

[
𝑒\𝑋

]
relies on the Herbst principle.

Compute
d

d\
E

[
𝑒\𝑋

]
= E

[
𝑋 𝑒\𝑋

]
and do whatever it costs to bound it by something of the form

E
[
𝑋 𝑒\𝑋

]
≤ (function of \) × E

[
𝑒\𝑋

]
.

This amounts to bound the logarithmic derivative of E
[
𝑒\𝑋

]
. It remains to integrate

this last inequality to obtain the desired bound. The difficulty here is that 𝑒\𝑋 appears
on both sides of the inequality. This means that we can only use 𝐿1 − 𝐿∞ inequalities
hence the stringent conditions on the sup norms which will appear.

Theorem 5.15 (Concentration inequality) Let 𝑁 be a Poisson process with inten-
sity 𝜎 on 𝐸 . Let 𝐹 : 𝔑𝐸 → R such that

𝐷𝑥𝐹 (𝑁) ≤ 𝛽, (𝜎 ⊗ 𝜋𝜎) − a.e. and sup
𝜙∈𝔑𝐸

∫
𝐸

|𝐷𝑥𝐹 (𝜙) |2 d𝜎(𝑥) ≤ 𝛼2, 𝜋𝜎 − a.e.

For any 𝑟 > 0, we have the following inequality

𝜋𝜎
(
𝐹 (𝑁) − E [𝐹 (𝑁)] > 𝑟

)
≤ exp

(
− 𝑟

2𝛽
ln(1 + 𝑟𝛽

𝛼2 )
)
·

Proof Step 1. As a preliminary computation, remark that
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𝐷𝑥𝑒
\𝐹 (𝑁 ) = 𝑒\𝐹 (𝑁⊕𝑥 ) − 𝑒\𝐹 (𝑁 )

=

(
𝑒\𝐷𝑥𝐹 (𝑁 ) − 1

)
𝑒\𝐹 (𝑁 ) . (5.27)

Step 2. Let 𝐹 be a bounded function of null expectation. According to Theorem 5.14
and (5.27), we can write the following identities:

E
[
𝐹 (𝑁) 𝑒\𝐹 (𝑁 )

]
= E

[∫
𝐷𝑥

(
L−1𝐹 (𝑁)

)
𝐷𝑥

(
𝑒\𝐹 (𝑁 )

)
d𝜎(𝑥)

]
= E

[∫
𝐸

𝐷𝑥

(
L−1𝐹 (𝑁)

) (
𝑒\𝐷𝑥𝐹 (𝑁 ) − 1

)
𝑒\𝐹 (𝑁 ) d𝜎(𝑥)

]
.

Step 3. We want to benefit from the fact that the function Ψ : (𝑥 ↦→ (𝑒𝑥 − 1)/𝑥) is
continuously increasing on R; therefore, we impose its presence

E
[
𝐹 (𝑁)𝑒\𝐹 (𝑁 )

]
= \ E

[∫
𝐸

𝐷𝑥

(
L−1𝐹 (𝑁)

)
𝐷𝑥𝐹 (𝑁) Ψ

(
\𝐷𝑥𝐹 (𝑁)

)
𝑒\𝐹 (𝑁 ) d𝜎(𝑥)

]
.

Since 𝐷𝑥𝐹 ≤ 𝛽, we obtain���E [
𝐹 (𝑁)𝑒\𝐹 (𝑁 )

] ���
≤ \ Ψ(\𝛽) E𝜎

[
𝑒\𝐹 (𝑁 )

∫
𝐸

𝐷𝑥

(
L−1𝐹 (𝑁)

)
𝐷𝑥𝐹 (𝑁) d𝜎(𝑥)

]
.

Use the Cauchy-Schwarz inequality to get����∫
𝐸

𝐷𝑥

(
L−1𝐹 (𝑁)

)
𝐷𝑥𝐹 (𝑁) d𝜎(𝑥)

����
≤

����∫
𝐸

𝐷𝑥

(
L−1𝐹 (𝑁)

)2
d𝜎(𝑥)

����1/2
×

����∫
𝐸

𝐷𝑥𝐹 (𝑁)2 d𝜎(𝑥)
����1/2

= 𝐴1 × 𝐴2.

According to the hypothesis, 𝐴2 ≤ 𝛼 and Eqn. (5.22) tells that so does 𝐴1. This
implies that

d
d\

log E
[
𝑒\𝐹 (𝑁 )

]
≤ 𝛼2 𝑒

\𝛽 − 1
𝛽

·

Therefore,

E
[
𝑒\𝐹 (𝑁 )

]
≤ exp

(
𝛼2

𝛽

∫ \

0
(𝑒𝛽𝑢 − 1)d𝑢

)
.

For 𝑥 > 0, for any \ > 0,
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𝜋𝜎
(
𝐹 (𝑁) > 𝑥

)
= 𝜋𝜎

(
𝑒\𝐹 (𝑁 ) > 𝑒\𝑥

)
≤ 𝑒−\𝑥E

[
𝑒\𝐹 (𝑁 )

]
≤ 𝑒−\𝑥 exp

(
𝛼2

𝛽

∫ \

0
(𝑒𝛽𝑢 − 1) d𝑢

)
. (5.28)

This result is true for any \, so we can optimise with respect to \. At fixed 𝑥, we
search the value of \ which cancels the derivative of the right-hand-side with respect
to \. Plugging this value into (5.28), we can obtain the result. □

5.4 A quick refresher about the Poisson process on the line

The Poisson process on the real line is a particular case of the Poisson point pro-
cess defined above. It admits a more convenient definition based on a sequence of
independent exponential random variables.

Definition 5.9 Consider (b𝑛, 𝑛 ≥ 1) a sequence of independent random variables
sharing the same exponential distribution of parameter _. Consider

𝑇𝑛 =

𝑛∑︁
𝑖=1

b𝑖 .

A point process 𝑁 on 𝐸 = R+ of intensity _ is the point process whose atoms are
(𝑇𝑛, 𝑛 ≥ 1).

To be compatible with the usual notations of time indexed processes, we set

𝑁 (𝑡) = 𝑁 ( [0, 𝑡]) =
∞∑︁
𝑖=1

1{𝑇𝑖≤𝑡 } .

With the vocabulary of this chapter, 𝑁 is a Poisson point process of intensity
measure 𝜎 = _ ℓ. Following Theorem 5.4, 𝑁 is a time indexed process with inde-
pendent and stationary increments. The properties of superposition and thinning are
definitely valid for 𝑁 . Since we have a notion of time, we can define the filtration
F 𝑁
𝑡 = 𝜎(𝑁 (𝑠), 𝑢 ≤ 𝑡). The additional property is that, on any time interval [0, 𝑇],

the process
�̃� : 𝑡 ↦−→ 𝑁 (𝑡) − _𝑡

is a martingale of square bracket 〈
�̃�

〉
𝑡
= _ 𝑡.

For anyF 𝑁 -adapted, left-continuous process𝑢 ∈ 𝐿2 (𝔑[0,𝑇 ] × [0, 𝑇] → R; 𝜋𝜎 ⊗ 𝜎
)
,

the compensated integral with respect to 𝑁 is the martingale



146 5 Poisson space∫ 𝑡

0
𝑢(𝑁, 𝑠) d�̃� (𝑠) :=

∫ 𝑡

0
𝑢(𝑁, 𝑠) d𝑁 (𝑠) −

∫ 𝑡

0
𝑢(𝑁, 𝑠) _ d𝑠,

of square bracket

𝑡 ↦−→
∫ 𝑡

0
𝑢(𝑠)2_ d𝑠.

This means that we have the Itô isometry formula for Poisson integrals:

E

[(∫ 𝑡

0
𝑢(𝑁, 𝑠) d�̃� (𝑠)

)2
]
= E

[∫ 𝑡

0
𝑢(𝑠)2 _ d𝑠

]
. (5.29)

When 𝑢 is adapted and left-continuous, 𝑢(𝑁, 𝑠) depends on the trajectory of 𝑁 until
time 𝑠− , hence if a sample-path of 𝑁 is modified after time 𝑠, this does not change
the value of 𝑢(𝑁, 𝑠). More precisely, we have

𝑢(𝑁 ⊖ 𝑡, 𝑠) = 𝑢(𝑁, 𝑠) for any 𝑡 ≥ 𝑠.

