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Preface

This book treats the mathematics of queueing theory and some related ar-
eas, as well as the basic mathematical tools for the study of such models.
It thus aims to serve as an introduction to queueing theory, to provide
a thorough treatment of tools such as Markov processes, renewal theory,
random walks, Lévy processes, matrix—analytic methods and change of
measure, and to treat in some detail basic structures such as the GI/G/1
and GI/G/s queues, Markov—modulated models, queueing networks, and
models within the areas of storage, inventory and insurance risk. Within
this framework the choice of topics is, however, rather traditional. The aim
has been to present what I consider the basic knowledge in the area, not
to advocate special directions in which the area is at present developing.

The first edition was published in 1987. This second edition incorpo-
rates about 100 extra pages containing an extended treatment of queueing
networks and matrix—analytic methods as well as a number of additional
topics, in particular Poisson’s equation, the fundamental matrix, insensitiv-
ity, rare events and extreme values for regenerative processes, Palm theory,
rate conservation, Lévy processes, reflection, Skorokhod problems, Loynes’s
lemma, Siegmund duality, light traffic, heavy tails, the Ross conjecture and
ordering, and finite buffer problems.

Also, the references, typically given in the Notes following the separate
sections, have been thoroughly updated. It should be noted, however, that
these Notes are mainly intended as a first guidance for further reading, not
as a bibliography or history of the subject. When a textbook or a survey
paper dealing with a topic is available, this is the preferred reference rather
than the original papers. Thus, details of priority are treated rather sporad-
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ically. The principle has been to cite only the most important milestones
and classical texts, but otherwise to make the references as up—to—date as
possible. Thus, compared to the first edition, many older references have
been removed.

The reader should be familiar with probability theory at the level of
Breiman (1968), Chung (1974), Durrett (1991) or Shiryaev (1996). Most
readers are likely to know large parts of Chapters I-II, which therefore
may serve mainly as a refresher or reference part. However, one should
note that I1.5-8 has much material not usually included in introductory
texts. How to read the rest of the book is a question of particular interests.
The reader oriented towards queueing theory may want to concentrate first
on Chapters III-1V and next on X—XII after having skimmed Chapters V,
VI and VIII for needed background; the reader with more general interests
will find Chapters V-IX and XIII more relevant.

The writing of both the first and the second editions of this book has
been an immense pleasure to me. This is due not least to the interest shared
by friends, collegues and students. Their impact cannot be overestimated,
and the list of people who in some way have influenced the book would be
huge. Let me just mention and thank a few who have contributed with de-
tailed comments on the second edition: Niels Hansen, Masakiyo Miyazawa,
Mats Pihlsgard, Tomasz Rolski, Volker Schmidt, Karl Sigman and Anders
Tolver Jensen. Most figures were done by Jane Bjgrn Vedel (supported by
MaPhySto, Aarhus) and my mother, Hanna Asmussen, typed much of the
material that is close to the first edition.

Finally, I gratefully acknowledge the permission of World Scientific Pub-
lishing Co., Singapore, to incorporate some parts (XI.2 and XII1.3) which
are close to the exposition in Asmussen (2000).

Sgren Asmussen
Aarhus
February 2003
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Notation and Conventions

The basic principle for references within the book is to specify the chapter
number only when it is not the current one. Thus, say, Proposition 1.3, for-
mula (2.7) or Section 5 of Chapter IV are referred to as IV.1.3, IV.(2.7) and
IV.5, respectively, in all chapters other than IV where we write Proposition
1.3, (2.7) and Section 5.

Symbols such as say A, n, etc. do not of course have the same meaning
throughout the book and may be used interchangeably for real numbers,
measures and so on. For queueing processes, some effort has been made to
make the notation (introduced in III.1) reasonably consistent throughout
the book. One inconvenience is that the associated random walk becomes
Sn=Xo+---+X,_1 and not X; +---+ X, as in Chapter VIII. Of course,
similar (hopefully minor) incidents occur at a number of other places.

The expression E[X; A] means EXI(A), where I(A) is the indicator of

A (if say A = {X > 0}, we write E[X; X > 0]). By X Z Y we mean
equality in distribution and by X, Z X convergence in distribution (weak
convergence). The relation a,, ~ b,, means that a,, /b, — 1 asn — oo (other
limits may also occur), whereas a,, =~ b, indicates various different types
of asymptotics, often just at the heuristical level. We use occassionally lim
instead of lim sup, and similarly for lim, liminf. Ends of proofs, examples
or remarks are marked by the symbol O.

The typeface P, E is used for probability and expectation; P, E. have a
special meaning by referring to stationarity (equilibrium or steady state, cf.
IT1.1). Matrices and vectors are in boldface A, ¢, 7, etc.; usually, matrices
have uppercase Roman letters (occasionally Greek), column vectors lower-
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case Roman letters and row vectors lowercase Greek letters. The column
vector with all entries equal to 1 is denoted 1, the i¢th unit vector 1;. The
transpose of A is written A.

The standard sets are denoted as follows:

N={0,1,2,...} the natural numbers
Z={0,+1,+2,...} the integers

Q= {p/q :p€l,q€E N\{O}} the rationals

R = (—00,00) the real numbers
C={az+iy: z,y e R} the complex numbers

(no special notation like Ry is used for (0, 00) or [0, 00)). The index set for
the time parameter of a stochastic process, usually N, Z, [0, 00) or (—o0, 00),
is denoted by T if more than one possibility may occur.

The set D of functions {z;} which are right—continuous (zs — x, s | t)
and have left-hand limits x;— = limsy; x5 is frequently encountered. If,
say, t varies in [0,1] and a; is E-valued, we may specify this by writing
D([0,1], E). Most often D stands for D[0, c0) = D([0,00),R). Dy is the set
of D—functions with finite lifelength; see A2.

Some main abbreviations are given in the following list (others occur
locally):

LLN law of large numbers
CLT central limit theorem
LIL law of the iterated logarithm

Lh.s. left-hand side
r.hs. right-hand side

a.s. almost surely

iid. independent identically distributed
i.o. infinitely often

r.v. random variable

t.v. total variation

w.l.o.g. without loss of generality
W.p. with probability

w.r.t. with respect to

d.R.i. directly Riemann integrable
ch.f. characteristic function

m.g.f. moment generating function
c.g.f. cumulant generating function
g.c.d. greatest common divisor
supp support

spr spectral radius

The notation F for the transform of a probability distribution may denote
either of the probability generating function, the m.g.f. or the ch.f.; see A9.

The delta function is d;; = I(i = j), whereas ¢, often denotes the
measure degenerate at x.



Part A:
Simple Markovian Models



I
Markov Chains

1 Preliminaries

We consider a Markov chain X, X7, ... with discrete (i.e. finite or count-
able) state space E = {i,4,k,...} and specified by the transition matrix
P = (pij)ijer. By this we mean that P is a given E x E matrix such
that p;. = (pij)jer is a probability (vector) for each ¢, and that we study
{X,} subject to exactly those governing probability laws P =P, (Markov
probabilities) for which

]P(XO = g, X = i1, .- 7Xn = Zn) = MigPigir Piria ** * Pin_1in (11)

where p; = P(Xo = 7). The particular value of the initial distribution g is
unimportant in most cases and is therefore suppressed in the notation. An
important exception is the case where X, is degenerate, say at ¢, and we
write then P; so that P;(Xo =1) = 1.

Given p, it is readily checked that (1.1) uniquely determines a probabil-
ity distribution on .%,, = o(Xy, ..., Xn). Appealing to basic facts from the
foundational theory of Markov processes (to be discussed in Section 8), this
set of probabilities can be uniquely extended to a probability law IP,, govern-
ing the whole chain. Thus, since the transition matrix P is fixed here and in
the following, the Markov probabilities are in one—to—one correspondence
with the set of initial distributions.

If P is a Markov probability, then (with the usual a.s. interpretation of
conditional probabilities and expectations)

pij = Pi(X1=j) = P(Xnp1=j|X,=1), (1.2)
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P(Xn+1:]|yn) = PX,i = ]PXn(Xlzj)a (13)
E[h(Xn, Xns1,--.) | Fn] = Ex, h(Xo, X1,...). (1.4)

Conversely!, either (1.3) or (1.4) is sufficient for PP to be a Markov proba-
bility. The formal proof of these facts is an easy (though in part lengthy)
exercise in conditioning arguments and will not be given here. However,
equations (1.2), (1.3), (1.4) have important intuitive contents. Thus (1.4)
means that at time n, the chain is restarted with the new initial value X,,.
Equivalently, the post—n—chain X, X,,11, ... evolves as the Markov chain
itself, started at X,, but otherwise independent of the past. Similarly, in
simulation terminology (1.3) means that the chain can be stepwise con-
structed by at step n drawing X, according to px . (to get started,
draw X according to ).

Recall from A10 (the Appendix) that a stopping time o is a r.v. with
values in N U {oo} and satisfying {c = n} € %, for all n, that .%, denotes
the o—algebra which consists of all disjoint unions of the form U§°A4,, with
A, € %, A, C {o =n} (here n = oo is included with the convention %
= o(Xo, X1,...)), and that ¢ and X, are measurable w.r.t. to #,. The
important strong Markov property states that for the sake of predicting the
future development of the chain a stopping time may be treated as a fixed
deterministic point of time. For example, we have the following extension
of (1.4):

Theorem 1.1 (STRONG MARKOV PROPERTY) Let o be a stopping time.
Then a.s. on {o < oo} it holds that

E[h(Xo, Xot1,--.) | Fo] = Ex, h(Xo, X1,...). (1.5)
Proof. We must show that for A € #,, A C {o < oo} we have
E[h(XU,XU+1, .. ), A} = E[Exdh(XQ,Xl, .. ), A} .

However, if A € %, and 0 = n on A, this is immediate from (1.4). Replace
A by An{o =n} and sum over n. O

The mth power (iterate) of the transition matrix is denoted by P™ =
(pf})- An easy calculation (e.g. let n = nm in (1.1) and sum over the i
with & & {0,m,...,nm}) shows that Xo, X, Xom, ... is a Markov chain
and that its transition matrix is simply P™.

Associated with each state is the hitting time

(1) = inf{n>1: X, =i}

(with the usual convention 7(7) = oo if no such n exists) and the number
of visits N; = >"° I(X,, = i) to i. Clearly, {7(i) < co} = {N; > 0} and we

IThe meaning of (1.4) is that this should hold for any h: E x E x --- — R for which
(1.4) makes sense, say h is bounded or nonnegative; similarly, (1.5) should hold for all
n and j. In (1.3), Px, (X1 = j) means g(z) = Pz(X1 = j) evaulated at z = X,.
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call i recurrent if the recurrence time distribution P;(7(:) = k) is proper, i.e.
if P;(7(i) < o0) = 1, and transient otherwise. The chain itself is recurrent
(transient) if all states are so.

Proposition 1.2 Let i be some fized state. Then:

(i) The following assertions (a), (b), (c) are equivalent: (a) i is recurrent;
(b) N; =00 Pi-a.s.; (¢) E;N; = > 07 p = o0;

(i) the following assertions (a’), (b'), (¢') are equivalent as well: (a') i is
transient; (b') N; < oo Pj—a.s.; (¢') E;N; = > 07 p < 0.

Proof. Define 7(i;1) = 7(3),

T k+1) = inf{n>7(;k): X, =1}, 6 = Pi(7(i;1) < 00).
Then N; is simply the number of k with 7(i;k) < oo, and by the strong
Markov property and X, (x) = i,

Pi(r(i;k + 1) < o0) = E;P(r(isk+1) < 00 T( k) < oo | Zrii)
OP;(7(i k) < 00) = --- = O~ (1.6)

If (a) holds, then 6 = 1 so that it follows that all 7(i; k) < co P;~a.s., and
(b) also holds. Clearly, (b)=-(c) so that for part (i) it remains to prove
(c)=(a) or equivalently (a’)=-(c¢’). But if § < 1, then

E;N; = ip N; > k) i]}n <o) = iek < oo.
k=0 k=1 k=1

For part (ii), it follows by negation that (a') <= (¢/) < (b”) P;y(N; <
00) > 0. However, clearly (b’)=(b") and from (1.6) it is seen that if (b”)
holds, then 6 < 1. Thus (b”) = (a/). ad

It should be noted that though Proposition 1.2 gives necessary and suf-
ficient conditions for recurrence/transience, the criteria are almost always
difficult to check: even for extremely simple transition matrices P, it is
usually impossible to find closed expressions for the p};. Some alternative
general approaches are discussed in Section 5, but in many cases the re-
currence/transience classification leads into arguments particular for the
specific model.

Our emphasis in the following is on the recurrent case and we shall briefly
discuss some aspects of the set—up. Two states i, j are said to communicate,
written i < j, if i can be reached from j (i.e. pJ} > 0 for some m) and
vice versa. Clearly, the relation is transitive and symmetric. Now suppose
1 is recurrent and that j can be reached from i. Then also ¢ can be reached
from j. In fact even 7(i) < oo P;-a.s. since otherwise P;(7(i) = o0) > 0.
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Furthermore, j is recurrent since

o0 oo

m mi1,.m, m2 __
> o =Y pieRpt = oo
m=1 m=1

if my, mg are chosen with pﬁl > 0, pfj@ > 0. Obviously ¢ < i by recurrence,
and it follows that < is an equivalence relation on the recurrent states so
that we may write

F =TUR URy---, (1.7)

where Ry, Ro, ... are the equivalence classes (recurrent classes) and T the
set of transient states. It is basic to note that the recurrent classes are
closed (or absorbing), i.e.

P;(X,, € Ry for all n) =1 when i€ Ry

(this follows from the above characteriztion of Ry as the set of all states
that can be reached from 7). When started at ¢ € Ry, the chain therefore
evolves within Ry only, and the state space may be reduced to Rg. If, on
the other hand, Xy = ¢ is transient, two types of paths may occur: either
X, €T for all n or at some stage the chain enters a recurrent class Ry and
is absorbed, i.e. evolves from then on in Ry.

Most often one can restrict attention to irreducible chains, defined by
the requirement that all states in £ communicate. Such a chain is either
transient or E consists of exactly one recurrent class. In fact, if a recurrent
state, say i, exists at all, it follows from the above that any other state j
is in the same recurrence class as 1.

A recurrent state is called positive recurrent if the mean recurrence time
E;7(i) is finite. Otherwise ¢ is null recurrent. The period d = d(i) is the
period of the recurrence-time distribution, i.e. the greatest integer d such
that P;(7(¢) € Lq) =1 where Lqg = {d,2d,3d,...}. If d = 1, i is aperiodic.

Proposition 1.3 Let R be a recurrent class. Then the states in R (i) are
either all positive recurrent or all null recurrent; (ii) have all the same
period.

Proof. (i) is deferred to Section 3. Let i,j € R and choose r, s with pi; >0,
pj; > 0. Then pit® > 0,ie r+s€ L), and whenever p7; > 0, Pt >0

also, i.e. 7 + 54 n € Lq(;) so that n € Ly, also. It follows that P;(7(j) €
Lgy) = 1, ie. d(j) > d(i). By symmetry, d(i) > d(j). d

Proposition 1.4 Let ¢ be aperiodic and recurrent. Then: (a) there exists
n; such that plt > 0 for all m > n;; (b) if j can be reached from i, then
there exists nj such that pi; >0 for all m > n;.

Proof. For (a), see A7.1(a). For (b), choose k; with pfj > 0 and let n; =
n; + kj. O
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Problems

1.1 Explain that Py = >, p ilPi.

1.2 Show that (1.2) implies (1.4).

1.3 Show that if € = p;; > 0, then the exit time 7(i) = inf {n > 1: X, # i} has
a geometric distribution, P;(n(i) =n) = (1—0)0""', n=1,2,....

1.4 In a number of population processes one encounters Markov chains with
FE = N, X,, representing the population size at time n, state 0 absorbing and
P;(7(0) < c0) > 0 for all i. Explain why it is reasonable to denote {7(0) < oo} as
the event of extinction. Show that any state ¢ > 1 is transient and that X,, — oo
a.s. on the event {7(0) = co} of nonextinction.

Notes In this book, we use the terminology that a Markov chain has discrete
time and a Markov process has continuous time (the state space may be discrete
as here or general as in Section 8). However, one should note that it is equally
common to let “chain” refer to a discrete state space and “process” to a general
one (time may be discrete or continuous).

One more convention: the bold typeface for say the initial distribution p in-
dicates a representation as a (row) vector, but in many contexts it is more
convenient to think of the measure interpretation, and we then write p. Simi-
larly, a function on the state space may be written either as a (column) vector
f = (fi)ick or just as f (with value f(i) at i) We will change freely between these
notations; say we use whichever of v(f), v f which in a given context is convenient
to represent Y. v; f(i). Accordingly, we can think of the transition matrix P as
an operator acting on measures to the left and on functions to the right, and we
sometimes write vP as vP and Pf as Pf. A particularly important function is
the constant 1 which we write as 1 in vector notation.

Markov chains and processes with a discrete state space form in many ways
a natural starting point of applied probability: when considering a specific phe-
nomenon, the first attempt to formulate and solve a stochastic model is usually
performed within the Markovian set—up, and also the mathematical question
arising in connection with Markov chains are to a large extent the same as for
more general models (in particular, this is so in queueing theory). The present
text therefore starts with a treatment of the relevant features of discrete Markov
chains and (in Chapter II) processes. The exposition is in principle self-contained,
but the novice will miss examples, and thus the aim is more to provide a refresher
and reference, covering also some topics that are not in all textbooks.

We will not list the many textbooks containing introductory chapters on
Markov chains and processes. More advanced treatments of discrete Markov
chains are in Brémaud (1999), Chung (1967), Freedman (1971), Kemeny et al.
(1976) and Orey (1971), and of discrete Markov processes in Chung (1967) and
Anderson (1991).

2 Aspects of Renewal Theory in Discrete Time

Let f1, fa,... be the point probabilities of a distribution on {1,2,...}. Then
by a (discrete time) renewal process governed by {f,} we understand a
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point process (see A3 for the terminology) on N with epochs Sy =0, S, =
Y1+ -4V, where the Y; are i.i.d. with common distribution { f,, }. Instead
of epochs, we usually speak of renewals. The associated renewal sequence
Ug, U1, . . . is defined by uy, = P(S,, = k for some k > 0), i.e. the probability
of a renewal at k.

A renewal occurs at k > 0 if either Y; = k£ which happens w.p. fr = fruo,
orifY=¢<kand Yo+ ---+Y, =k —{ for some n. The probability of
this is feur_¢, and so

up = fruo+ fo—1ur + -+ frug—1, k>1, (2.1)

i.e. in convolution equation u = dg + u * f where dp; = I(7 = 0). In
conjunction with ug = 1, (2.1) clearly uniquely determines {u,}.

b
.
) B, E °
. . P

2 \\‘ i ) 0) ' °

1 ‘\ E \o‘ :: °

De—1Ll 1 1 | A R L D
Figure 2.1

These concepts are intimately related to Markov chains. Consider some
fixed recurrent state 4, let Y7 = 7(i) and more generally let Y}, be the inter—
occurence time between the (k—1)th and kth visit to ¢. Then Y7, Y5, ... are
i.i.d. w.r.t. P; according to the strong Markov property, the common distri-
bution {f,} is the recurrence time distribution of ¢ and the renewals are the
visits to ¢ so that u, = p};. Conversely, any renewal processs can be con-
structed in this way from a Markov chain which we shall denote by {A,}.
Indeed, define A,, = n—sup {S; : Sk < n} as the backward recurrence time
at n, i.e. the time passed since the last renewal; see Fig. 2.1. Then the paths
of {4, } are at 0 exactly at the renewals, i.e. the renewals are the recurrence
times of 0, and the Markov property follows by noting that {A,} moves
from ¢ to either i+1 or 0, the probability of i+ 1 being P(Yy, > i+1| Yy > 1)
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independently of Ay, ..., A,_1. The state space E is N if {f;} has infinite
support and {0,1,..., K — 1} with K = inf{k: f1 +--- 4+ fr = 1} other-
wise. A closely related important Markov chain is the forward recurrence
time chain {B,}, i.e. By, is the waiting time until the next renewal after
n; see again Fig. 2.1. The Markov property is even more immediate since
the paths decrease deterministically from 4 to ¢ — 1 if ¢ > 1, whereas the
value of B, 1, following B,, = 1, is chosen according to {fx} independently
of the past. The state space is {1,2,...} in the infinite support case and
{1,..., K} otherwise, and a renewal occurs at n if and only if B,_; = 1.

Lemma 2.1 {u,} and {f,} have the same period d.

Proof. Since u,, > fy, it is clear that the period dy of {f,} is at least that
d,, of {u,}. Conversely, it is only possible that P(S; = n) > 0 and hence

u, > 0 if n is a multiple of dy. Hence d,, > dy. O
If d = 1 in Lemma 2.1, we will call the renewal sequence (process)
aperiodic.

Renewal processes with the Y having a possible continuous distribution
will play a major role in later parts of the book. We shall here exploit the
connection between (discrete) renewal processes and Markov chains in the
limit theory. Within the framework of renewal processes, the main result
is as follows (to be translated to Markov chains in Section 4):

Theorem 2.2 Let {uy} be an aperiodic renewal sequence governed by { f,}
and define =Y 7" nf, = EY:. Then u, — 1/p as n — oo (here 1/c0 =
0).

Proof. Define v, = fni1+ far2+--- = P(Y1 > n) and let L be the index
of the last renewal in {0, ...,n}. Then L = ¢ if there is a renewal at ¢ and
the next Y is > n — ¢, i.e. the probability is usr,_, so that

1 = P(L<n) = roup+riup_1+ -+ rpup. (2.2)

Now let A = limsup u,, and choose n(k) such that w,s) — M. Let 4 satisfy
fi > 0. Choosing N such that ry < €, we obtain from (2.1) and u, <1
that for k sufficiently large

N

A—e < Uy < TN+ Z Jitn(r)—j (2.3)
j=1

< et (1= fi)N+€) + fittagy—i- (2.4)

Letting first &k — oo and next € | 0 yields liminf w,)—; > A which is only
possible if u,x)—; — A. Repeating the argument we see that this also holds
for any ¢ of the form ¢ = z1a; +- - - + xa; where z, € N, f,, > 0. But since
{fn} is aperiodic, it follows by A7.1(a) (see also Proposition 1.4) that any
sufficiently large i, say i > a, can be represented in this form. Thus letting
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n =n(k) — a in (2.2) we obtain for any N

N N
1 > erun(k)_a_j - )\ZT]‘. (25)
j=0 =0
Since rg + 71 + -+ - = p, this proves 1 > Ap.

It remains to show that v = liminf u,, > p~!. This is clear if 4 = oo and
can be proved similarly as above if g < co. In fact, if {m(k)} is chosen such
that w,y) — v, we obtain, instead of (2.3),

N
Ve > Uppy > ijum(k)fj > (v—¢) Z [i + Jittmry—i
=1

J<N,j#i
= (1—=fi)lv—e) —rnV =€)+ fillm)—i-

As above, this implies lim sup t,,x)—; < v and U, )—; — v. Hence for
fixed N

N [eS)
DI TWANI SR VZTJ > T
=0 j=N+1 J=N+1
which tends to v+ 0 as N — oo. O

Corollary 2.3 Let {u,}, {fn} have period d > 1. Then: (i) {una},—, is
an aperiodic renewal sequence governed by { fna}o; (il) wm = 0 whenever
m is not of the form m = nd; (iil) upq — d/EY =d/u as n — oo.

Proof. Here (i) and (ii) are obvious, and from Theorem 2.2 we get

-1
Una — (fa+2f2a+3fsa+--+) = d/EY. o

Sometimes one also encounters defective governing distributions {f,},
ie. foo =1— f1— fo—--- > 0. The corresponding renewal sequence is still

uniquely determined by ug = 1 and (2.1), and can be interpreted in terms
of a terminating or transient renewal process. This is defined simply by
attaching the Y3 mass fo, at 0o. If foo > 0, then o =inf{n >1: Y, = oo}
is finite a.s., and S,, < o forn =0,...,0—1, = oo for n > o. In particular,
the number o of renewals is finite a.s., and hence the probability u, of a
renewal at n tends to zero as n — oco. More precisely:

Proposition 2.4 If fo, > 0, then the expected number of renewals is given
byEo = > 0" un =1/ foo.

Proof. Since u,, is the probability of a renewal at n, the expected number
of renewals is indeed > u,,. But it is also

Eo = Y Plo>n) = Y P(Yy<oo,k=1,...,n—1)
n=1 n=1
= > (1= fo)" ! = 1/fn.
n=1
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Problems

~

2.1 Define the generating function of {f.} by f[s] = > ;% s" fn (fo = 0). Show
that @fs] = Y22 s"u, = (1 — fls]) .

2.2 Consider the geometric case fr = (1 — 0)0"71. Show that wu., is constant for
n>0u,=1-—86.

2.3 Show that {u,v,} is a renewal sequence if {un}, {vn} are so.

2.4 Let {un} be a renewal sequence with >°7° fn # 1. Assume that Y " p"fn =1
for some p. Show that {p"un, } is a renewal sequence and that u, ~ cp™" for some
¢ > 0 (provided {fn} is aperiodic).

Notes The proof of Theorem 2.2 is a classical argument due to Erdos et al.
(1949) (many texts today use coupling instead and we return to this in VIL.2).
Additional material on renewal sequences and related topics can be found in
Kingman (1972).

3 Stationarity

Let v = (v;)icp be any nonnegative measure on E (it is not assumed that
v is a distribution, |v| = > v; = 1, neither that v is finite, |v| < oo, but
just that all v; < o0). We can then define a new measure v P by usual
matrix multiplication (viewing v as a row vector), so that v P attaches
mass ;. Vipij to j. We call v # 0 stationary if all v; < oo and vP = v,
i.e. if in algebraic terms v is a left eigenvector of the transition matrix P
corresponding to the eigenvalue 1.

Of particular importance is the case where v is a distribution.
Irrespective of whether v is stationary or not, we then have

P (X1 =j) = ZPU(XO =i)piyy = ZVipij = (vP);.
icE icE
Thus v P can be interpreted as the P, —distribution of X1, and in a similar
manner the P,,—distribution of X,, is v P™. In particular, if v is stationary,
then vP™ = v for all m so that the distribution of X, is independent of
m. More generally:

Theorem 3.1 Suppose that v is a stationary distribution. Then:

(i) The chain is strictly stationary w.r.t. Py, i.e. the P,—distribution of
(Xn, Xnt1,...) does not depend on n;

(ii) there exists a strictly stationary version {Xn}, o, of the chain with
doubly infinite time, such that P, (X, =1i) = v; for alln € Z.

Proof. (i) Clearly (X,,, Xp41,...) is a Markov chain with transition matrix
P w.r.t. Py. Then the distribution of the whole sequence is uniquely given
by the initial distribution which is ¥ P™ = v, hence independent of n.