It follows that the Poisson divergence coincides with the compensated integral and
Corollary 5.1 is an extension of the Itô isometry (5.29).

5.5 Problems

5.1 (Chaos decomposition for Poisson functionals) For 𝑓 ∈ 𝐿2 (𝐸 → R; 𝜎
)
, let

Λ 𝑓 (𝑁) = exp
(
−

∫
𝐸

𝑓 d𝑁 +
∫
𝐸

(1 − 𝑒− 𝑓 ) d𝜎
)
.

We already know from Theorem 5.7 that E
[
Λ 𝑓

]
= 1. For a configuration 𝜙, we

introduce its factorial moment measure of order 𝑘 ≥ 1:

𝜙 (𝑘 ) (𝐴) =
∫

1𝐴(𝑥1, · · · , 𝑥𝑘) d(` ⊖ ⊕𝑘−1
𝑗=1 𝑥 𝑗 ) (𝑥𝑘) d(` ⊖ ⊕𝑘−2

𝑗=1 𝑥 𝑗 ) (𝑥𝑘−1)

. . . d(` ⊖ 𝑥1) (𝑥2) d`(𝑥1).

We set 𝑁 (0) ( 𝑓 ) = 1.

1. Show that
𝐷𝑥Λ 𝑓 (𝑁) = Λ 𝑓 (𝑁)

(
𝑒− 𝑓 (𝑥 ) − 1

)
and that

E
[
𝐷

(𝑛)
𝑥1...𝑥𝑛Λ 𝑓 (𝑁)

]
=

𝑛∏
𝑗=1

(
𝑒− 𝑓 (𝑥 𝑗 ) − 1

)
.

2. Show that
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𝛿 (2) ( 𝑓 ⊗(2) ) = 𝑁 (2) ( 𝑓 ⊗ 𝑓 ) − 2𝑁 ( 𝑓 )𝜎( 𝑓 ) + 𝜎( 𝑓 )2.

and more generally that

𝛿 (𝑛) ( 𝑓 ⊗(𝑛) ) =
𝑛∑︁
𝑗=0

(
𝑛

𝑗

)
(−1)𝑛− 𝑗 𝑁 ( 𝑗 ) ( 𝑓 ⊗( 𝑗 ) )

(∫
𝐸

𝑓 d𝜎
)𝑛− 𝑗

.

3. Set 𝛿 (0) ( 𝑓 ⊗(0) ) = 1. Show that

𝑁 (𝐸 )∑︁
𝑛=0

1
𝑛!
𝛿 (𝑛)

(
(𝑒− 𝑓 − 1)⊗(𝑛)

)
= exp

(
−

∫
𝐸

(𝑒− 𝑓 − 1) d𝜎
) ∞∑︁
𝑗=0

1
𝑗!
𝑁 ( 𝑗 ) ((𝑒− 𝑓 − 1)⊗( 𝑗 ) ).

4. If 𝑋1, · · · , 𝑋𝑁 (𝐸 ) are the atoms of 𝑁 , show that

∞∑︁
𝑗=0

1
𝑗!
𝑁 ( 𝑗 )

(
(𝑒− 𝑓 − 1)⊗( 𝑗 )

)
=

∑︁
𝐽⊂{1,2, · · · ,𝑁 (𝐸 ) }

∏
𝑖∈𝐽

(𝑒− 𝑓 (𝑋𝑖 ) − 1)

=

𝑁 (𝐸 )∏
𝑗=1

𝑒− 𝑓 (𝑋 𝑗 ) = 𝑒−
∫
𝐸
𝑓 d𝑁 .

Hence, provided that we show the convergence of the sums in 𝐿2 (𝔑2 → R; 𝜋𝜎
)
,

we have proved that

Λ 𝑓 (𝑁) = 1 +
∞∑︁
𝑛=1

𝛿 (𝑛) (E
[
𝐷 (𝑛)Λ 𝑓 (𝑁)

]
).

Taking for granted that the vector space spanned by the Λ 𝑓 ’s when 𝑓 goes through
𝐿2 (𝐸 → R; 𝜎

)
is dense in 𝐿2 (𝔑2 → R; 𝜋𝜎

)
, we obtain the chaos decomposition

for functionals of Poisson process:

𝐹 = E [𝐹] +
∞∑︁
𝑛=1

1
𝑛!
𝛿 (𝑛)

(
E

[
𝐷 (𝑛)𝐹 (𝑁)

] )
. (5.30)

5.6 Notes and comments

The interested reader could find more details about the topology of configuration
spaces in [3]. The construction of the Poisson point process in more general spaces
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than Polish spaces can be found in [4]. For more information about the Malliavin
calculus for Poisson process, see [5, 4]. The construction of the Glauber process
follows [2] but the presentation given here emphasizes the invariance property of the
Poisson process: 𝑁 is a Poisson point process is and only if

𝑁
dist
= 𝑝 ◦ 𝑁 ′ ⊕ (1 − 𝑝) ◦ 𝑁 ′′

where 𝑁 ′ and 𝑁 ′′ are independent copies of the point process 𝑁 . The concentration
inequality has already been published in [1]. For an alternative proof, see [6]. As
for the Brownian motion, (5.30) can be the starting point of the definition of the
operators 𝐷 and 𝛿, see [5].
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Chapter 6
The Malliavin-Stein method

6.1 Principle

Among the more than seventy known distances between probability measures, the
most classical ones are the Prokhorov-Lévy and Fortet-Mourier (or Bounded Lips-
chitz) distances.

Definition 6.1 For ` and a two probability measures on a metric space (𝐸, 𝑑) with
borelean 𝜎-field A, the Prokhorov-Lévy is defined as

distpl (`, a) = max
(
inf

{
𝜖 ; `(𝐴) ≤ a(𝐴𝜖 ) + 𝜖, for all closed 𝐴 ⊂ 𝐸

}
,

inf
{
𝜖 ; a(𝐴) ≤ `(𝐴𝜖 ) + 𝜖, for all closed 𝐴 ⊂ 𝐸

})
where 𝐴𝜖 = {𝑥, 𝑑 (𝑥, 𝐴) ≤ 𝜖}. The Fortet-Mourier distance is defined as

distfm (`, a) = sup
𝑓 ∈BL

(∫
𝐸

𝑓 d` −
∫
𝐸

𝑓 da
)

where BL is the set of bounded Lipschitz functions:

BL =

{
𝑓 : 𝐸 → R, 𝑓 is bounded by 1 and | 𝑓 (𝑥) − 𝑓 (𝑦) | ≤ 𝑑 (𝑥, 𝑦), ∀𝑥, 𝑦 ∈ 𝐸

}
.

Theorem 6.1 If distpl (`, a) ≤ 1 or distfm (`, a) ≤ 2/3,

2
3

distpl (`, a)2 ≤ distfm (`, a).

If (𝐸, 𝑑) is separable then

distfm (`, a) ≤ 2 distpl (`, a).

149
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Thus, if (𝐸, 𝑑) is separable, the two metrics define the same topology on the set of
probability measures on 𝐸 . Furthermore, the three following properties are equiva-
lent

1.
∫
𝐸
𝑓 d`𝑛 →

∫
𝐸
𝑓 d` for all bounded and continuous functions from 𝐸 to R,

2. distfm (`𝑛, `) → 0,
3. distpl (`𝑛, `) → 0.

Another class of distances between probability measures is given by the optimal
transportation problem:

𝔒𝑐 (`, a) = inf
𝛾∈Σ`,a

∫
𝐸×𝐸

𝑐(𝑥, 𝑦)d𝛾(𝑥, 𝑦)

where 𝑐 : 𝐸 × 𝐸 → R+ ∪ {+∞} is a lower semi continuous cost function and Σ`,a
is the set of probability measures whose first marginal is ` and second marginal is
a. When, 𝑐 is a distance on 𝐸 , 𝔒𝑐 defines the so-called Kantorovitch-Rubinstein or
Wasserstein-1 distance between probability measures on 𝐸 . It admits an alternative
characterization very similar to the Fortet-Mourier distance.