(ii) This is a standard construction based upon Kolmogorov’s consistency
theorem and valid for general stationary sequences: let P(1):n(k) he the
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P, —distribution of (Xo, Xn(2)—n(1)7 . 7Xn(k)—n(1))a n(l) < TL(?) < e <
n(k), and note that (by stationarity) {P"():"*)} is a consistent family
(see Breiman, 1968, p. 105, for more detail). O

Question of existence and uniqueness of stationary distributions is one of
the main topics of Markov chain theory. We start by an explicit construction
(a generalization of which will also turn out to be basic for non-Markovian
processes; cf. VI.1 and VIL.6):

Theorem 3.2 Let i be a fized recurrent state. Then a stationary measure
v can be defined by letting v; be the expected number of visits to j in between
two consecutive visits to 1,

T(1)—1 00
vi = E Y I(Xn=j) = > Pi(Xp=j,7()>n). (3.1
n=0 n=0

The proof is based upon the following lemma:

Lemma 3.3 Let A be an arbitrary initial distribution and o a stopping
time, and define new measures A(c), p(0), p(1) by Aj(o) = PA(Xs = j),

o—1 o
pi(0) = Ex Y I(Xu =4), ny(1) = Ex Y I(X, = ).
n=0 n=1

Then A + u(1) = p(0) + Ao), u(1) = p(0)P.

Proof. The first statement follows by computing Ex Y I(X,, = j) by split-
ting first into the contribution from n = 0 and the sum from 1 to o, and
next into the sum from 0 to ¢ — 1 and the contribution from n = o. The
second follows from

o0 o0
pi1) = Y Pa(Xn=j0>n) = Y EA[P(Xp=j.0>n|F )]
nO:ol n=1 N
= Y Ex[P(Xpn=j|Fua)io=n] = > Exlpx, i 0 >n]
n=1 n=1
= > Yy Pale>nXo=k) = > prm(0) = (n(0)P);.
keE n=0 keE
Here in the third step we used the #,,_1—measurability of I(c > n). O

Proof of Theorem 3.2. If in Lemma 3.3 we take A as the one—point distri-
bution at ¢ and o = 7(i), we have p(0) = v and A(c) = A. The conclusion
of the lemma can be written A+vP = v+ A. Hence v P = v, and we need
only to check that v; < oo for any j. Clearly, v; = 1 and v; = 0 if j is not
in the same recurrent class as . Otherwise observe first that p7: > 0 for
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some m so that v; < oo follows from

v = kapﬁ > vipj;- (3.2)
kEE
]

Theorem 3.4 If the chain is irreducible and recurrent, then a station-
ary measure v exists, satisfies v; > 0 for all j and is unique up to a
multiplicative constant.

Here existence is immediate from Theorem 3.2 (we denote in the following
the measure in (3.1) by (). Also, v; > 0 for any i € F and any stationary
measure v is clear from (3.2) since we may choose j with v; > 0. The key
step for uniqueness is the following:

Lemma 3.5 Let i be some fized state and let v be superstationary (i.e.
vP <v) withv; > 1. Then v; > V](»i) for all j € E.

Proof. With P the matrix obtained from P by replacing the ith column
by zeros, it is easily seen by induction that pyp;» is the taboo probability
Pr(X,, = j,7(¢) > n). In particular, if we let k = i and sum over n, we
get v = §0) > P" where 6 is the distribution degenerate at i. We
next claim that v; > 5]@ + (V}N))j. Indeed, for j = ¢ this follows from

v, > 1= 51@, and for j # i we have (1/13)]- = (vP); <v;. Hence
v > 60 4uP > DI+ P)+vP > ...

N N
> oS P P T = 50N P
n=0 n=0

and letting N — oo, v > v follows. O

Proof of Theorem 3.4. If v is stationary, then v; > 0 as observed above.
Thus we may assume v; = 1 and the proof will be complete if we can show
v = v". But according to the lemma, we have v > v Hence p = v—v(?)
is nonnegative and puP = pu. As noted above y; = 0 then implies p = 0
and v = v, O

Clearly, the total mass of the stationary measure v(¥) given by (3.1) is

7(i)—1

@ = S0 = E Y 1 = (i) (3.3)

JEE n=0

Now if the chain is irreducible and recurrent, it follows by uniqueness that
the |[v(®| = E;7(i) are either all finite or all infinite, i.e. that the states are
all positive recurrent or all null recurrent, proving the remaining part of
Proposition 1.3. In the first case, v hence can be normalized to a stationary
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distribution 7 = v/|v| which is unique. In particular, for each j we have
= V](»j)/|V(j)| = 1/E;7(j) which yields an expression for 7 independent
of the reference state i. In summary:

Corollary 3.6 If the chain is irreducible and positive recurrent, there
erists a unique stationary distribution ™ given by

T(1)—1
1 1
= B Y I(Xy=)) = —— 4
Ty Eﬂ'(l) ~ ( j) EjT(j) (3 )

Corollary 3.7 Any irreducible Markov chain with a finite state space is
positive recurrent.

Proof. With S; = 3% I(X,, = i), we have Y, S; = 00 so that by finite-
ness S; = oo for at least one i. But then 7 is recurrent, and therefore by
irreducibility the chain is recurrent. Since obviously the stationary measure
cannot have infinite mass if E is finite, we have positive recurrence. O

Example 3.8 Consider the backward and forward recurrence time chains
{A,}, {Bn} of a renewal process governed by {f,}. It is clear from the
discussion in Section 2 that both chains are irreducible on the appropriate
state spaces. It is also clear that 0 is recurrent for {4, } and 1 for { B, } with
{fn} as recurrence time distribution in both cases. In particular, positive
recurrence is equivalent to p = Y nf, < oo. For {A,}, the stationary
measure (3.1) with ¢ = 0 becomes v,, = 7, = fp41 + fog2 + -1, 0 =
0,1,.... Indeed, n is visited once in between two consecutive visits to 0 if the
recurrence time is > n+1. This occurs w.p. r,, and otherwise n is not visited.
In particular, if g < oo, then the stationary distribution is m,, = r,,/u. In
an entirely similar manner it is seen that the stationary measure for {B,,}
is vy = rp—1,n =1,2,..., and if 4 < oo then m, = r,_1/u defines the
stationary distribution. O

The above assumption of irreducibility and recurrence (i.e. one recurrent
class) can easily be weakened by invoking the decomposition (1.7) of the
state space. For example, if v(") is a stationary measure on the rth recurrent
class R, it is easy to see that v = ) v(") is stationary for the whole
chain. Conversely, the restriction of a stationary v to R, is stationary (for
the chain restricted to R,.). Also, some transient chains have a stationary
measure. The theory is more difficult than for the recurrent case and will
not be discussed here. We remark only that a stationary distribution always
attaches mass zero to the transient states because P(X,, = i) — 0 when 7 is
transient. It is then easy to see that the most general form of a stationary
distribution is a convex combination of the unique stationary distributions
on the positively recurrent classes.

An alternative proof of the uniqueness of the stationary measure will be
given in VIL.3. It relies on restricting the Markov chain to a subset F' of
the state space, a procedure that also has other applications and which
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we now take the opportunity to discuss briefly. Let 7(F'; k) be the time of
the kth visit of {X,} to F, and define 7(F) = 7(F;1), X = X, (rup).
In the recurrent case, 7(F; k) < oo for all k, and by the strong Markov
property {X ,f } is a Markov chain. The transition matrix has elements
pgz = Pu(X;p) = £), k,£ € F, but these cannot in general be found
explicitly in terms of the p;; (but see Problem 3.8). Nevertheless, we have
the following result:

Proposition 3.9 If{X,} is irreducible and recurrent with stationary mea-
sure v, then {X ,f } s also irreducible and recurrent, and the stationary

measure vE = (VE)eep can be obtained by restricting v to F, i.e. (up to a

multiplicative constant) Z/f =y, L € F. In particular, if {X ,f } 18 positive

recurrent, then the stationary distribution is given by ﬂf = v/ perp Vk-

Proof. The first assertion is obvious. If we choose the initial state ¢ in (3.1)
in F, then both {X,} and {X}'} visit £ € F the same number of times
in between visits to i. Hence, also constructing v according to (3.1) with
the same i yields v} = v,. 0

The formula which conversely expresses v in terms of v (and P) is
given in VIL5.
Occasionally, the following criterion is useful:

Lemma 3.10 Let {X,} be irreducible and F a finite subset of the state
space. Then the chain is positive recurrent if E;7(F) < oo for alli € F.

Proof. Define o(i) = inf {k>1: X =i}, 7(F;0) = 0, Y, = 7(F;k) —
7(F;k —1). Then with m = max,cp E;7(F) we have for ¢ € F that

(@) o0

Eﬂ'(i) = Z Z Yk ‘ y;,—(p;kfl)]; k < U(Z)}

o
k=1

A
3
=

=
A

2
|
3
&

2

Since FE is finite, {X r } is positive recurrent. Thus E;o (i) < oo, implying
E;7(i) < oo and positive recurrence of {X,}. O

Problems

3.1 Compute a stationary measure if P is doubly stochastic, i.e. both the rows
and columns sum to 1.

3.2 Show that a Bernoulli random walk (E = Z, ppnt1) = 0, Prn—1) =1 —0)
is doubly stochastic and, if in addition 6 # 1/2, transient. Show that both v, =1
and pn, = 60"/(1 — )" are stationary.

3.3 (Continuation of Problem 2.1). Show that the generating function U[s] of the
stationary measure of the backward recurrence-time chain of a renewal process

is given by D[s] = (f[s] — 1)/(s — 1).



16 I. Markov Chains

3.4 A set A of states i called an atom if p,. is the same for all 4 € A. Show that
7(A) is finite P;—a.s. either for all ¢ € A or for no ¢ € A, and that in the first case
a stationary measure can be defined by

7(A)
v, = E; Z I(X, =j) with ¢ € A arbitrary.
n=1

3.5 Consider the recurrence times A,, B, of a renewal process. Show that
{(An, Bn)} is Markov with the set of states of the form (i,1) being an atom,
and that the stationary measure is given by vi; = fit;.

3.6 Show that {(Xn,Xn+1)} is a Markov chain, and compute the stationary
measure in terms of that of {X}.

3.7 Let {X,} have stationary distribution 7 and let 7 = inf {n > 1: X, = Xo}
be the time of return to the initial state. Evaluate Er7.

3.8 In block notation corresponding to E = F + F¢, write the transition matrix
as

p — Prr Prre
Prcr Pprepe |-

Show that {Xf } has transition matrix

PY = Ppp+ Prpe(I — Ppepe) ' Prep.

Notes A concept somewhat related to a stationary distribution is that of a
quasi—stationary distribution. For the precise definition, assume that a special
state, say 0 € E, is absorbing, and write Eg = E\{0}. Then A = (\)icE, is
called quasi-stationary if Py (X1 = j|7(0) > 1) = \;. Closely related are Yaglom
limits, defined as limits A; of P;(X, = j|7(0) > n). A main result in the area
states that a (proper) Yaglom limit is necessarily quasi-stationary. However, it
is more difficult to assess when a quasi—stationary distribution or a Yaglom limit
is unique (the finite case is, however, easy).

Under weak irreducibility conditions, it is trivial to check that when a quasi—
stationary distribution A exists, then Py (7(0) > n) = 6™ where 8 = P»(7(0) > 1)
= Px(X: # 0). This implies in particular E;R™® < oo for R < 1/6. A recent
result of Ferrari et al. (1995) goes the other way and states that under mild
additional conditions, IEZ-RT(O) < oo for some R > 1 is necessary and sufficient for
the existence of a quasi—stationary distribution. Further recent references in the
area include Seneta (1994) and Glynn and Thorisson (2001).

4 Limit Theory

The aim is to obtain the limiting behaviour of the p;;. We start by noting
that this is nontrivial only in the positive recurrent case:

Proposition 4.1 If state j is either transient or null recurrent, then pj; —
0 for any i € E.
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Proof. In the transient case, I(X,, = j) = 0 eventually so that the P,—
expectation p;; must tend to zero. In the null recurrent case, write

Py = ZIP = k)u,—r where u, = p};. (4.1)

Now {u,} is a renewal sequence governed by a distribution by infinite
mean and therefore by Corollary 2.3 u,, — 0. Letting n — oo in (4.1) and
appealing to dominated convergence yields p;; — 0. O

Theorem 4.2 (ERGODIC THEOREM FOR MARKOV CHAINS) Suppose that
the chain is irreducible, positive recurrent and aperiodic with stationary
distribution 7. Then pj; — m; for all j. That is, P" — 1.

Proof. We use again (4.1). By Theorem 2.2, u, — p~! where u is the

mean recurrence time E;7(j) = T Appeal to dominated convergence
n .
once more to get p;; — 7;. o

The conclusion is that the limiting distribution of X, is 7, irrespective of
the initial state. Replacing P; by P, shows that the same conclusion more
generally holds for any initial distribution v.

The case d > 1 can be quite easily reduced to the case d = 1. To this end,
we need the concept of cyclic classes, i.e. a partitioning of E into disjoint
sets Fy, ..., FEq_1 with the property that the only possible transitions are
of the form FE, — FE,;1 (here we identify E; with Fy, Eqyq with E; and
S0 on).

Proposition 4.3 Consider an irreducible chain with period d > 1, let i be
some arbitrary but fixed state and define

E, = {jGE:Pi?d+r>0f0rsomen20}, r=0,...,d—1.

Then Ey,...,Eq_1 partition E into nonempty disjoint sets, and if j €
E,, then Pj(X1 € E,41) = 1 and more generally P;(X,, € Erym) = 1.
Furthermore, these properties determine the E, uniquely up to a cyclic
rotation.