Theorem 6.2 For 𝑐 a distance on the metric space (𝐸, 𝑑),

𝔒𝑐 (`, a) = sup
𝑓 ∈Lip1 (𝐸,𝑐)

(∫
𝐸

𝑓 d` −
∫
𝐸

𝑓 da
)

(6.1)

where Lip1 (𝐸, 𝑐) is the set of Lipschitz functions

Lip1 (𝐸, 𝑐) =
{
𝑓 : 𝐸 → R, | 𝑓 (𝑥) − 𝑓 (𝑦) | ≤ 𝑐(𝑥, 𝑦), ∀𝑥, 𝑦 ∈ 𝐸

}
.

We denote 𝔒𝑐 by distkr.

Remark 6.1 Remark that we do not need to put an absolute value in the right-hand-
side of (6.1) since (− 𝑓 ) ∈ Lip1 (𝐸, 𝑐) as soon as 𝑓 is Lipschitz.

We also have

Theorem 6.3 The following two properties are equivalent

1. distkr (`𝑛, `) → 0,
2.

∫
𝐸
𝑓 d`𝑛 →

∫
𝐸
𝑓 d` for all bounded and continuous functions from 𝐸 to R and

for some (and then for all ) 𝑥0 ∈ 𝐸∫
𝐸

𝑐(𝑥0, 𝑥)d`𝑛 (𝑥)
𝑛→∞−−−−→

∫
𝐸

𝑐(𝑥0, 𝑥)d`(𝑥).

These two examples give raise to several distances of the same form

dist𝔉 (`, a) = sup
𝑓 ∈𝔉

(∫
𝐸

𝑓 d` −
∫
𝐸

𝑓 da
)
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where𝔉 is a space of test functions. For instance, if𝔉 is the set of indicator functions
of intervals, we retrieve the Kolmogorov distance. The Stein’s method is particularly
well suited to estimate such quantities. For technical reasons, it is often necessary
to consider sets of test functions smaller than Lip1 (𝐸, 𝑐) even if we loose the nice
equivalence with convergence in distribution.

The abstract description of the Stein’s method is to construct an homotopy between
the two measures ` and a and then control the distance between ` and a by controlling
the gradient of the homotopy.

`

` = 𝑃#
𝑡 `

`

a

a𝑡 = 𝑃
#
𝑡 a

`

` = 𝑃#
𝑡 `

`

a

a𝑡 = 𝑃
#
𝑡 a

Fig. 6.1 Construct a transformation of the measures which leaves ` invariant and ultimately
transforms a into ` (left). Then, reverse time and control the gradient of the transformation (right).

More precisely the basic setting consists in a target distribution ` to which we
will compare a distribution a. The probability measure ` lives on a metric space
(𝐸,A) and a is often defined as the image measure of a measure a0 on (𝐹,B) by a
map 𝑇 : 𝐹 → 𝐸 .

(𝐸, A, a0 ) (𝐹, B, `)

(𝐹, B, 𝑇#a0 = a)

𝑇
distance to evaluate

Fig. 6.2 The global scheme of the Stein method

For instance, if we want to evaluate the rate of convergence in the law of rare
events, we take 𝐸 = N, 𝐹 = {0, · · · , 𝑛}, a0 is the binomial distribution of parameters
(𝑛, 𝑝/𝑛) and𝑇 is the embedding from 𝐹 into 𝐸 . For the usual Central Limit Theorem,
𝐸 = R and ` is the standard Gaussian distribution, 𝐹 = R𝑛 and a0 = 𝜌⊗𝑛 where 𝜌
is the common distribution of the 𝑋𝑖’s assumed to be centered and of unit variance.
We take 𝑇 (𝑥1, · · · , 𝑥𝑛) = 𝑛−1/2 ∑𝑛

𝑖=1 𝑥𝑖 .
By comparison, the Skorohod embedding method consists in finding 𝑆1 and 𝑆2

such that 𝑆1 maps 𝐹 into 𝐸 and 𝑆2 : 𝐹 → 𝐸 is such that the image measure of ` by
𝑆2 is a0. We then compare the distance between the realizations 𝑆1 (𝜔) and 𝑆2 (𝜔)
in 𝐸 . All the difficulty of this method is to devise the coupling between ` and a0, i.e.
to find the convenient map 𝑆2.

The Malliavin-Stein method assumes that there exists a Dirichlet structure on
(𝐸,A, a0) and on (𝐹,B, `).
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(𝐸, A) (𝐹, B, `)

(𝐸, A, a0 ) (𝐹, B, `)
dist.

𝑆1

𝑆2

Fig. 6.3 The global scheme of the Skorohod embedding method

Definition 6.2 A Dirichlet structure on (𝐸,A, a0) is a set of four elements 𝑋0, 𝐿0,
(𝑃0
𝑡 , 𝑡 ≥ 0), E0 where 𝑋0 is a strong Feller process with values in 𝐸 whose generator

is 𝐿0 and its semi-group is 𝑃0: for 𝑓 : 𝐸 → R sufficiently regular

𝑃0
𝑡 𝑓 (𝑥) = E [ 𝑓 (𝑋 (𝑡)) | 𝑋 (0) = 𝑥]

d
d𝑡
𝑃0
𝑡 𝑓 (𝑥) = 𝐿0𝑃0

𝑡 𝑓 (𝑥)

= 𝑃0
𝑡 𝐿

0 𝑓 (𝑥).

Furthermore, a0 is the stationary and invariant distribution of 𝑋0 and the Dirichlet
form is defined by

E0 ( 𝑓 , 𝑔) = d
d𝑡

∫
𝐸

𝑃𝑡 𝑓 (𝑥)𝑔(𝑥)da0 (𝑥)
����
𝑡=0
.

Remark 6.2 We will not dwell into the theory of Dirichlet forms but it must be noted
that given one of the elements of the quadruple, one can construct, at least in an
astract way, the three other elements.

Remark 6.3 Actually, we do not really needE0 but rather the carré du champ operator
defined by

Γ0 ( 𝑓 , 𝑔) = 1
2

(
𝐿0 ( 𝑓 𝑔) − 𝑓 𝐿0𝑔 − 𝑔𝐿0 𝑓

)
, (6.2)

which is such that

E0 ( 𝑓 , 𝑔) =
∫
𝐸

Γ0 ( 𝑓 (𝑥), 𝑔(𝑥)) da0 (𝑥).

In this setting, the most important formula is again an avatar of the integration by
parts formula:

Theorem 6.4 For 𝑓 and 𝑔 in Dom2 𝐿
0 (i.e. such that 𝑓 ∈ 𝐿2 (𝐸 → R; a0

)
, 𝐿0 𝑓 is

well defined and belongs to 𝐿2 (𝐸 → R; a0
)
),

E
[
Γ0 ( 𝑓 , 𝑔)

]
= −E

[
𝑓 𝐿0𝑔

]
. (6.3)

Proof We note that 𝑃0
𝑡 1 = 1, hence we have 𝐿01 = 0. Furthermore, since 𝐿0 is

self-adjoint
E

[
𝐿0 𝑓

]
= 0
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for any 𝑓 ∈ Dom 𝐿0. Thus, (6.2) yields

E
[
Γ0 ( 𝑓 , 𝑔)

]
= −1

2

(
E

[
𝑓 𝐿0𝑔

]
+ E

[
𝑔 𝐿0 𝑓

] )
= −1

2

(
E

[
𝑓 𝐿0𝑔

]
+ E

[
𝑓 𝐿0𝑔

] )
by the self-adjointness of 𝐿0. □

Example 6.1 Gaussian measure on R If we look for a Markov process with values in
𝐸 = R whose stationary distribution is the standard Gaussian measure on R denoted
by a, we may think of the Ornstein-Uhlenbeck process : It can be defined as the
solution of the stochastic differential equation

𝑋 (𝑡, 𝑥) = 𝑥 −
∫ 𝑡

0
𝑋 (𝑠, 𝑥)d𝑠 +

√
2 𝐵(𝑡) (6.4)

where 𝐵 is a standard Brownian motion. We can also write

𝑋 (𝑡, 𝑥) = 𝑒−𝑡𝑥 +
√

2
∫ 𝑡

0
𝑒−(𝑡−𝑠)d𝐵(𝑠)

so that
𝑋 (𝑡, 𝑥) ∼ N (𝑒−𝑡𝑥, 𝛽2

𝑡 ) ∼ 𝑒−𝑡𝑥 + 𝛽𝑡N(0, 1).

where 𝛽𝑡 =
√

1 − 𝑒−2𝑡 . This means that

𝑃𝑡 𝑓 (𝑥) := E [ 𝑓 (𝑋 (𝑡, 𝑥))] =
∫

R
𝑓 (𝑒−𝑡𝑥 + 𝛽𝑡 𝑦)da(𝑦).