Proof. It is obvious that E,. # 0 (take n = 0). By irreducibility, each j is
in some F, so that Uo 'E, = E. Suppose that p"d” and p,’gd*s are both
> 0, and choose t with pﬂ > 0. Then nd+r+t and md+ s+t must both be
multiples of d, so that r — s = 0 (mod d), showing that the FE, are disjoint.
Clearly, j € E, and pj; > 0 implies k € Ey,,. Summing over all such k
yields P;(X,, € Er4m) = 1. Uniqueness is easy and is omitted. ]

It follows that if d > 1, then the chain Xy, X4, X24,... has Fy, ..., Fq_1
as disjoint closed sets. In the irreducible positive recurrent case it is fur-
thermore clear that {X,,4} is aperiodic positive recurrent on each E,, i.e.
admits a unique stationary distribution 7(") concentrated on E,. Now if 7
is stationary for {X,}, its restriction to F, is also stationary for {X,q},
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and thus by uniqueness 7 is a convex combination Zgil a, () of the ("),
Since

Qry1 = ]Pv'r(Xl S ET’) = ]P)ﬂ'(XO € ET) = O,
we must even have a,. = d~!. Also, the limiting behaviour of P, can easily

be seen from p?ed — 7r§r) if j,¢ € E,. Indeed, if j € E, then p;’,f*s =0 for
all n if k € E, 45, whereas if k € F, ;4 then by dominated convergence

+ +
p;}g+s — Z pjzp%l N Z P‘;'ZW;(J s) _ 7"1(: s) _ drp,. (4.2)
LeEr s LEE 4

In view of this discussion one can assume aperiodicity in most cases. An
irreducible aperiodic positive recurrent chain is simply called ergodic.

A further noteworthy property of the stationary distribution is as the
limit of time averages (aperiodicity is not required),

n
CSAX) = ) = wf = Bef(X) = 3 fm, (43)
k=0 i€E
which holds if f is say bounded or nonnegative. The (easy) proof is carried
out in a more general setting in VI.3; a corresponding CLT is in Section 7.
It is reasonable to ask what is the rate of convergence of p;; to m;. In
particular, there has been considerable interest in geometrical ergodicity,
defined by the requirement p}; — m; = O(d") for some ¢ < 1 independent
of i, 7. One has:

Proposition 4.4 (a) An ergodic Markov chain is geometrically ergodic
provided B;z™" < co for some i € E and some z > 1; (b) any irreducible
aperiodic finite Markov chain is geometrically ergodic.

Proof. Part (a) is a contained in the more general VII.2.11 proved later. For
(b), we can choose my; such that pj: > m;/2 for all m > my,. By finiteness,
this implies the existence of € > 0 and M < oo such that pj} > € for all
m > M and all k. Hence P;(7(¢) > (n+ 1)M |7(i) > nM) < 1 —¢, and
hence by the geometrical trials lemma A6.1 E;2"") < oo when z > 1 is
chosen with zM (1 — €) < 1. Now just appeal to (a). O

Also in the null recurrent case it is sometimes possible in various ways to
obtain limit statements in terms of the stationary measure which are more
refined than just pj; — 0. For example:

Proposition 4.5 If the chain is irreducible recurrent with stationary
measure v, then for all i,j,k,{ € E

m 0o
anopij 7
Zn=0"7y )
St

n=0Pek k

For the proof, we need two lemmas (the proof of the first is a straightforward
verification and omitted; generalizations are in Problem 5.1 and Section 6).

m — 00. (4.4)
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Lemma 4.6 The matriz P with elements Dij = Vjpji/Vi is a transition
matriz. Furthermore, the ijth element p/7' of P is given by p;* = v;pJ; [v;.
Lemma 4.7 Define N* =" I(X,, = 1) as the number of visits to i be-

fore time m. Then in the irreducible recurrent case, lim, o E; N/ /Ex N
=1 for any j,k € E.

Proof. It may be assumed that k = ¢. By recurrence, N/® T co and hence
E;N" 1 co. Since N;"™" = N™ + O(1), dominated convergence yields

E;N" & , BN "
= NTPR(r(i) = P ( -1 O
BN ,;) s =) =g N N Z =)

Proof of Proposition 4.5. Consider a Markov chain {)~( } with transition
matrix P given by Lemma 4.6. The expression for pi; shows that { X, } and
{)?n} are irreducible at the same time and (sum over n and use Proposition

1.2) recurrent at the same time. Hence {X’n} satisfies the assumptions of
Lemma 4.7, and we obtain

L ENPOEND XL Bh S ok
1 = lim =/ — = lim M ~n N
meee Ky N BN meoe YL Sono Pl
U i Z:); Opw Z:);:o p?k _ Yk . Z:;L Opz]
= — lim S = lim
j m—oo 3T 0P Dm0 Pl g m—oo 33 0P

O

Notes The terminology “ergodic” as used above is standard, but one should
beware not to confuse it with the meaning it has in general stationary process the-
ory (e.g. Breiman, 1968, Ch. 6), namely that the invariant o—field is trivial. In the
Markov chain setting, this does not require aperiodicity, whereas the tail o—field
of a positive recurrent Markov chain being trivial is equivalent to aperiodicity;
see e.g. Freedman (1971).

For further results on geometric convergence rates, see VII.2.10. Studying con-
vergence rates via asymptotics of p}; —m; as n — oo is not the only possible point
of view. For example, in a number of models one has observed that |[vP" — ||
(t.v. distance) changes from || — || to 0 rather abrubtly at a certain time point
N, and this N may be a more appropriate measure of the convergence rate than
sharp estimates of the deviation of p;; from 7; when n is so large that the dif-
ference is negligible anyway. Surveys of such broader aspects are in Rosenthal
(1995) and Saloff-Coste (1996).

One might expect from Proposition 4.5 and the ergodic theorem for Markov
chains that if the chain is also aperiodic, then the strong ratio property p}; /pp. —
v; /vk holds. This is, however, not true for all null recurrent chains and presents
in fact difficult and not completely solved problems; see Orey (1971). There
has also been much discussion of the strong ratio property in relation to
quasi-stationarity; see Kesten (1995).
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5 Harmonic Functions, Martingales and Test
Functions

There is a concept dual to that of a stationary measure, namely that of a
harmonic function h defined as a right eigenvector h of P corresponding
to the eigenvalue 1.2 The requirement Ph = h means

h(i) = Y pih(j) = Bh(X1) = E[A(Xp41) | Xp =],
JEE
i.e. that {h(X,)} is a martingale. Similarly, one defines h to be subharmonic
if Ph > h,ie. {h(X,)} is a submartingale, and superharmonic or excessive
if Ph < h,ie. {h(X,)} is a supermartingale.

Proposition 5.1 If the chain is irreducible and recurrent, then any non-
negative superharmonic function h is necessarily constant. Similarly, any
bounded subharmonic function h is constant.

Proof. We must show that h(i) = h(j) for ¢ # j. Now from the convergence
of any non—negative supermartingale we have that Z = limh(X,,) exists
P;—a.s. Since P;(X,, =i i.0.) = 1, it follows that Z = h(¢) P;—a.s. Similarly,
P;(X, = ji.0.) = 1 implies that Z = h(j) P;—a.s. and hence h(i) = h(j).
The subharmonic case is similar, using the a.s. convergence of any bounded
submartingale. O

When concerned with the recurrent case as in most of this book, the
implication is that (super— or sub—) harmonic functions do not play a ma-
jor role. In the rest of this section we will see, however, that a number
of useful recurrence/transience criteria and other properties can be stated
in terms of functions h (commonly referred to as test functions or Lya-
pounov functions), having properties which are rather similar and allowing
for arguments along the lines of the proof of Proposition 5.1.

The problems we study are trivial if F is finite, and in the infinite case
we write h(j) — oo if the set {j: h(j) < a} is finite for any a < oco.

Proposition 5.2 Suppose the chain is irreducible and let i be some fized
state. Then the chain is transient if and only if there is a bounded nonzero
function h : E\{i} — R satisfying

h(j) = Y pjxh(k), j#i. (5.1)
ki

Proof. Obviously h(j) = P;(7(i) = o0) is bounded and satisfies (5.1). If the
chain is transient, then furthermore h # 0. Suppose, conversely, that there
is an h as stated and define h(j) = h(j), j # i, h(i) = 0, @ = Ph(i). By
changing the sign if necessary, we may assume « > 0 so that PTL(Z) > 71(1)

2See Notes to Section 1 for notation, identication of h with h, of Ph with Ph, etc.



5. Harmonic Functions, Martingales and Test Functions 21

Since Ph(j) = h(j) for j # i, h is thus subharmonic. Hence if the chain is
recurrent, we have by Proposition 5.1 that h(j) = h(j) = h(i) = 0 for all
j # 1, contradicting h # 0. Hence the chain is transient. m|

Proposition 5.3 Suppose the chain is irreducible and let Ey be a finite
subset of the state space E. Then:

(i) the chain is recurrent if there exists a function h : E — R such that
h(z) — oo and

> pikh(k) < h(j), j¢ Eo. (5.2)
keE
(ii) the chain is positive recurrent if for some h : E — R and some € > 0
we have inf, h(x) > —oo and

> pish(k) < oo, j€ B, (5.3)
keE
Y pih(k) < h(j)—e j & Eo. (5.4)
keE

An often encountered compact way to write (5.3)—(5.4) is
Ph(j) < h(j) —e+bI(j € Eo).

The intuitive content of (5.2) is that the “center” of the state space in the
h—scale corresponds to small values, and that the drift points to the center;
similarly, (5.4) can be interpreted as a uniformly positive drift towards the
center.

Proof. By adding a constant if necessary, we may assume h > 0. Write
T = 7(Ep) and define Y,, = h(X,)I(T > n).

(i) Note first that (5.2) may be rewritten as E[h(X,+1) | Xn = j] < h())
for j & Ep. Let Xog =i & Ep. Then on {T > n}, X,, € Ey (this fails for
n=0if Xy € Ep) and hence

= (T > n)Eh(Xns1) | Fa] < I(T > n)h(Xn) = Yo (5.5)

If T <n,then Y, = Y,41 =0, and thus E;[Yy,41| %] <Y, ie {Y,} isa

nonnegative supermartingale and hence converges a.s., Y, = Y,.. Suppose

the chain is transient. Then h(X,,) < a only finitely often, i.e. h(X,,) — oo,

and since Yoo < 00, we must have P;(T = c0) = 0. But P;(T < c0) = 1 for

all ¢ € Fy implies that some j € Fy is recurrent, a contradiction.

(ii) Again let Xg =i &€ Ey. Then as in (5.5), we get on {T > n} that
Ei[Ynt1|Zn] < I(T >n)E;[W(Xpt1) | Fn]) < Y —el(T > n).

Again, the same is obvious on {T' < n} and hence

0< EYpp1 < EY, —eP(T >n) < --- g]EiYO—eZIPi(T>k).
k=0
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Letting n — oo and using Yy = h(i) yields E;T < e 1h(i). Thus for j € Ey,
EjT = ) pji+ Y pili(T+1) < 1+t )y phli
i€Ep i€ Eo i¢Eo
which is finite by (5.3). That the chain is positive recurrent now follows by
Lemma 3.10. O

Proposition 5.4 Suppose the chain is irreducible and let Ey be a finite
subset of E and h a function such that

> pikh(k) > h(j), j ¢ Eo, (5.6)
keE

and that h(i) > h(j) for some i & Eg and all j € Ey. Then: (i) if h is
bounded, then the chain is transient; (ii) if h is bounded below and
> pislh(k) = h(j)] <A, jeEE, (5.7)
keE
for some A < oo, then the chain is null recurrent or transient .
Proof. Define T' as above but let now Y;, = h(X,a7). It is then readily ver-
ified that {Y;,} is a submartingale when X¢ =i ¢ Fy. In (i), boundedness
then implies Y, *3 Y., where E; Yy > E;Yy = h(i). But Yo < h(i) on
{T < o0} so that P;(T < o0) < 1, showing transience.
For (ii), we can choose j € Ey such that a = P;(7(¢) < T) > 0. Then

E;7(j) > E;T > oFE;,T so that is suffices to show E;T = co. Suppose
E,T < oo. Then in particular, T < oo P;—a.s. and by (5.7),

E; Z|Y Y, = E; ZIT>n [[Vo=Yoo1l| Faa] < AET < oo
Thus we can interchange summation and expectation to get

E, Yy

T o)
EYo+Ei > (Yo —Yo1) = h(i)+ > EiY, =Y 13T >nj
n=1

n=1

— i I(T > n)E [Yn—Yn—l‘yn—l}) > h(i),

using the submartingale property in the last step. This is a contradiction
since Yp < h(i). |

Proposition 5.5 Suppose the chain is irreducible and recurrent, and let
FEy be a finite subset of the state space E. Then the chain is geometrically
ergodic if for some h > 0 with h(i) > A > 0, i € FEy, and some r > 1

> ph(k) < oo, jeEy, (5.8)
kEE



5. Harmonic Functions, Martingales and Test Functions 23

Y pih(k) < h()/r, i ¢ Eo. (5.9)
kEE
Proof. Let Xog = i & Eo, Y, = r"h(Xuar). Then it follows easily from
(5.9) that {Y,,} is a nonnegative supermartingale. By recurrence, the limit
is Yoo = r7h(X71) > ArT. On the other hand, E;Y,, < E;Yy = h(i). For
Jj € Ey, (5.8) then yields

Ej?”T S r4+r ijiEi’l"T S 1+A_1 Zpﬂh(l) < 0.
i€ Ey iZ Eo

It remains to show that Eer < for all j € Ey implies geometric ergod-
icity. By Proposition 4.4, this will follow if we can show E;r7 < oo for all
1 € Ey. This in turn follows by a variant of the proof of Lemma 3.10, left
as Problem 5.3. |

Proposition 5.6 Suppose the chain is irreducible and positive recurrent
with stationary distribution w, and let f, g, h be nonnegative functions on
E such that

> pih(§) < h(i) = f(i)+g(i), i€E. (5.10)
JEE

If m(g) < o0, w(h) < oo, then also 7(f) < oo.