For 𝑓 ∈ 𝐿1 (R → R; a
)
, the dominated convergence theorem entails that

𝑃𝑡 𝑓 (𝑥)
𝑡→∞−−−−→

∫
R
𝑓 (𝑦)da(𝑦) (6.5)

and the invariance by rotation of the Gaussian distribution implies (as in Lemma 3.3)
that

𝑋 (0, 𝑥) ∼ N (0, 1) =⇒ 𝑋 (𝑡, 𝑥) ∼ N (0, 1),

i.e. the Gaussian measure is the stationary and invariant measure of the Markov
process 𝑋 . This can be written∫

R
𝑃𝑡 𝑓 (𝑥)da(𝑥) =

∫
R
𝑓 (𝑦)da(𝑦) (6.6)

The Itô formula says that

𝑓 (𝑋 (𝑡, 𝑥)) = 𝑓 (𝑥) +
∫ 𝑡

0
𝑓 ′ (𝑋 (𝑠, 𝑥))d𝐵(𝑠) +

∫ 𝑡

0
(𝐿 𝑓 ) (𝑋 (𝑠, 𝑥))d𝑠,
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where for 𝑔 ∈ C2,
𝐿𝑔(𝑥) = −𝑥𝑔′ (𝑥) + 𝑔′′ (𝑥).

Hence,

𝑃𝑡 𝑓 (𝑥) = 𝑓 (𝑥) +
∫ 𝑡

0
𝑃𝑠 (𝐿 𝑓 ) (𝑥)d𝑠.

Since 𝐿 and 𝑃𝑡 commute, we also have

𝑃𝑡 𝑓 (𝑥) = 𝑓 (𝑥) +
∫ 𝑡

0
𝑃𝑠𝐿 𝑓 (𝑥)d𝑠. (6.7)

The operator 𝐿0 has two fundamentals properties. By differentiation with respect to
𝑡 in (6.6), we have∫

R
𝐿 𝑓 (𝑥)da(𝑥) = d

d𝑡

∫
R
𝑃𝑡 𝑓 (𝑥)da(𝑥)

����
𝑡=0

= 0.

Furthermore, a straightforward computation also shows that 𝐿 is a self-adjoint oper-
ator ∫

R
𝑔(𝑥) 𝐿 𝑓 (𝑥)da(𝑥) =

∫
R
𝑓 (𝑥) 𝐿𝑔(𝑥)da(𝑥).

Example 6.2 Gaussian measure on R𝑛 If a is the standard Gaussian measure on
𝐸 = R𝑛, all the definitions given in dimension 1 are translated straightforwardly:

𝑃𝑡 𝑓 (𝑥) =
∫

R𝑛
𝑓 (𝑒−𝑡𝑥 + 𝛽𝑡 𝑦)da0 (𝑦)

𝐿 𝑓 (𝑥) = −⟨𝑥, 𝐷 𝑓 (𝑥)⟩R𝑛 + Δ 𝑓 (𝑥)

where 𝐷 is the gradient operator in R𝑛. The Ornstein-Uhlenbeck is the R𝑛 valued
process whose components are independent one-dimensional O-U processes. We
finally have

E( 𝑓 , 𝑓 ) =
∫

R𝑛
⟨𝐷 𝑓 (𝑥), 𝐷𝑔(𝑥)⟩R𝑛da0 (𝑥)

Γ( 𝑓 , 𝑔) (𝑥) = ⟨𝐷 𝑓 (𝑥), 𝐷𝑔(𝑥)⟩R𝑛 .

Example 6.3 Wiener measure on W If 𝐸 = 𝑊 , one of our Wiener spaces, and a is
the Wiener measure, the situation is much more cumbersome. It is easy to define the
semi-group by the Mehler formula (3.28). The Markov process has been identified
in (3.43) of Problem 3.1. If we want to generalize formally the definition of 𝐿 given
in R𝑛, this yields to consider ⟨𝜔,∇ 𝑓 (𝜔)⟩ where 𝜔 belongs to W and ∇ 𝑓 (𝜔) belongs
toH ; two spaces which are not in duality. Even worse, the definition of the Laplacian
which is the trace of the second order gradient is meaningful only if ∇(2)𝐹 is viewed
as an element of H ⊗H since the notion of trace does not exist for a map in a Banach
space.

The next theorem is far from being trivial and can be found in [9]:
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Theorem 6.5 If 𝐹 ∈ Lip1 (W, ∥ ∥W), then for any 𝑡 > 0

d
d𝑡
𝑃𝑡 𝑓 (𝜔) = ⟨𝜔, ∇𝑃𝑡 𝑓 (𝜔)⟩W,W∗ − trace(∇(2)𝑃𝑡 𝑓 (𝜔)).

A remarkably efficient way to construct a Dirichlet structure is to have at our disposal
a Malliavin gradient 𝐷 and to set 𝐿0 = −𝐷∗𝐷 where 𝐷∗ is the adjoint of the gradient.

Example 6.4 Gaussian measures On R, a standard integration by parts shows that∫
R
𝑓 ′ (𝑥)𝑔(𝑥)da(𝑥) =

∫
𝑅

𝑓 (𝑥)𝛿𝑔(𝑥)da(𝑥)

where 𝛿𝑔is given by
𝛿𝑔(𝑥) = 𝑥𝑔(𝑥) − 𝑔′ (𝑥).

Hence, we retrieve that 𝐿 = −𝛿∇. The same approach works on R𝑛. On𝑊 , we know
that 𝐿 = 𝛿∇ (note the harmless change of convention for the sign in front of 𝛿∇) by
its operation on the chaos, see Theorem 3.10. We also know from Theorem 3.12 that
the Mehler formula still holds with this definition of 𝐿 and thus Theorem 6.5 is still
valid in this presentation.

We are not limited to Gaussian measures. The other nice structures are those related
to the Poisson distribution.

Example 6.5 Poisson distribution on N of parameter 𝜌 The space 𝐸 is N, the gradient
is defined by

𝐷 𝑓 (𝑛) = 𝑓 (𝑛 + 1) − 𝑓 (𝑛).

The Ornstein-Uhlenbeck process is the process defined in the M/M/∞ queue, see
page 131, whose generator is

𝐿 𝑓 (𝑛) = 𝜌
(
𝑓 (𝑛 + 1) − 𝑓 (𝑛)

)
+ 𝑛

(
𝑓 (𝑛 − 1) − 𝑓 (𝑛)

)
.

Example 6.6 Poisson process For instance, when 𝐸 is the space of configurations
on the compact set 𝐾 and a0 is the distribution of the Poisson process of intensity
measure 𝜎, the process 𝑋0 is nothing but the Glauber process G and 𝐿0 is L, see
Section 5.3.2. The covariance identity of Theorem 5.14 is actually the integration by
parts of Theorem 6.4.

The Dirichlet structure may also be useful on the target space as it characterizes
the measure ` as the invariant measure of a Markov process 𝑋† of generator 𝐿† and
semi-group 𝑃†. Remark that for the two main examples, the generator is the sum of
two antagonistic parts, which explain the existence of the stationary measure. With
this decomposition, the identity E [𝐿𝐹] = 0 is equivalent to the integration by parts
formula in the sense of Malliavin calculus.

Example 6.7 Poisson process The Glauber process contains a part where an atom is
added anywhere according to 𝜎 and another part which removes one of the atoms,
so that the number of atoms does not diverge.
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Example 6.8 Wiener measure on R𝑛 The diffusion part (i.e. the Laplacian in 𝐿 of
the Brownian motion part in the differential equation defining 𝑋) pushes the process
anywhere far from 0 meanwhile the retraction force (the term in 𝑥 𝑓 ′ (𝑥)) brings 𝑋
back to the origin.

The main formula for us is the following:∫
R
𝑓 (𝑦)d`(𝑦) − 𝑓 (𝑥) = −

∫ ∞

0
𝐿†𝑃†

𝑡 𝑓 (𝑥)d𝑡. (6.8)

In other presentations of the Stein method, the function

𝑓 † : 𝑥 ↦−→
∫ ∞

0
𝑃
†
𝑡 𝑓 (𝑥)d𝑡

is called the solution of the Stein equation. Thus we have

sup
𝑓 ∈𝔉

∫
R
𝑓 (𝑦)d`(𝑦) −

∫
R
𝑓 da = sup

𝑓 †

∫
R
𝐿† 𝑓 † (𝑥)da(𝑥). (6.9)

6.2 Fourth order moment theorem

The fourth order moment theorem says that a sequence of elements of given Wiener
chaos may converge in distribution to he standard Gaussian law provided that the
sequences of the fourth moments converge to 3, which is the fourth moment of
N(0, 1).

The target distribution is the usual N(0, 1) so that

𝐿† 𝑓 (𝑥) = 𝑥 𝑓 ′ (𝑥) − 𝑓 ′′ (𝑥).

The initial space is W equipped with Wiener measure and 𝐿0 is defined by its
expression on the chaos. Since

Γ0 (𝑉,𝑉) = ⟨∇𝑉, ∇𝑉⟩H ,

we have the following identity:

Γ0 (𝜓(𝑉), 𝜑(𝑉)) = 𝜓′ (𝑉)𝜑′ (𝑉) Γ0 (𝑉,𝑉). (6.10)

•! Poisson point process

This last formula no longer holds for the Poisson point process as the gradient does
not satisfy the chain rule.
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Lemma 6.1 For 𝑓 ∈ Lip1 (R, | |), let

𝑓 † (𝑥) =
∫ ∞

0
𝑃𝑡 𝑓 (𝑥)d𝑡.

Then, 𝑓 † is twice differentiable and

∥( 𝑓 †)′′∥∞ ≤
√︂

2
𝜋
·

Proof Since 𝑓 is Lipschitz continuous, it is almost everywhere differentiable with a
derivative essentially bounded by 1. By the dominated convergence theorem, we get
that 𝑃𝑡 𝑓 is once differentiable with

(𝑃𝑡 𝑓 )′ (𝑥) = 𝑒−𝑡
∫

R
𝑓 ′ (𝑒−𝑡𝑥 + 𝛽𝑡 𝑦)d`(𝑦)

where ` is the standard Gaussian measure on R. Mimicking the proof of Theo-
rem 3.14, we get that (𝑃𝑡 𝑓 )′ is once differentiable with derivative given by

(𝑃𝑡 𝑓 )′′ (𝑥) =
𝑒−2𝑡

𝛽𝑡

∫
R
𝑓 ′ (𝑒−𝑡𝑥 + 𝛽𝑡 𝑦) 𝑦d`(𝑦).

Since ∥ 𝑓 ′∥∞ ≤ 1, we have

∥( 𝑓 †)′′∥∞ ≤
∫ ∞

0

𝑒−2𝑡

𝛽𝑡
d𝑡

∫
R
|𝑦 |d`(𝑦)

= 1 ×
√︂

2
𝜋
·

Theorem 6.6 Let 𝑉 ∈ 𝐿2 (𝐸 → R; a0
)

such that E [𝑉] = 0 and E
[
𝑉2] = 1. Then,

distkr (𝑉,N(0, 1)) ≤
√︂

2
𝜋

���E [
Γ0

(
(𝐿0)−1 (𝑉), 𝑉

)
+ 1

] ��� .
Proof We have to estimate

sup
𝑓 † : 𝑓 ∈Lip1 (R, | | )

E
[
𝐿† 𝑓 † (𝑉)

]
= sup
𝑓 † : 𝑓 ∈Lip1 (R, | | )

E
[
𝑉 ( 𝑓 †)′ (𝑉) − ( 𝑓 †)′′ (𝑉)

]
.

The trick: 𝐿𝐿−1 = Id

In view of this identity and of (6.10) and (6.3), we get
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E
[
𝑉 ( 𝑓 †)′ (𝑉)

]
= E

[
𝐿0 (𝐿0)−1𝑉 ( 𝑓 †)′ (𝑉)

]
= −E

[
Γ0

(
(𝐿0)−1𝑉, ( 𝑓 †)′ (𝑉)

)]
= −E

[
( 𝑓 †)′′ (𝑉) Γ0

(
(𝐿0)−1𝑉, 𝑉

)]
.

The result follows from Lemma 6.1

If 𝑉 belongs to the 𝑝-th chaos, (𝐿0)−1𝑉 = 𝑝−1𝑉 thus we get

distkr (𝑉,N(0, 1)) ≤ 1
𝑝

√︂
2
𝜋

��E [
Γ0 (𝑉,𝑉) + 𝑝

] �� . (6.11)

We then estimate the right-hand-side of (6.11) by computing the variance of
Γ0 (𝑉,𝑉). This requires two technical results.

Theorem 6.7 Let 𝑉 ∈ ⊕𝑝
𝑘=0ℭ𝑘 . Then, for any [ ≥ 𝑝,

E
[
𝑉 (𝐿0 − [ Id)2𝑉

]
≤ −[E

[
𝑉 (𝐿0 − [ Id)𝑉

]
≤ [𝑐E

[
𝑉 (𝐿0 − [ Id)2𝑉

]
, (6.12)

where
𝑐 =

1
[ − 𝑝 ∧ 1.

Proof Step 1. Since 𝑉 belongs to ⊕𝑝
𝑘=0ℭ𝑘 , we can write

𝑉 =

𝑝∑︁
𝑘=0

𝐽𝑠𝑘 ( ¤𝑣𝑘) and 𝐿0𝑉 =

𝑝∑︁
𝑘=0

𝑘 𝐽𝑠𝑘 ( ¤𝑣𝑘) (6.13)

It follows that

E
[
𝑉 (𝐿0 − [ Id)2𝑉

]
= E

[
𝑉𝐿0 (𝐿0 − [ Id)𝑉

]
− [E

[
𝑉 (𝐿0 − [ Id)𝑉

]
= E

[
𝑉

𝑝∑︁
𝑘=0

𝑘 (𝑘 − [) 𝐽𝑠𝑘 ( ¤𝑣𝑘)
]
− [E

[
𝑉 (𝐿0 − [ Id)𝑉

]
.

By orthogonality of the chaos,

E

[
𝑉

𝑝∑︁
𝑘=0

𝑘 (𝑘 − [) 𝐽𝑠𝑘 ( ¤𝑣𝑘)
]
=

𝑝∑︁
𝑘=0

𝑘 (𝑘 − [)E
[
𝐽𝑠𝑘 ( ¤𝑣𝑘)

2] ≤ 0,

in view of the assumption on [. The first inequality follows.
Step 2. Following the same lines of thought,
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−E
[
𝑉 (𝐿0 − [ Id)𝑉

]
=

𝑝∑︁
𝑘=0

([ − 𝑘)E
[
𝐽𝑠𝑘 ( ¤𝑣𝑘)

2]
≤ 𝑐

𝑝∑︁
𝑘=0

([ − 𝑘)2E
[
𝐽𝑠𝑘 ( ¤𝑣𝑘)

2]
= 𝑐E

[
𝑉 (𝐿0 − [ Id)2𝑉

]
.