Proof. We can rewrite (5.10) as f < h—Ph+g. Thus P*f < P*h— Pk+1p ¢
P*g and for any i,

> PEf(i) < Ph(i)— P"'a(i) + > PRg(i) < Ph(i) + Y Pkg(i).
k=1 k=1 k=1

Applying 7 to the left and noting that 7(Ph)/n = w(h)/n — 0 yields
m(f) < 7(g) < oo o

Example 5.7 Consider a queue where service takes place at a discrete
sequence of instants n = 0,1,2,..., let X,, be the queue length at time
n, B, the number of customers arriving between n and n + 1 and A,, the
maximal number of customers that can be served at the (n + 1)th service
epoch. Thus with Y,, = B,, — A,

Xnt1 = (Xn"'Yn)-i_a (5-11)

a recurrence relation (the Lindley recursion) also typical for many other
queueing situations and discussed in length in III.6. For example, this could
describe the queue at the stop of a bus with regular schedule, with A,, the
number of free seats in the nth bus.

Assume further that the random vectors (4,, By,) are i.i.d.; then {X,}
is a Markov chain on N. Let p = EY,,. With h(i) = ¢, (5.11) then yields
E;W;, = E(i + Y1)t > i+ p. Thus, if 4 > 0, Proposition 5.4(ii) shows
immediately that {X,,} cannot be positive recurrent. Suppose on the other



24 I. Markov Chains

hand that p < 0 and let p; = E[Y,; Y,, > —i]. Then u; — p, i — oo, and
hence for i so large, say ¢ > i, that p; < p/2,

Ei+Y)" = Eli+Y; V1> —i] < i+p < i+p/2

Thus Proposition 5.3(ii) with Eq = {0,...,i0}, k(i) = i, e = —p/2 yields
positive recurrence.

For geometrical ergodicity, assume p < 0 and that Ez51 < oo for some
z > 1. By replacing z by a smaller z if necessary, we may assume r; =
EzYt < 1. We have Ez**Y1 = 2 and as above, one then gets ;21 < 27
for i > iy and some r € (r1,1). Thus Proposition 5.5 with h(i) = 2* yields
geometric ergodicity.

Finally, assume p < 0, pua = EY,2 < co. With h(i) = i?, we then have
Eh(i+Y1) = h(i)+pa+2ip. As above, this implies Ph(i) < h(i)— f(i)+g(4)
for i > ig where g(i) = p2/2, f(i) = —ip. Since 7(g) < oo, Proposition
5.6 yields 7(f) < oo. Le., the stationary distribution has finite mean when
pa < oo [see further X.2]. O

Problems

5.1 (DOOB’S h~TRANSFORM) Suppose the chain is irreducible and h > 0 har-
monic with h # 0. Show that k(i) > 0 for all i and that the matrix P with
elements p;; = h(j)pi;/h(i) is a transition matrix.

5.2 Consider a population process satisfying the assumptions of Problem 1.4
and with all states ¢,j > 1 communicating. Show that the extinction probability
gi = Pi(7(0) < o0) is either 1 for all ¢ > 1 or 0 for all ¢ > 1. Let Ey be finite
and suppose (5.2) holds. Show that ¢; = 1 if h(j) — oo and that ¢; < 1 if h
is bounded with h(i) < h(j) for some ¢ ¢ Eo and all j € Ey. [Hint: Consider
{)Z'n} evolving as {X,} except that po1 = 1 rather than po1 = 0, and use h as
test function for {X,}.] Show in particular that if E[X, 1 |X,] < X, (ie. the
expected number of children per individual does not exceed 1), then extinction
occurs a.s.

5.3 Carry out the last part of the proof of Proposition 5.5.

Notes Results of type Proposition 5.3, 5.4(i) have a long history and are often
referred to as Foster’s criteria. A main reference for test function techniques
is Meyn and Tweedie (1993), who also treat the case of an uncountable state
space (essentially, all results carry over at the cost of more tedious proofs and
formulations). It is known that many of the sufficient conditions given above are
also necessary in the sense that a test function with the stated properties must
exist. However, finding the appropriate one is far from easy in more complicated
models; Brémaud (1999) surveys a number of examples dealing with nonstandard
queueing models. See also Fayolle et al. (1995).
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6 Nonnegative Matrices

Finite square matrices with nonnegative elements occur in a variety of
contexts in applied probability. The so—called Perron—Frobenius theory of
such matrices describes in quite some detail their spectral properties (and
therefore also the asymptotic properties of their powers), and is therefore
a powerful and indispensable tool for many applications. We shall here
develop this theory by exploiting the intimate connection to Markov chains
with a finite number of states.

We start by recalling some facts from linear algebra. Let A be any p x
p matrix and define for A € C Ey = {x € C?: x # 0, Ax = Ax}. Thus
sp(A) = {\: E) # 0} is the set of eigenvalues of A or the spectrum of A,
and spr(A) =sup{|A| : A € sp(A)} is the spectral radius of A. If X € sp(A),
then X is a root in the characteristic polynomial det(A — AI), and if the
multiplicity is 1, we call A simple. Then also the geometric multiplicity
dim(EA U {O}) is 1, i.e. the eigenvector is unique up to a constant. If
A € sp(A), then ) is also eigenvalue for the transposed matrix A'. The
existence of an eigenvector for AT then means that vA = \v for some row
vector v # 0, called a left eigenvector for A (x € E) is a right eigenvector).
The following lemma is standard (all statements are easy to verify if one
writes A on the Jordan canonical form):

Lemma 6.1 (i) sp(A™) = {A\™: XA € sp(A)}; (ii) the A™ -multiplicity of
A € sp(A) is the sum of the A-multiplicities of the \; € sp(A) with A" = X;
(iii) if A € sp(A) is not simple, then either dim(Ex U {0}) > 1 or for any
h € E\ we can find k with Ak = h + \k; (iv) A" = O(n"*[spr(A)]") for
some k=0,1,2,....

We start by examining the spectral properties of ergodic transition
matrices:

Proposition 6.2 Let P = (pi;)ij=1,..p be an ergodic p X p transition
matriz with stationary distribution . Then spr(P) =1 and 1 is a simple
eigenvalue of P with w and 1 = (1 --- 1)7 as corresponding left and right
eigenvectors. Furthermore for A € sp(P), A # 1, we have |A| < 1 and
with Ay = max{|A| : X\ € sp(P), X # 1} it holds for some k that the powers
P" = (p};) satisfy

Py = i+ O0(n*A1), n — occ. (6.1)

Proof. Tt is clear that #P = o, P1 = 1 and hence 1 € sp(P). Also
h € E; means that h is harmonic and thus h = ¢l (cf. Proposition 5.1;
the extension to the complex case is easy). Thus if 1 is not simple, Lemma
6.1(iii) shows that we can find k with Pk = 1+ k. But then P"k =nl+k
which in Markov chain terms means that E;kx, = n + k;, contradicting
that k is bounded in the finite case. Similarly, the ergodic theorem means
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that P" — 1 and hence if A € sp(P), k € E\, we have \"k = P"k —
1mk. But A"k can only converge if |\ <1 or A =1.

It only remains to prove (6.1). Write P = Py + P with Py = 1,
Py = P — 17. It is then readily checked that PPy, = P3P, = 0 and
hence P" = P + P3. Tt is also easily seen that P = Py = 1. Hence by
Lemma 6.1(iv) it suffices to show that if A € sp(P3)\ {0}, then || < A;.
But from Pk = Ak we get Pk = (P1+ P3)A\ "' Pk = )k, i.e. X € sp(P).
If A =1, we would have k = ¢1 and hence Psk = 0 which is impossible.
Hence |A] < A;. O

If A1 <0 <1, (6.1) may be rewritten as pj; = m; + O(d"), and we have
obtained a second proof of Proposition 4.4(b), stating that any irreducible
finite Markov chain is geometrically ergodic.

A matrix @Q is nonnegative if g;; > 0 for all 7, j, and substochastic if also
Q1 < 1, i.e. the rows sums are at most 1. The following result is often used
and holds under weaker conditions than irreducibility:

Proposition 6.3 Let Q be substochastic, such that to each i there is a k
and ji, ..., Jm with >, que < 1 and ¢ij, 45,4, - - - @jok > 0. Then spr(Q) < 1.

Proof. Let A be an eigenvalue of absolute value spr(Q) and let h € E,.
Consider a Markov chain {X,,} on {0,1,...,p} such that 0 is absorbing,
and the probability of a transition i — j is ¢;; for 4,5 > 1 and 1 — >, qis
for j = 0. The assumptions on @ and a geometrical trials argument (cf.
AG6.1) then easily yield that X, = 0 eventually and that taking hg = 0
makes A" "hx, a martingale. If |A\| > 1, boundedness would imply L;—
convergence (necessarily to hg) so that taking Xo = ¢ yields h; = hg = 0
which contradicts h # 0. Hence |A| < 1 and spr(Q) < 1. |

We shall now derive a close analogue of Proposition 6.2 for nonnegative
matrices A. We shall adopt the definitions of irreducibility and the period
d from transition matrices to nonnegative matrices by noting that they
depend only on the pattern of entries %, j with a;; > 0. Thus A is irreducible
if for any 4,7 we can find m such that a;; > 0, and we have:

Lemma 6.4 If A is an irreducible nonnegative matriz, then the greatest
common divisor d of the m with aj} > 0 does not depend on i. If d = 1,
then it holds for all sufficiently large m that i} > 0 for all i, .

Proof. Choose a transition matrix P with p;; > 0 for exactly the same i, j
as for which a;; > 0. Then a7} > 0 precisely when pj; > 0 and results from
Section 1 complete the proof. O

The d in Lemma 6.4 is called the period of A, and A is aperiodic if d = 1.

Theorem 6.5 (PERRON-FROBENIUS) Let A be an irreducible non—
negative p X p matriz. Then:

(a) the spectral radius Ao of A is strictly positive and a simple eigenvalue of
A with the corresponding left and right eigenvectors v, h satisfying v; > 0,
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hi; >0 for all i;

(b) if A is also aperiodic, then \; = max{|\[: X € sp(A)\{Xo}} < Ao .

Furthermore, if we normalize v,h by vh = Y v;h; = 1, then for some k
A" = A\"hv +0(n*A?), n — oo; (6.2)

(c) if A has period d > 1, then |A| < Ao for any A € sp(A). Further-
more, X € sp(A), |A| = Xo holds exzactly when X\ is of the form XoOF,
k=0,1,...,d—1, with % = e2™#/4 the roots of unity.

A C A C
(2) (b)

Figure 6.1

Figure 6.1 depicts sp(A) for the aperiodic case in (a) and for the periodic
case d = 5 in (b). The eigenvalues fall in pairs of complex conjugates since
A is real. We shall refer to \g as the Perron—Frobenius root of A.

The proof of the Perron—Frobenius theorem will be reduced to the
Markov case in Proposition 6.2. We need some lemmas.

Lemma 6.6 If A has all a;; > 0, then there exists A € sp(A), © € Ey
with A >0, 2; >0,i=1,...,p.

Proof. The basic observation is that all a;; > 0 implies

p
x; >0, Za:Z >0 = all components of Ax are > 0. (6.3)
i=1
Define
p
K = {wGRP: ng,-gl,zmzl},
i=1
S = {MZOI szuwforsomea:EK},

A =sup{p: p €S} Since AK is compact, A\ < oo. For a given ¢ € K,
(6.3) implies Az > ex for small enough €, and hence A > 0. Now choose
A €8, x, € K with \,, T A\, Ax,, > \,x,. Passing to a subsequence if
necessary, we may assume that @ = lim x,, exists. Then Ax > \x and we
shall complete the proof by showing that indeed Ax = Az (z; > 0 is then
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ensured by (6.3)). Otherwise let y = cAx with ¢ > 0 chosen so that y € K.
Then Ay — Ay = cA(Ax — Az) has all components > 0 by (6.3). Hence
Ay > (A + €)y for some € > 0, a contradiction. a

Lemma 6.7 Suppose that Ak = Ak with A > 0 and all k; > 0. Then the
matriz P with elements a;jk;/Nk; is a transition matriz, P1 =1, and the
formulas

A = MNP, RA = hP, 1A =Pk

establish a one-to-one correspondence between A\ € sp(A) and NP €
sp(P) and the corresponding right and left eigenvectors (mAA = \AmA
etc.). Furthermore, N is simple for A if and only if \F is simple for P.

Proof. Everything is a straightforward verification except for the last
statement which follows from

det(P — uI) = det(\"'A — puI) = A Pdet(A — p\).

Indeed, multiplying the ith row by k; and the jth column by k‘j_l leaves
the determinant unchanged and transform P into A~'A, I into I. m|

Proof of Theorem 6.5 in the aperiodic case. Choose first m with all a7 > 0,
cf. Lemma 6.4, and next A\, k with A™k = Mk, A > 0, all k; > 0, cf. Lemma
6.6. Then by Lemma 6.7 1 is simple for P™ = (a}}k;/k;) and hence A
simple for A™. If Ao € sp(A) satisfies AJ* = A, then by Lemma 6.1(ii) Ao
is simple for A. Choose h € E),. Then A™h = A\j*h = \h, and since X is
simple for A™, it follows that we may take h = k. Then by nonnegativity,
Ah = Xoh implies A\g > 0 and P = (a;;k;/Aok;) is a transition matrix.
Applying Proposition 6.2 and Lemma 6.7 everything then comes out in a
straightforward manner. For (6.2), note that if #P = o, w1l = 1 and we
let v; = m;/h;, then vA = \ov, vh = 1 and

Qi = Ao h, )\Ohj {WJ‘*'O(” ()\0)) = Aghiv; + O(n"AY).