The proof is thus complete. □

Remark 6.4 Note that the proof requires 𝑉 to belong to a finite sum of chaos to
choose a finite [.

Lemma 6.2 Let 𝑉 ∈ ℭ𝑝 and 𝑄 a polynomial of degree two. Then,

E
[
𝑄(𝑉) (𝐿0 + 𝑎𝑝 Id)𝑄(𝑉)

]
= 𝑝E

[
𝑎𝑄2 (𝑉) − 𝑄′ (𝑉)3𝑉

2𝑄′′ (𝑉)

]
. (6.14)

Proof Apply (6.3) and (6.10) to obtain

E
[
𝑄(𝑉) 𝐿0𝑄(𝑉)

]
= −E [Γ(𝑄(𝑉))]
= −E

[
𝑄′ (𝑉)2 Γ(𝑉)

]
.

Since 𝑄 (3) = 0, we have(
𝑄′ (𝑋)3

3𝑄′′ (𝑋)

) ′
=

3𝑄′ (𝑋)2𝑄′′ (𝑋)2

3𝑄′′ (𝑋)2 = 𝑄′ (𝑋)2,

so that in view of (6.10), we get

E
[
𝑄(𝑉) 𝐿0𝑄(𝑉)

]
= −E

[
Γ

(
𝑄′ (𝑉)3

3𝑄′′ (𝑉) , 𝑉
)]

= −E
[
𝑄′ (𝑉)3

3𝑄′′ (𝑉) 𝐿
0𝑉

]
= −𝑝E

[
𝑄′ (𝑉)3

3𝑄′′ (𝑉) 𝑉
]
,

thanks again to (6.3). □

Theorem 6.8 For 𝑉 ∈ ℭ𝑝 , we have

E
[
(Γ(𝑉) + 𝑝)2] ≤ 𝑝2

6

(
E

[
𝑉4] − 6E

[
𝑉2] + 3

)
.

Proof Step 1. By the very definition of Γ, for 𝑉 ∈ ℭ𝑝 , we have:

Γ(𝑉) + 𝑝 =
1
2
𝐿0 (𝑉2) −𝑉𝐿0𝑉 + 𝑝 =

1
2
𝐿0 (𝑉2) − 𝑝𝑉2 + 𝑝
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and
1
2
(𝐿0 − 2𝑝 Id) (𝑉2 − 1) = 1

2
𝐿0 (𝑉2) − 𝑝𝑉2 + 𝑝.

Step 2. It follows that

E
[
(Γ(𝑉) + 𝑝)2] = 1

4
E

[(
(𝐿0 − 2𝑝 Id)ℌ2 (𝑉, 1)

)2
]
.

Since 𝐿0 is a self-adjoint operator, this yields

E
[
(Γ(𝑉) + 𝑝)2] = 1

4
E

[
ℌ2 (𝑉, 1) (𝐿0 − 2𝑝 Id)2ℌ2 (𝑉, 1)

]
.

Step 3. The formula for the product of iterated integrals (3.24) implies that 𝑉2 ∈
⊕2𝑝
𝑘=0ℭ𝑘 , hence we are in position to apply Theorem 6.7 with [ = 𝑝:

E
[
(Γ(𝑉) + 𝑝)2] ≤ 𝑝

4
E

[
ℌ2 (𝑉) (𝐿0 − 2𝑝 Id)ℌ2 (𝑉)

]
.

According to Lemma 6.2 with 𝑎 = 2, we obtain

E
[
(Γ(𝑉) + 𝑝)2] ≤ 𝑝2

4
E

[
2ℌ2 (𝑉) −

𝑉ℌ′
2 (𝑉)

3

3ℌ′′
2 (𝑉)

]
=
𝑝2

4
E

[
2(𝑉2 − 1)2 − 4

3
𝑉4

]
=
𝑝2

6

(
E

[
𝑉4] − 6E

[
𝑉2] + 3

)
.

The proof is thus complete. □

Corollary 6.1 For 𝑉 ∈ ℭ𝑝 ,

distkr

(
𝑉,N(0, 1)

)
≤ 1

√
3𝜋

(
E

[
𝑉4] − 6E

[
𝑉2] + 3

)1/2
.

Proof Combine (6.11), Cauchy-Schwarz inequality and Theorem 6.8. □

6.3 Poisson process approximation

The point process side

Convergence towards the Gaussian measure is not the whole story. We can also
investigate the distance between point processes. The basic formula is, as usual, the
integration by parts formula (see Theorem 5.9). This gives the Dirichlet structure on
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the target structure. When the initial probability space is also a configuration space,
the so-called GNZ formula (for Georgii-Nguyen-Zessin) is in fact an integration by
parts formula.

Definition 6.3 The set of finite configurations is denoted by 𝔑
𝑓

𝐸
. It can be decom-

posed as the disjoint union of the 𝔑 (𝑛)
𝐸

where

𝔑
(𝑛)
𝐸

= {𝜙 ∈ 𝔑𝐸 , 𝜙(𝐸) = 𝑛}.

Intuitively, a configuration with 𝑛 points is an element of 𝐸𝑛 but since there is no
privileged order in the enumeration of the elements of a configuration, we must
identify all the 𝑛-uples of 𝐸𝑛 which differ only by the order of their elements. Math-
ematically speaking, this amount to consider the quotient space 𝐸𝑛𝑠 = 𝐸𝑛/𝔖𝑛 where
𝔖𝑛 is the group of permutations over {1, · · · , 𝑛}: Two elements 𝑥 = (𝑥1, · · · , 𝑥𝑛)
and 𝑦 = (𝑦1, · · · , 𝑦𝑛) are in relation if there exists 𝜎 ∈ 𝔖𝑛 such that(

𝑦1, · · · , 𝑦𝑛
)
=

(
𝑥𝜎 (1) , · · · , 𝑥𝜎 (𝑛)

)
.

The set 𝐸𝑛𝑠 is the set of all equivalence classes for this relation.
We thus have a bĳection 𝔠𝑛 between 𝔑

(𝑛)
𝐸

and 𝐸𝑛𝑠 . A function 𝐹 defined on 𝔑
(𝑛)
𝐸

can be transferred to a function defined on 𝐸𝑛𝑠 but it is more convenient to see it as
a function on 𝐸𝑛 with the additional constraint to be symmetric.

Definition 6.4 For 𝜙 = {𝑥1, · · · , 𝑥𝑛} ∈ 𝔑
(𝑛)
𝐸

, let 𝑥 = (𝑥1, · · · , 𝑥𝑛) ∈ 𝐸𝑛 and 𝔭𝑛 (𝑥)
the equivalence class of 𝑥 in 𝐸𝑛𝑠 . Let 𝐹 be measurable from 𝔑

(𝑛)
𝐸

to R and define
�̃� : 𝐸𝑛 → R by

�̃� (𝑥1, · · · , 𝑥𝑛) = 𝐹
(
𝔠−1
𝑛

(
𝔭𝑛 (𝑥1, · · · , 𝑥𝑛)

) )
.

By its very definition, �̃� is symmetric. For the sake of simplicity, we again abuse a
notation and write 𝐹 instead of �̃�.

Definition 6.5 For 𝜎 a reference measure on 𝐸 , 𝑁 admits Janossy densities ( 𝑗𝑛, 𝑛 ≥
0) if we can write for any 𝐹 ∈ 𝐿∞

(
𝔑
𝑓

𝐸
→ R; P

)
,

E [𝐹 (𝑁)] = 𝐹 (∅)𝑃(𝑁 = ∅)

+
∞∑︁
𝑛=1

1
𝑛!

∫
𝐸𝑘
𝐹 (𝑥1, · · · , 𝑥𝑛) 𝑗𝑛 (𝑥1, · · · , 𝑥𝑛) d𝜎(𝑥1) . . . d𝜎(𝑥𝑛).

The Janossy density 𝑗𝑛 is intuitively defined as the probability to have exactly 𝑛
atoms and that those atoms are located in the vicinity of (𝑥1, · · · , 𝑥𝑛).