O

Proof of Theorem 6.5 in the periodic case. We can reorder the coordinates
by a cyclic class argument so that A has the form

0o A 0 ... 0
0 0 A, 0
0 0 0 ... Aj
A; O o ... 0

Letting By = ApApy1--- AgAq--- Ap_q, it follows that A? is block—
diagonal with diagonal elements By, which are irreducible aperiodic. Let py,
be the Perron—Frobenius root of B and Bkh(k) = ukh(k) with hz(-k) > 0.
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Now
B AR = A B hPTY =y AghFTD

(identifying d + 1 with 1). Since A RFD # 0, it follows that pry1 €
sp(Byx) and hence pg+1 < uk. Hence all puy are equal, say pr = p, and we
may take hk) = Akh(k+1) =A... Ad,lh(d). Now

d
det(A* —nI) = H det(By —nl).
k=1

This shows that if A € sp(A), then n = \¢ is in sp(By) for some k. Hence
IA| = [n|Y/® < [u[/4 = X (say) and || = Ao can only occur if A = py, i.e.
A is of the form \g#* for some k. Also the A% multiplicity of u is exactly
d. By Lemma 6.1(ii) the proof is now complete if we can show that each
o0 is an eigenvalue and that z(© e E), may be taken with all zi(o) > 0.
But an easy calculation shows that

.
20 = (()\oﬁk)oh(l)T ()\ng)dflh(d)T)

satisfies Az = )\ 0k z(*) O

Problems

6.1 Is it true that if P is an infinite ergodic transition matrix, then all pi; > 0
for some n?

6.2 Suppose that A is an irreducible aperiodic nonnegative matrix such that
A™ is a transition matrix for some m = 1,2,... Show that then A is itself a
transition matrix. Show also that the result fails in the periodic case.

6.3 Let A be irreducible and nonnegative, and assume that Az < Az with
x > 0,z # 0 and A > 0. Show that spr(A) < X provided either (i) A is
irreducible, or (ii) all z; > 0. Show also in case (i) that spr(A) < A if in addition
Ax # \x.

Notes Standard references for nonnegative matrices are Berman and Plem-
mons (1994) and Seneta (1994). Of extensions of the Perron—Frobenius theorem,
we mention in particular operator versions such as the Krein—-Rutman theorem,
e.g. Schaefer (1970), and the more probabilistic inspired discussion of Nummelin
(1984).

7 The Fundamental Matrix, Poisson’s Equation
and the CLT

We assume throughout this section that {X,} is irreducible positive
recurrent with stationary distribution 7.
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Let f be a real-valued function on F, sometimes written as a column
vector f (see Notes to Section 1 for this and other notational issues like
7(f) versus wf, Pf versus Pf, etc.). The equation

g=f+Pg (7.1)
with g the unknown, is referred to as Poisson’s equation.

Proposition 7.1 Assume that f is m—integrable. Then: (i) a necessary
condition for the existence of a w—integrable solution to Poisson’s equation
is (f) = 0; (ii) a m—integrable solution is unique up to a multiple of 1; (iii)
if m(f) = 0, then for any k g(i) = E; Zg(k)fl f(Xy) is a finite solution
satisfying g(k) = 0.

Proof. Multiplying (7.1) by = immediately gives (i). If g,, g, are solutions,
then d = g, — g, satifies d = Pd, i.e. d is harmonic and must therefore be
constant by Proposition 5.1, showing (ii). In (iii), we have from Corollary
3.6 that

T(k)—1 T(k)—1
r(|f)Eer(k) = Ee Y [£1(Xn) > Pu(r() <7(k)E; > [£I(X0)
n=0 n=0

This shows first that g(j) is finite and next, upon replacing |f| by f in the
left identity, that g(k) = 0. Conditioning upon X; and using the definition
of g then gives

g(i) = fG)+> pijg(d) = )+ > pig() = f@)+ Pg(i),
J#k J€E

which is the same as (7.1). O

Theorem 7.2 Let f be a w—integrable function on E and define f(z) =
f(i)—7(f). Assume that g is a solution of g = f+ Pg and that m(g?) < .
Then

(f(Xo) + -+ f(Xuor) —nn(f)) 2 N(O,6%(f))  (7.2)

S-

where o*(f) = w(g%) — 7 ((Pg)?).

Proof. We may assume w.l.o.g. that 7(f) = 0 so that f = f Let Ay =
9(Xy) — Pg(Xp—1). Then g = f + Pg implies

> (X)) = g(Xo) - +2Ak. (7.3)

k=0

Since Pg(Xk—1) = E(g9(Xk)|-Fk—1), the sequence {Ay} is a martingale
difference sequence, and we have

V(ZT(A]J?]@,l) = Var(g(Xk)|ﬂk,1) = WQ(kal)
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where w?(i) = ¢g2(i) — (Pg)?(i). Here m(w?) = o2(f) is finite by assumption
so that Y7 Var(Ay | Zr_1)/n — o2(f) by the LLN (4.3). Therefore an
appropriate martingale CLT (e.g. Hall and Heyde, 1980, p. 58, or Shiryaev,
1996, p. 541) shows that S°7 Agx/n'/2 has a limiting N (0, 02(f)) distribu-
tion. In view of (7.3), this is equivalent to the assertion of the theorem.

O
Now assume that E is finite and define the fundamental matriz Z by
Z=(-P+1m)' =) (P—1x)" I+Z " 1w). (7.4)
n=0

Note that by Proposition 6.2 we have |A| < 1 for any eigenvalue of P — 17
when P is aperiodic, so that the first series converges and equals the inverse;
the last expression for Z follows by verifying by induction that (P —1)" =
P" — 17 (we omit the easy proof that (7.4) also holds in the periodic case).
Some easily verified identities are

nZ=mxn, Z1=1, PZ=ZP=Z7Z -1+ 1m. (7.5)
Proposition 7.3 Assume that E is finite. Then if wf = 0, the unique
solution g of Poisson’s equation satisying mg =01isg=Zf.

Proof. From (7.5), we first get wg = wf = 0 and next
Pg = (Z-1+1m)f = g—f+0. o
TrjEﬂ'T(j) =7
TiEa7(j) — miEiT(j) i # ]
Note in particular that whereas the calculation of E;7(:) = 1/m; is easy,

so is not the case for E;7(j), and the answer (z;; — z;;)/m; is provided by
Proposition 7.4.

Proof. Define f =1, — ;1. Then n(f) = 0, and so by Proposition 7.1(iii)
the solution g of Poisson’s equation with ¢g(j) = 0 is given by

T(j)—1
g(i) = Ei Y I(Xn =j) —mEir(j) = i — mET(j).

n=0

Proposition 7.4 z;; = {

Thus the solution g* satifying w(¢*) = 0 is
g (i) = g(@) —7(g) = 6ij — MEiT(j) — 7j + 7 ErT(5).
On the other hand, by Proposition 7.3 we have
9" (i) = LiZf = z;—m;.
Equating these two expressions yields the result (if ¢ = j, note that

’/T]'EZ'T(j) = (52']' = 1) O

Corollary 7.5 In the finite case, di(f) = w(2feZf—feof) —72 where
f=m=f and e denotes multiplication element by element, (a e b); = a;b;.
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Proof. We have 7(f) = f, g = Z(f — f1) in Theorem 7.2 and thus

o*(f) = m(geg— PgePg)
= 7T(Zf e (Zf—f1)—(Zf - f)e(Zf - 1))
= w(F'1-27Zf ~ fof+2f e Zf)
= T -2 +n(-fef+2f2f).
where we used (7.5) repeatedly in the second step. O

8 Foundations of the General Theory of
Markov Processes

We shall consider two generalizations, first that of a general (not necessarily
countable) state space F, and next that of a continuous time parameter
t € [0, 00).

In the general state space case, one needs to assume that F is equipped
with a measurable structure, i.e. a o—algebra & to which all subsets of F
considered in the following are assumed to belong. Instead of the transition
matrix we have a transition (or Markov) kernel, i.e. a function P(z, A) of
x € E and A € &such that P(z,-) is a probability on (E, &) for each z and
P(-, A) is &measurable for each A.

Markov chains with transition kernel P and the corresponding Markov
probabilities P, (with p a distribution on (E,&)) are defined by the
requirements P, (Xo € A) = u(A),

P.(Xnt1 € A| ) = P(Xn,A) (8.1)
where %, = o(Xop,...,Xpn). With the usual a.s. interpretation of
conditional probabilities, it follows from (8.1) that

P,(Xpnt1 € Al X, =2) = P(z,A) (8.2)

Also, say by induction, one easily gets

Pu(Xo € Ag, X1 € Ay,..., Xp € A)
= / ,u(da:o)/ P(xo,dxl)---/ P(zp—2,dzp_1)P(xn_1,A4,). (8.3)
A[) A1 An—l

This formula also immediately suggests how to define the Markov proba-
bilities and the Markov chain: take Xg, X1, ... as the projections EN — F
and let

En=0(Xo,...,Xn), Ew=0(X0,X1,...)=6&".

Then by standard arguments from measure theory it can be seen that
the r.h.s. of (8.3) in a unique way corresponds to a probability P}, on
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(EN,&,). The P, have the consistency property P}i(A) = P(A4), m < n,
A € &,,, and hence define a finitely additive probability on the algebra
U3°&,. The desired P, is the (necessarily unique) extension to & =
o (UPé,). The existence, i.e. the o-additivity on U°é&,, may be seen
either from Kolmogorov’s consistency theorem which requires some topo-
logical assumptions like E being Polish and & the Borel o—algebra, or by a
measure-theoretic result of Ionescu Tulcea (see Neveu, 1965).

The continuous—time case is substantially more involved. What will be
needed in later chapters is, however, only a few basic facts and we shall
therefore just outline a theory which needs several amendments when
pursuing Markov process theory in its full generality.

One does not get very far without topology, so we assume right from the
start that £ is Polish with & the Borel o-algebra. That a process { X},
with state space F is Markov means intuitively just the same as in discrete
time: given the history %#; = o(X,; s < t), the process evolves from then
on as restarted at time 0 in state X; and depending on .%; through X; only.
Formally, this may be expressed by the existence of a family of probability
measures P, with the property P,(Xo € A) = p(A4),

E,[M(Xspe; t>0) | F] = Ex h(Xy;t>0) (8.4)

where P,,, E, refer to Xo = z and (8.4) should hold for a class of functions
h of the process sufficiently rich to determine the distribution of {X;},+,.
For example, it would suffice to consider the class Zof all h of the form

h(ze; t>0) = [[ Iz, € 4)). (8.5)
i=0
If {X¢},5, has paths say in D = D([0,00), E), then (8.4) for all h €
will be equivalent to (8.4) to hold for all bounded measurable h: D — R.
In fact, an easy induction argument shows that it is even sufficient to let
n = 01n (8.5), and the Markov property in this equivalent formulation then
becomes

P(Xe1t € A| Fs) = P'(Xs,A) where P'(z,A) =P, (X; € A). (8.6)

Given a Markov process, it is clear that P'(z, A) as defined by (8.6) is a
transition kernel. Using the Markov property we get

P5(a, A) = E,P(Xoss € A| 7,) = EPY(X., A) = / P! (y, A)P*(z dy),

which in operator notation is written P!** = P*P* and referred to as the
Chapman—Kolmogorov equations (or the semi—group property). Conversely,
given a family {P'},., satisfying the Chapman-Kolmogorov equations, it
is possible to construct a corresponding Markov process. To this end, we
proceed as in discrete time: let X; : El%>) — E be the projection and
define for 0 = ¢y < t; < --- < t, a probability on the sub-o-algebra
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0(Xy,;4=0,...,n) by
PM(XtO e AQ,th (S Al,. ..,th (S An)

_ / 1(dao) / Pt (g, day)
Ao Aq
y / Proi=tn-2(z,_y dan )Pt (e, An). (8.7)
A

n—1

That this defines a semigroup is readily apparent from the Chapman—
Kolmogorov equations. Since FE is Polish, there thus exists a unique
extension to £1°) and the Markov property (8.4) with h € S is inherent
in the definition (8.7).

There are, however, severe difficulties associated with this approach.
First, the intuitive description of a particular model is seldom in terms
of the P*. Next, the construction makes & [0:%) the collection of measur-
able sets, i.e. when A ¢ £°°) one cannot make sense of P,,(A4). But &>
is not very rich since one can easily see that A € & [0,00) implies that A de-
pends on the X; for ¢ in a countable collection T4 C [0, 00) of time points.
Thus for example sets like

{w: X¢(w) is a continuous function of ¢}
is not in <§’[O’°°), and (when say £ = R) similarly maxo<;<7 X; and
inf {t : X; = 0} are not measurable. Hence it is necessary to construct ver-
sions of the process with sample paths say in D. This requires further
properties of the P!, typically continuity requirements. We shall not go
into this since the explicit examples that we shall encounter will almost
a priori satisfy such path regularity properties. For example, queues are
constructed by simple transformations of sequences of service times and
interarrival times, and not starting from semi—groups, consistent families
and so on.

Now let o be a stopping time w.r.t. {#;},., amd let .#, be the stop-
ping time o-algebra, cf. A10. We say that {X;},., has the strong Markov
property w.r.t. o if a.s. on {o < oo}

P(Xo4t € A| Z,) = P'(X,,A); (8.8)
again, this implies a functional form
Eu[h(Xoge; t > 0) | Fo] = Ex, h(Xs;t>0).

The process is strong Markov if it has the strong Markov property w.r.t.
any stopping time o.

Proposition 8.1 A Markov process {X;},~, has the strong Markov prop-
erty w.r.t. any stopping time o which assumes only a countable number of
values, o € {0, $1, $2,...}.
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Proof. We must show that for A € & F € %,
Pu(Xort € A; F, 0 <o0) = E,[PY(X,,A); F, 0 < o0].

However, if F C {o = si} this is immediate from the Markov property
(8.4). In the general case, decompose F'N{o < oo} as the disjoint union of
the sets F N {o = s;} and sum over k. O

As an immediate consequence, we have:

Corollary 8.2 Any discrete time Markov chain (with discrete or general
state space) has the strong Markov property.

Also in continuous time, Proposition 8.1 is greatly helpful in establishing
the strong Markov property. A typical example is the following:

Corollary 8.3 Assume that {X;},~, has right-continuous paths and that
for any bounded continuous f: E — R and any s it holds that E, f(X) is
a continuous function of x or, more generally, that the paths of Ex, f(X)
are right—continuous functions of t. Then the strong Markov property holds.