By the very construction of the Poisson point process, the Janossy densities of a
Poisson point process are easy to calculate.
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Corollary 6.2 Let 𝑁 be a Poisson point process of intensity 𝜎. For any bounded
𝐹 : 𝔑

𝑓

𝐸
→ R,

E [𝐹 (𝑁)] = 𝑒−𝜎 (𝐸 )𝐹 (∅)

+ 𝑒−𝜎 (𝐸 )
∞∑︁
𝑛=1

1
𝑛!

∫
𝐸𝑛
𝐹 (𝑥1, · · · , 𝑥𝑛) d𝜎(𝑥1) . . . d𝜎(𝑥𝑛). (6.15)

This means that 𝑁 admits Janossy densities:

𝑗𝑛 (𝑥1, · · · , 𝑥𝑛) = 𝑒−𝜎 (𝐸 ) .

Proof Since 𝜎(𝐸) is finite, we can write

E [𝐹 (𝑁)] =
∞∑︁
𝑛=0

E [𝐹 (𝑁) | 𝑁 (𝐸) = 𝑛] P(𝑁 (𝐸) = 𝑛).

According to the construction of the Poisson point process, given 𝑁 (𝐸) = 𝑛, the
distribution of the atoms (𝑋1, · · · , 𝑋𝑛) of 𝑁 is (𝜎(𝐸)−1𝜎)⊗𝑛. This means that for
𝑛 > 0,

E [𝐹 (𝑁) | 𝑁 (𝐸) = 𝑛] = 1
𝜎(𝐸)𝑛

∫
𝐸𝑛
𝐹 (𝑥1, · · · , 𝑥𝑛) d𝜎(𝑥1) . . . d𝜎(𝑥𝑛).

For 𝑛 = 0, it is a tautology to say that 𝐹 (𝑁) = 𝐹 (∅). Hence,

E [𝐹 (𝑁)] = 𝐹 (∅)𝑒−𝜎 (𝐸 )

+ 𝑒−𝜎 (𝐸 )
∞∑︁
𝑛=1

𝜎(𝐸)𝑛
𝑛!

1
𝜎(𝐸)𝑛

∫
𝐸𝑛
𝐹 (𝑥1, · · · , 𝑥𝑛) d𝜎(𝑥1) . . . d𝜎(𝑥𝑛).

The proof is thus complete. □

Example 6.9 Janossy densities of Poisson process A Poisson point process 𝑁 of
intensity 𝜎 is a finite point process if and only 𝜎(𝐸) < ∞. Then (6.15) induces that

𝑗𝑛 (𝑥1, · · · , 𝑥𝑛) = 𝑒−𝜎 (𝐸 ) .

Definition 6.6 [5, Section 15.5] If 𝑁 is a finite point process with Janossy measures
( 𝑗𝑛, 𝑛 ≥ 0), we define the Papangelou intensity by

𝑐
(
{𝑥1, · · · , 𝑥𝑛}, 𝑥

)
=
𝑗𝑛+1 (𝑥1, · · · , 𝑥𝑛, 𝑥)
𝑗𝑛 (𝑥1, · · · , 𝑥𝑛)

·

The quantity 𝑐(𝑁, 𝑥) can be seen intuitively as the probability to have a particle at 𝑥
given the observation 𝑁 .

We then have the so-called GNZ (for Georgii-Nguyen-Zessin) formula:
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Theorem 6.9 For any bounded𝑈 : 𝔑𝐸 × 𝐸 → R, we have:

E
[∫
𝐸

𝑈 (𝑁 ⊖ 𝑥, 𝑥) d𝑁 (𝑥)
]
= E

[∫
𝐸

𝑈 (𝑁, 𝑥) 𝑐(𝑁, 𝑥) d𝜎(𝑥)
]
. (6.16)

Proof Step 1. Remark that∫
𝐸

𝑈 (𝑁 ⊖ 𝑥, 𝑥)d𝑁 (𝑥)
����
𝑁=∅

= 0.

Hence, according to the definition of Janossy densities, we have

E
[∫
𝐸

𝑈 (𝑁 ⊖ 𝑥, 𝑥)d𝑁 (𝑥)
]

=

∞∑︁
𝑘=1

1
𝑘!

∫
𝐸𝑘

©«
𝑘∑︁
𝑗=1
𝑈 ({𝑥1, · · · , 𝑥𝑘}, 𝑥 𝑗 )

ª®¬ 𝑗𝑘 (𝑥1, · · · , 𝑥𝑘)d𝜎⊗𝑘 (𝑥).

Step 2. It is clear that for any 𝑗 ∈ {1, · · · , 𝑘},∫
𝐸𝑘
𝑈 ({𝑥1, · · · , 𝑥𝑘}, 𝑥 𝑗 )d𝜎⊗𝑘 (𝑥) =

∫
𝐸𝑘
𝑈 ({𝑥1, · · · , 𝑥𝑘}, 𝑥𝑘)d𝜎⊗𝑘 (𝑥).

Hence,

E
[∫
𝐸

𝑈 (𝑁 ⊖ 𝑥, 𝑥)d𝑁 (𝑥)
]

=

∞∑︁
𝑘=1

𝑘

𝑘!

∫
𝐸𝑘
𝑈 ({𝑥1, · · · , 𝑥𝑘}, 𝑥𝑘) 𝑗𝑘 (𝑥1, · · · , 𝑥𝑘)d𝜎⊗𝑘 (𝑥).

Step 3. The definition of 𝑐 can be read as

𝑐({𝑥1, · · · , 𝑥𝑘−1}, 𝑥𝑘) 𝑗𝑘−1 (𝑥1, · · · , 𝑥𝑘−1) = 𝑗𝑘 (𝑥1, · · · , 𝑥𝑘),

from which we derive

E
[∫
𝐸

𝑈 (𝑁 ⊖ 𝑥, 𝑥)d𝑁 (𝑥)
]

=

∞∑︁
𝑘=1

1
(𝑘 − 1)!

∫
𝐸𝑘−1

(∫
𝐸

𝑈 ({𝑥1, · · · , 𝑥𝑘}, 𝑥𝑘)𝑐({𝑥1, · · · , 𝑥𝑘−1}, 𝑥𝑘) d𝜎(𝑥𝑘)
)

× 𝑗𝑘−1 (𝑥1, · · · , 𝑥𝑘−1) d𝜎⊗(𝑘−1) (𝑥).

Apply once more the definition of the Janossy densities to obtain the right-hand-side
of (6.16). □

An immediate corollary of (6.16) is the following:
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Corollary 6.3 (Integration by parts formula for general point processes) Let 𝑁
be a finite point process of Papangelou intensity 𝑐. For any 𝐹 ∈ 𝐿∞

(
𝔑𝐸 → R; P

)
and any𝑈 ∈ 𝐿∞

(
𝔑𝐸 × 𝐸 → R; P ⊗ 𝜎

)
, the following identity holds

E
[
𝐹 (𝑁)

(∫
𝐸

𝑈 (𝑁 ⊖ 𝑦, 𝑦)d𝑁 (𝑦) −
∫
𝐸

𝑈 (𝑁, 𝑦) 𝑐(𝑁, 𝑦)d𝜎(𝑦)
)]

= E
[∫
𝐸

𝐷𝑦𝐹 (𝑁) 𝑈 (𝑁, 𝑦)𝑐(𝑁, 𝑦)d𝜎(𝑦)
]
,

where 𝐷 is defined as before by

𝐷𝑦𝐹 (𝑁) = 𝐹 (𝑁 ⊕ 𝑦) − 𝐹 (𝑁).

We can then say that

𝛿𝑈 (𝑁) =
∫
𝐸

𝑈 (𝑁 ⊖ 𝑦, 𝑦)d𝑁 (𝑦) −
∫
𝐸

𝑈 (𝑁, 𝑦) 𝑐(𝑁, 𝑦)d𝜎(𝑦).

Remark 6.5 As for a Poisson process, the Janossy densities are all equal to 𝑒−𝜎 (𝐸 )

and the Papangelou intensity is equal to 1. In this setting, the GNZ formula reduces
to the Campbell-Mecke formula (5.11).

If d𝜎(𝑥) = 𝑚(𝑥)dℓ(𝑥), then it is customary to take as reference measure P ⊗ ℓ so
that the Papangelou intensity becomes 𝑐(𝑁, 𝑥) = 𝑚(𝑥).

We can now state the main theorem which bounds the distance between a point
process described by its Papangelou intensity and a Poisson point process of intensity
𝑚 dℓ where

𝑚(𝑥) = E [𝑐(𝑁, 𝑥)] . (6.17)

Definition 6.7 The space of test functions is the set of Lipschitz functions in the
sense

|𝐹 (𝑁 ⊕ 𝑥) − 𝐹 (𝑁) | ≤ 1, ∀𝑥 ∈ 𝐸.

It is denoted by Lip1 (𝔑𝐸 , distTV).

Theorem 6.10 Let 𝑀 be a point process of Papangelou intensity 𝑐 with respect to
the measure P ⊗ ℓ and 𝑚 defined by (6.17). Let 𝜋𝜎 be the distribution of the Poisson
point process of intensity d𝜎(𝑥) = 𝑚(𝑥)dℓ(𝑥). Assume that 𝜎(𝐸) < ∞. Then,

sup
𝐹∈Lip(𝔑𝐸 )

(
E [𝐹 (𝑀)] −

∫
𝔑𝐸

𝐹d𝜋𝜎
)
≤ E

[∫
𝐸

|𝑐(𝑀, 𝑥) − 𝑚(𝑥) |dℓ(𝑥)
]
.

Proof According to the construction of the Glauber process, we have∫
𝔑𝐸

𝐹d𝜋𝜎 − 𝐹 (𝑀) =
∫ ∞

0
𝐿𝑃𝑡𝐹 (𝑀) d𝑡
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where

−𝐿𝐹 (𝑀) =
∫
𝐸

(
𝐹 (𝑀 ⊕ 𝑥) − 𝐹 (𝑀)

)
d𝜎(𝑥) +

∫
𝐸

(
𝐹 (𝑀 ⊖ 𝑥) − 𝐹 (𝑀)

)
d𝑀 (𝑥).

In view of Corollary 6.3 with 𝐹 = 1, we have

E
[∫
𝐸

(
𝐹 (𝑀 ⊖ 𝑥) − 𝐹 (𝑀)

)
d𝑀 (𝑥)

]
= E

[∫
𝐸

(
𝐹 (𝑀) − 𝐹 (𝑀 ⊕ 𝑥)

)]
𝑐(𝑀, 𝑥) dℓ(𝑥).

Thus,∫
𝔑𝐸

𝐹d𝜋𝜎 − E [𝐹 (𝑀)] = E
[∫ ∞

0

∫
𝐸

𝐷𝑥𝑃𝑡𝐹 (𝑀)
(
𝑚(𝑥) − 𝑐(𝑀, 𝑥)

)
dℓ(𝑥) d𝑡

]
.

Moreover, (5.21) entails that 𝐷𝑥𝑃𝑡𝐹 (𝑀) = 𝑒−𝑡𝑃𝑡𝐷𝑥𝐹 (𝑀). Recall that 𝐹 is Lips-
chitz hence |𝐷𝑥𝐹 | ≤ 1 for all 𝑥 ∈ 𝐸 and (5.18) entails that

|𝑃𝑡𝐷𝑥𝐹 | ≤ E [1] = 1.

Thus we have,

E [𝐹 (𝑁𝜎)] − E [𝐹 (𝑀)] ≤
∫ ∞

0
𝑒−𝑡 d𝑡 ×

∫
𝐸

|𝑚(𝑥) − 𝑐(𝑀, 𝑥) | dℓ(𝑥).

The result follows. □

6.4 Problems

6.1 A point process𝑀 is a Gibbs point process on 𝐸 = R𝑘 , of order 2 and temperature
𝛽 > 0 if its Janossy densities (with respect to the Lebesgue measure) are given by

𝑗𝑛 (𝑥1, · · · , 𝑥𝑛) = exp ©«−𝛽
𝑛∑︁
𝑗=1
𝜓1 (𝑥 𝑗 ) − 𝛽

∑︁
1≤𝑖< 𝑗≤𝑛

𝜓2 (𝑥𝑖 , 𝑥 𝑗 )ª®¬
where 𝜓1 and 𝜓2 are two non-negative functions on 𝐸 and 𝐸 × 𝐸 respectively, such
that 𝜓2 is bounded, symmetric and∫

𝐸

𝑒−𝛽𝜓1 (𝑥 ) dℓ(𝑥) < ∞.

1. With the non negativity of 𝜓2, show that
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E [𝑀 (𝐸)] ≤
∫
𝐸

𝑒−𝛽𝜓1 (𝑥 ) dℓ(𝑥).

2. Show that the Papangelou intensity of 𝑀 is given by

𝑐(𝑀, 𝑥) = exp
(
−𝛽𝜓1 (𝑥) − 𝛽

∫
𝐸

𝜓2 (𝑥, 𝑦) d𝑀 (𝑦)
)
.

3. Show that
|𝑐(𝑀, 𝑥) − 𝑒−𝛽𝜓1 (𝑥 ) | ≤ 𝛽 𝑒−𝛽𝜓1 (𝑥 ) ∥𝜓2∥∞𝑀 (𝐸).

Indication: remember that for 𝑥 ≥ 0, 1 − 𝑒−𝑥 ≤ 𝑥.
4. For d𝜎(𝑥) = exp(−𝛽𝜓1 (𝑥)) dℓ(𝑥), show that

sup
𝐹∈Lip(𝔑𝐸 )

(
E [𝐹 (𝑀)] −

∫
𝔑𝐸

𝐹d𝜋𝜎
)
≤ 𝛽∥𝜓2∥∞

(∫
𝐸

𝑒−𝛽𝜓1 (𝑥 ) dℓ(𝑥)
)2
.

6.2 (Superposition of weakly repulsive processes) A common interpretation of the
Papangelou intensity is to say that 𝑐(𝜙, 𝑥) represents the infinitesimal probability to
have an atom at position 𝑥 given the observation 𝜙. Thus, a possible definition of
repulsiveness could be to impose that

𝜙 ⊂ 𝜓 =⇒ 𝑐(𝜓, 𝑥) ≤ 𝑐(𝜙, 𝑥).

We here define a less restrictive notion of weak repulsiveness:

𝑐(𝜙, 𝑥) ≤ 𝑐(∅, 𝑥), ∀𝑥 ∈ 𝐸, ∀𝜙 ∈ 𝔑𝐸 .

Let 𝑝0 = P(𝑀 (R𝑑) = 0). Assume that 𝑀 is weakly repulsive.

1. Using the GNZ formula, show that

𝑝0𝜎(𝑥) ≤ 𝑝0𝑐(∅, 𝑥).

2. Show that
𝜎(𝑥) ≥ 𝑝0𝑐(∅, 𝑥).

3. Derive that
|𝑐(∅, 𝑥) − 𝜎(𝑥) | ≤ (1 − 𝑝0)𝑐(∅, 𝑥).

6.5 Notes and comments

The introduction of distances between probability is mainly inspired by [7, 6, 10].
The Stein method dates back to the seventies when it was created by C. Stein for
the convergence towards the one dimensional Gaussian standard distribution. It was
quickly extended to the convergence towards the Poisson distribution (see [3] and
references therein for a more complete history). The principle of the method is always
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the same but the computations are adhoc to each situation, so it has yielded a vast
number of papers during the last thirty years. The papers by Nourdin and Peccati
who introduced the Malliavin calculus in this framework renewed the interest and
the scope of the method (see [8]), see [2] for a recent and thorough survey. The most
striking result was the fourth moment theorem the proof of which has been recently
greatly simplified in [1]. We followed this line of thought in Section 6.2.

The links between Malliavin calculus and Dirichlet forms are the core of [4].
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