Proof Let o be a given stopping time and define (k) = n27% on
{(n —1)27% < 6 <n27%}. Then the o(k) are stopping times and o (k) | o
as k — oo. By Proposition 8.1 we have furthermore

Eu[f(Xothy+s) | o)) = Ex, g f(Xs). (8.9)
If I’ € Z,, then F € %, (), and hence (8.9) implies

Eu[f(Xa(k)+s); F] = EM[EXU(k)f(Xs); F]

A check of the assumptions show that the integrands converge pointwise.
Thus by dominated convergence,

Eulf(Xots); Fl = Eu[Ex, f(Xs); F].

The truth of this for all bounded continuous f and all F' € %, implies
(8.8). O

We next consider the hitting time 7(A) of a Borel subset A, 7(4) =
inf {t >0: X; € A}. That 7(A) is a stopping time is a triviality in discrete
time since then obviously

n

{r(4) <n} = |J{Xr €A}

k=1
However, in continuous time some (perhaps unexpected) difficulties arise
even for elementary sets like closed and open ones, and this is in fact one
of the reasons that one needs to amend and extend the theory that has
been discussed so far and which may still appear reasonably simple and
intuitive. We discuss these points briefly below, but first state and prove
a more elementary result that is sufficient to deal with virtually all the
processes to be met and all the questions to be asked in this book.
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Proposition 8.4 Suppose the paths of {X;} are piecewise continuous with
right limits. Then:

(a) the jump times 0 < t(1) < 1(2) < --- are stopping times w.r.t. {F};
(b) if A is closed, then T(A) is a stopping time w.r.t. {F}.

Proof. Let Q(t) be the set of numbers of the form ¢t with ¢ rational and

0 < ¢ <1, and let d be some metric on E. Then the sets G1 = {¢(1) < ¢}
and

UN U {lu-sl<1/n dX.,X) > 1/m)

m=1n=1u,s€Q(t)

coincide. In fact, on G we have for some m a jump of size at least m~!, and
this easily gives G1 C G2. Conversely, the uniform continuity of {X} ., on
GS easily shows G C G$. Since d(X,, X;) is #;—measurable for u,s < t,
we have G1 = G2 € %, and thus «(1) is a stopping time. For +(2), just add
the requirement u, s > ¢(1) in the definition of G2, and so on.

To prove (b), define m(S) = inf {d(X,, A); u e S}, S C [0,00). If A is
closed, we have X4y € A by right-continuity, and hence in the special
case of continuous paths

{r(4) <t} = {m( [0,t])) =0} = {m(Q(t)) =0} € #. (8.10)
But if I, ,, = {u k)—1/n<u<(k gt},then
{uGIk,n} = {u<uk) <tA(u+1/n)} € F.
Thus as in (8.10)

{r(4) <t}

lim. {T(A) c [O,t}\fj Ik,n}
k=1
nlln;@{m(@(t)\gl I,w) - o} c 7.
0O

We conclude with a brief discussion of some more difficult topics which,
however, are not essential for the rest of the book. Define Z;y = NgstF
and let " denote the P, —completion of ¥ (some arbitrary o—field), i.e.
the smallest o—field containing ¢ and all P,—null sets. Then:

Proposition 8.5 Suppose that {X:} has right—continuous paths. Then:
(a) If A is open, then T(A) is a stopping time w.r.t. {fﬂ_};

(b) For any Borel set A, T(A) is a stopping time w.r.t. {%i)}

Proof of (a). If A is open and X,, € A, then X1, € A for all small positive
v. Hence the event {7(A4) < ¢} may be written as

N U {XseA}—ﬂ U {X.e4l,

n=1s<t+1/n n=1seQ(t+1/n)
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and here the event on the r.h.s. is clearly in ;.
The proof of (b) is far beyond the present scope (and need!), and we
refer, e.g., to Dellacherie and Meyer (1975-93). O

One now defines a history of the process as an increasing family {¢;},-
of o—fields (a filtration) with %, C ¥, (or equivalenty X; ¥,—measurable)
for all ¢, and say that {X;} is Markov with transition semigroup {P*} w.r.t.
{4} and some fixed governing probability measure if

P(Xiss € A|9,) = PYX,,A). (8.11)

Apart from {#}, some main candidates for the history are {%#;y+} and
{ﬁgi) } It follows immediately from the chain rule for conditional expec-
tations that if {X,} is Markov w.r.t. some history, then {X,} is Markov
w.r.t. {#} as well. Conversely:

Proposition 8.6 Let {X;} be Markov w.r.t. {#} and satisfy the reqular-
ity conditions of Corollary 8.3. Then:
(a) for each p and each bounded measurable h, we have P,—a.s. that

Eu[h(Xeqe5t > 0) | Fs] = Eu[h(Xepeit >0)| Foi]
= Eu[h(Xspsit > 0)| 28]

(b) (BLUMENTHAL’S 0-1 LAW) if A € Fy, then for o fized x € E either
P,(A) =0 or P,(A) = 1.
(c) {X:} is Markov w.r.t. { %1} and {ﬁﬁi)} as well.

Proof. (a) The second identity is just a general property of the completion
operator. For the first, arguments similar to those used many times above
show that it suffices to take h of the form h(X;) with ¢ > 0 and h con-
tinuous and bounded. Since then A(X;ys41/n) 22 h(Xepe), it follows from
a continuity result for conditional expectations (Chung, 1974, p. 340) that
indeed

B[ Xoe) | Foy] = Jim By [h(Xpri1/m) | Fosryn]

= lim Ex,,, hX:) = Ex,h(Xy) = Eu[h(Xspe)| Fs),

n—oo s+1/n

and the proof of (a) is complete. For (b), let t =0 and h = I(A) in (a) to
obtain P, (A|%o+) = P,(A|-%#y) a.s. Here the Lh.s. is just I(A) and since
Fo is P,—trivial, the r.h.s. is constant. Hence I(A) is constant a.s. which is
only possible if the probability is either 0 or 1. Finally (c) is an immediate
consequence of (a). O

We stop the discussion of the foundations of the general theory of Markov
processes at this point. As for the topics discussed in Sections 2-4, clas-
sification of states and limit theory will be discussed in Chapter II for a
discrete state space and continuous time process. The case of a general F is
much more complicated even in discrete time. For example, it is not clear
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what recurrence should mean since even in simple-minded continuous state
space models, P, (7(z) < co) will most often be 0. Some results (more or
less the best known ones) are given in VIL.3 and can, somewhat surpris-
ingly, be derived as simple consequences of the ergodic theorm for discrete
Markov chains. In continuous time, the existing theory is hardly equally
satisfying, but a number of special cases will be encountered. For example,
the main problem within the whole area of renewal theory (Chapter V) will
be seen to be equivalent to the ergodicity question for the continuous—time
and —state version of the recurrence time chains in Section 2.

Notes General Markov chains in discrete time are discussed, e.g., in Neveu
(1965), Meyn and Tweedie (1993) and Revuz (1984). For up-to-date and readable
accounts of the continuous—time case, see Rogers and Williams (1994) or Revuz
and Yor (1999).

A topic not treated above but used at a few places in the book is the generator
o/ of a continuous-time Markov process, a certain operator on a subspace %,
of functions on E. There are many variants of the definition around, but the
intutition behind them all is that one should have

E.f(Xy) = f(z)+ Zf(x)h+o(h), fE Dy (8.12)

The domain 2, is specified by additional requirements in (8.12), one classical
variant (see e.g. Karlin and Taylor, 1981) being that f should be bounded and the
convergence in (8.12) uniform. Note that the identification of 2, in this set—up
is tedious even in such a basic case as standard Brownian motion where & is a
restriction of the differential operator f — f” /2. Note also that Z,, actually may
contain crucial information on the process. For example, for reflecting Brownian
motion with reflection at 0 or absorbtion at 0, &/f = f”/2 in both cases, but
f € 2, requires f'(0) = 0 in the reflected case and f(0) = 0 in the absorbing
case.

Typically, f(X¢) — fg Af(Xs)ds is a martingale (the Dynkin martingale) for
f € 94, and a modern variant of the definition is that f € 2., g = </f means
that f(X:) — fot g(Xs)ds is a local martingale.

The most basic case is a Markov jump process as in Chapter II, where in the
finite case it holds for any of the possible definitions that 2, is the set of all
functions on E and < is the operator f — Af where A is the intensity matrix.
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Markov Jump Processes

1 Basic Structure

Let E be a discrete (finite or countable) state space and {X;},., a Markov
process with state space E as defined in 1.8, with transition semigroup
{P}50- We write pj; = P'(i,{j}) = Pi(X; = j), and we may identify
N .. . . + oL
the transition semigroup by the family { P }tZO = {(pﬁj)}tzo of transition

matrices. The Chapman-Kolmogorov equations P*** = P'P* may then
be interpreted in the sense of usual matrix multiplication.

Problems arising when pursuing the theory without further regularity
conditions have already been discussed in 1.8. As a further unpleasant
possibility, we mention here that some (or even all) states ¢ may be in-
stantaneous, i.e. the process jumps out of i immediately after ¢ has been
entered. We shall avoid these problems by imposing upon the process a
further regularity property, which is inherent in the intuitive picture of any
of the models we are concerned with, and which turns out to be sufficient
for developing the theory quite smoothly.

The feature that we concentrate on is that of a pure jump structure
illustrated in Fig. 1.1: the amount of time spent in each state is positive so
that the sample paths are piecewise constant. For a pure jump process, we
denote the times of jumps by Sy =0 < S; < Sy ---, the sojourn times (or
holding times) by T,, = Sp4+1 — S, and the sequence of states visited by
Yo, Y1, .. .. Thus the sample paths are constant between consecutive S,, and
we define the value at S, by right—continuity, i.e. Xg, = Y,,. Two possible
phenomena require some further comment. The process may be absorbed,
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say at i. In that case there is a last finite S, (the absorbtion time) and we
use the convention T,, =Ty, 11 =+ =00, Y, = Y41 = --- = ¢. This still
yields a very simple structure of paths. More troublesome from that point
of view is the possibility of the jumps to accumulate, i.e. of the explosion
time w(A) = sup,, Sy, to be finite (in that case the Y,, and T,, determine the
process only up to w(A). This seems contrary to intuition in most cases, but
is perfectly feasible from the point of view of general theory. We discuss the
point in more detail later in Sections 2 and 3, and proceed here to discuss
some fundamental properties of a Markov jump process.
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Figure 1.1

Sample path of a pure jump process. The scale of the state space is chosen to
illustrate the possibility of explosion within finite time.

Theorem 1.1 Any Markov jump process has the strong Markov property.

Proof. This is a trivial consequence of the first part of 1.8.3 since when E
is discrete, then any function g on E (in particular g(z) = E,f(X)) is
continuous. O

The next result describes the basic structure of a Markov jump process
up to the time of explosion. Consider the exponential distribution with
density Ae**, x > 0, and denote by the intensity (or sometimes rate)
the parameter A (by the exponential distribution with intensity A = 0 we
understand the distribution degenerate at o).

Theorem 1.2 Consider a Markov jump process. Then the joint distribu-
tion of the sequences {Y,} of states wisited (before explosion) and {T,}
of holding times is given by: (i) {Y,} is a Markov chain; (ii) there ex-
ist M(i) > 0 such that, given {Y,,}, the T; are independent, with T} being
exponentially distributed with intensity A(Yy).
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Proof. The joint distribution of the Y,,, T;, is completely specified by proba-
bilities of the form P; F}, where F,, = {Y; = i(k), Tp—1 > t(k), k=1,...,n}.
Letting (0) = ¢, the assertion of the theorem is equivalent to

P F, = H Gih—1yigky exp{—A(i(k — 1))t(k)} (1.1)
k=1

for some transition matrix @ and suitable intensities A(¢). It is clear that
the only possible candidate for Q is ¢;; = P;(Y1 = j). To determine A(7),
we let z(t) = P;(Th > t). Since Xy = i on {Tj > t}, the Markov property
yields

Z(t—|—8) = EiPi(TO >t+ s ‘ 91:) = E; [Pi(TO > S); To > t} = Z(S)Z(t)
Since z is nonincreasing with z(0) = 1, elementary facts on functional
equations yield z(t) = e ** for some A(i) > 0 (the pure jump property
implies z(t) 1 1 as t | 0 so that z(¢t) = I(t = 0), i.e. A(i) = oo, is excluded).
Applying the Markov property once more, we get similarly
Pi(Yi=4To>t) = EP;(Y1=jTo>t|%)
= E; I:]P)Z(Yl = j), Ty > ﬂ = qijei)\(i)t
which is (1.1) for n = 1. The case n > 1 now follows easily by the strong
Markov property and induction. Indeed, evaluating P; F,, upon conditioning

upon Fg, , we obtain from Xg,_, =Y, _; that
PiFy = Ei|Px,_, (Vi =i(n),To > t(n)); Fo1]
Pitn—1y (Y1 =i(n), To > t(n))Pi(Fn_1)
Qi(n—l)z‘(n)e_/\(i("_l))t(")]P’i(Fn—l)-
O
Problems

1.1 Show that the explosion time is a stopping time w.r.t. {F#},,.

2  The Minimal Construction

The intuitive description of a practical model is usually given in terms of
the intensities A(¢) and the jump probabilities g;; rather than in terms
of the transition matrices P' which are difficult to evaluate even in ex-
tremely simple cases. The question therefore arises whether any set of A(4),
¢i; leads to a Markov jump process. The construction (given below) is im-
mediately suggested by Theorem 1.2 and the problem becomes to check
whether indeed a Markov process comes out. As will be seen, the answer
is affirmative.
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We assume therefore that we are given a set A(i) > 0, ¢ € E, and a
transition matrix @ on E (the @ of Theorem 1.2 has the property ¢;; =0
if and only if A(Z) > 0, but this need not be assumed here). Let A € E be
some extra state (needed to describe the process after a possible explosion),
write Eao = FU{A} and define A(A) = 0, gaa = 1. We consider the sample
space

Q= (OvOO]NXEi = {(t();tla"'7y07y1a"'): 0<tk§007yk€EA}

and let Ty, T1,...,Y0,Y1,... be the obvious coordinate functions (projec-
tions) on Q. It is then a matter of routine to construct probabilities P;,
i € E, on Q with the following properties:

(i) {Yn} is a Markov chain with transition matrix @ and P;(Yp = i) = 1;

(ii) given {Y,}, the T, are independent, with Ty being exponentially
distributed with intensity A(7) on {Y3 =i}.

We construct {X;},-, up to the time of explosion simply by reversing
the construction of the Yy, T} illustrated in Fig. 1.1 (and if needed letting
X; remain in A after explosion). That is, we let Sp =0,

Sn = To+-+Th, W(A) = supS, = To+T1+--,
X, - Y, if Sk <t < Sk
b A ift>w(A)

We shall prove the following main result:
Theorem 2.1 {X:},., is a Markov jump process on Ex.

In the proof, we need to study the residual sojourn time (overshoot) Ry, at
time ¢, i.e. Ry = Sy ) — t, where n(t) = min{n : S, > t}.

Lemma 2.2 Given % = o(Xs; s < t), the conditional distribution of Ry
is exponential with intensity A(X).

Proof. The intuitive argument is just that given .%;, the distribution of
T (t)—1 1s that of T' given T' > u, where u = ¢ —.5,,(;)—1 and T' is exponential
with intensity A(Y;,—1) = A(X¢). To spell out a formal proof we must show
that

Pi(Ry > r,A) = Ei[exp{-A(Xy)r}; A] (2.1)

for all r < oo and all A € F. If A C {w(A) <t}, then both sides are
just P; A so we may assume A C {w(A) >t} and it then suffices to con-
sider A of the form {n(t) — 1 =n, F,} = {F,, S, <t,S, + T, >t} where
F,, is as in the proof of Theorem 1.2. Thus if we condition upon the
Yi,Te—1, k = 1,...,n and use the formula P(T >t +r) = e *P(T > t)
for the exponential distribution, we may evaluate the Lh.s. of (2.1) as

Pi(Fp, S < 6,80 + Ty >t+71) = e MODPy(F, S, <8, +T, >t)

which is the same as the r.h.s. O
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Proof of Theorem 2.1. {X;},- is clearly pure jump, so it suffices to show
that on {X; = i} the conditional distribution of {X¢4s},, given % is just
the P;~distribution of {X;}, . Define -

My = (To@y, Ta@y+1s -5 Yo —15 Ya(ys - - -)-

Then {X;4s},~, is constructed from (R;, M;) in just the same way as
{X:},~0 is constructed from

(Ro,MO) = (TQ,M()) = (To,Tl,...,Yo,Yl,...).

Hence we must show that on {X; =i}, the conditional distribution of
(R, M) given % is the P;—distribution of (Rg, Mp), i.e. that in the
conditional distribution (i) R, M; are independent, (ii) R; has the P,—
distribution of Ry, (iii) M; has the P;—distribution of My. Now clearly
{(Y,,,T,)} is a Markov chain with state space Ea x (0, 00] and transition
kernel given by

P(Yoi1 = j. Tns1 > t]| 74) = qy,;e 0 (2.2)

where 7, = 0(Yi, T, : k < n). Also n(t) — 1 is a stopping time w.r.t.
this chain and we shall evaluate the distribution of (R;, M) conditionally
upon .%; by first conditioning upon the larger o-algebra ;. Since
Y, #)—1 = X, the strong Markov property 1.8.2 and (2.2) imply that given
A t)—1, My has the Px,—distribution of My, whereas R; (being J,4)_1—
measurable) is degenerate. These facts and the .#;—measurability of X;
imply (i) and (iii), whereas (ii) is the statement of Lemma 2.2. 0

It should be noted, that if the process is explosive (i.e. P;(w(A) < 00) > 0
for some ¢ € F), then (see the Problems) there are in general several ways
of continuing the process after w(A) which will lead to a Markov jump
process (to use a common phrase, the process “runs out of instructions” at
the explosion time). Among such processes, all behaving in the same way
up to the explosion time, the one in Theorem 2.1 obviously minimizes pﬁj =
P;(X; = j) for any i,57 € F, and for this reason it is called the minimal
one.

Some further discussion of the basic structure of a Markov jump process
will be given in Sections 3a, 3b (though essentially this is only a reformu-
lation of what has been shown so far), and we return here to the explosion
problem. In most cases this presents an unwanted technicality, and one
wants to assert as quickly as possible that a given Markov jump process
is nonexplosive (e.g., in the minimal construction one can then restrict the
state space to E). Necessary and sufficient conditions are given in the fol-
lowing Proposition 2.3 and in Proposition 3.3 of the next section, whereas
Proposition 2.4 gives some sufficient conditions that are easier to work with
in many cases.

Proposition 2.3 Define R =Y " A(Y,,)~'. Then for any i € E, the sets
{w(A) < 00} and {R < oo} coincide P;—a.s.
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Proof. Conditionally upon {Y,}, w(A) = supS, = >_o° T}, is distributed
as >0 A(Y,) "'V, where the V,, are i.i.d. and exponential with intensity
1. The result therefore comes out by standard facts on weighted sums of
iid. random variables. Thus R < oo implies w(A) < oo because of R =
E(w(A)|Yp,Y1,...), and the converse may be seen, e.g., by an application
of the three—series criterion. O

Proposition 2.4 Sufficient criteria for P;(w(A) < 00) =0 for alli € E
are: (i) sup;ep A(i) < oo; (i) E is finite; (iil) {Yy} 4s recurrent.

Proof. Tt follows from Proposition 2.3 that A(Y;,) — oo on {w(A) < oo}.
Hence the sufficiency of (i) is clear, and (ii) is a consequence of (i). If {Y,,}
is recurrent, and Xy = Yy = ¢, then A(¢) is a limit point of {\(Y;,)}. Thus
A(Y;,) — oo cannot hold, so that R = oo and P;(w(A) < c0) = 0. O

Problems

2.1 Let {X:} be explosive and modify the process so as to restart in some fixed
state 7 after each explosion. Show that we obtain a Markov jump process.

2.2 Let £ = Z\ {0} and )\(/ﬂ) = k)g, An(—n—1) = 4(—n)(n+1) = 1/7’1,2, An(n+1) =
Q=n)(=n—1) = 1 — 1/1127 n > 0. Show that the process is explosive and that
0<PF; <1, PF; +PF_ =1 where Fi = {limyy,(a) X; = £00}. Show that we
get a Markov process by letting X, a) =1 on Fy, = —1 on F_ (and similarly
for the explosions after w(A)).

2.3 Let £ =ZU{A} and A\(k) = (k+1)?, qxrs1) = 1 for all k € Z. Show that
the process is explosive and (at least heuristically) that there exists a version
with A as instantaneous state and Xy — —oo, t | w(A) [such a version cannot
be pure jump in the present strict sense, of course].

2.4 Let Ey C E> C --+ C E be finite sets with E, T E. Assume that A(¢,5) =0
when i € Ey, j € Enq, with k > 1 and that A(Z,7) is bounded uniformly in n,
1 € En, j € Eny1. Show that the process is nonexplosive.

3 The Intensity Matrix

3a. Definition and Uniqueness

3b. Reformulations and Examples

3c. Reuter’s Explosion Condition

3d. The Forward and Backward Equations

3a  Definition and Uniqueness

Assume from now on ¢;; = 0 when A(7) > 0 and define the intensity matriz
A = (X(4,7))i,jer of the process by

AG,J) = Mi)gig, J# 1, A1) = =A%) (3.1)
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Proposition 3.1 An E x E matrix A is the intensity matriz of a Markov
Jump process { X} if and only if

Aiyi) <0, Ai,5) =0, j#i, > Aij)=0. (3:2)
JjEE
Furthermore, A is in one—to—one correspondence with the distribution of
the minimal process.

Proof. If A is an intensity matrix, it follows from (3.1) by considering
the cases A(i) = 0 and A(7) > 0 separately that >, A(,j) = A7) and
therefore that (3.2) holds. Conversely, if (3.2) is satisfied, then we let A(7) =
—A(4,1), define ¢;; by (3.1) and ¢;; = 0 if A(4) > 0, and let ¢;; = d;;
otherwise. It is then a matter of routine to check from (3.2) that Q is a
transition matrix, and clearly the Markov jump process determined by Q
and the A(%) has intensity matrix A. The stated one—to—one correspondence
is obvious from Sections 1 and 2. O

3b  Reformulations and Examples

It is now possible to give a reinterpretation of the intuitive picture of the
evolvement of a Markov jump process which has been developed in Sec-
tions 1 and 2. So far, by the well-known interpretation of the intensity
parameter of the exponential distribution this picture has been that the
process, when in state i at time ¢, exits from i before ¢ + d¢ with proba-
bility (risk) A(7)d¢. The next value j is selected independently of the time
of exit from ¢ and according to g;;. However, we can now instead consider
the process as subject to (with a terminology used in survival analysis)
competing risks with intensities \(i,7), j # . That is, after entrance to 4
the jth type of event has an exponential waiting time Z;; and the Z;; are
independent. Physically only the first (say J = j) of the events occur at
time Z; = min; Z;; and the process then jumps to j. That this yields the
given transition mechanism is checked as follows:

P(Zi >z, J=3) = P(Zi > Zij > 2, k # j)

= )‘(27])/ P(Zlk >, k ;é j)e_k(iaj)y dy

H e MRy o= A@d)Y gy
k#j
. (i A, 9) i s
= ) 2Dy qy = ) Miz = g e D)z,
() [ e Oray e G
This means in infinitesimal terms that the probability of a transition to j

before ¢ + dt is A(7,j)dt. In standard o(-), O(-) notation, the meaning is
that the probability of a transition to j before ¢ + h is A(i, j)h + o(h).

= )‘(27])

[e.°]
z
oo
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A description along these lines is usually the most natural in a given
practical situation, and the intensity matrix is therefore the parameter in
terms of which the process is usually specified. An obvious example is a
queue where arrivals occur at rate 3 and service is completed at rate ¢ (the
M/M/1 queue, cf. II1.1b). Here E = N and

-8 3 0 0 0
5§ -B-6 B 0 0
A = 0 5 —B-6 B 0

When started at state i > 0 at time ¢ = 0, we may think of Z;;_q) as
the service time of the customer being presently handled by the server,
and of Z;; ;1) as the waiting time until the next arrival. In contrast, the
holding time Ty = Z; is the time until either an arrival occurs or service is
completed, and is not quite as intuitive as the Z;.

In some situations it may also be convenient to extend the sample space of
the minimal construction in order that certain random variables naturally
associated with the process are well defined. An example is a linear birth—
death process, i.e. £ =N and

0 0 0 0 0
o —pf—9 8 0 0
0 )

A=1o0 20 -—28-2 23

where one may think of X; as the total size at time ¢ of a population with
individuals who (independently of one another) terminate their lives with
intensity 0 and give birth with intensity . Here quantities like the individ-
ual lifetimes or the number of children of an individual are not recognizable
from the minimal construction and a more natural construction proceeds
as follows: represent each individual by its life, i.e. the pair of its lifetime
7 (exponential with intensity 6) and an independent Poisson process with
intensity 8 whose events in [0, Z) correspond to the birth times. Construct
the process, started from say Xy = 1, from a sequence of i.i.d. lives by
letting the first correspond to the ancestor, the second to his first child,
..., the nth to the nth individual being born; see Fig. 3.1. Such variants of
the minimal construction will sometimes be used without further notice.

As a by—product and further illustration of the above discussion, we shall
also show an important property of the exponential distribution (which is
also easily proved by a direct analytical argument; cf. Problem 3.1):
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Lemma 3.2 Let Ty, T4, ... be i.i.d. and exponential with intensity §, and

let N be independent of the T,, and geometric, P(N = n) = (1 — p)p"~1,
n=12.... Then S =Ty+ -+ Tn—_1 is exponential with intensity n =
o(1—p).

Proof. Let the intensities of a three—state process be specified by Fig. 3.2

where § = pd.
1
Bl (B8 2
0 /
Figure 3.2
Then if we start the process in 1, the sojourn times Ty, 74,... and N =

inf {n > 1: Y, = 2} satisfy the given assumptions because of 3/(6+n) = p
and B4+ n =4, and S is just the entrance time w(2) = inf {t > 0: X; = 2}
of 2. On the other hand, the symmetry between 0 and 1 ensures that the
distribution of w(2) is left unchanged if we collapse 0, 1 into the single state

1 according to 1 -5 2. This makes it clear that P(w(2) > s) = e, ad

Problems

3.1 Show Lemma 3.2 (a) using Laplace transforms, (b) by showing that S has
failure rate 7.

3¢ Reuter’s Ezxplosion Condition

The following result is of a similar form as the transience criterion 1.5.2
for Markov chains and gives a necessary and sufficient condition (known
as Reuter’s condition) for a Markov jump process to be explosive; for a
nontrivial application (birth-death processes), see I11.2.2.

Proposition 3.3 A Markov jump process is monexplosive if and only if
the only nonnegative bounded solution k = (k;)icg to the set of equations
Ak=k isk=0.
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Proof. Suppose first that the process is explosive and define k; = Eje=«(2),

Then k = (k;) is bounded and k; > 0 at least for one ¢. Conditioning upon
the time Ty = y of the first jump we get

> oy Ve (i, 5)k;
ki = A E.e ¥=w(B)e=XDYy 3y = SIS
/Q Z (Z)j) je € y Z 1+A(7,)
J#i j#i
Using A(i) = —A(i,7), this implies k; = >°,cp A(4,j)k; and k = Ak.
Suppose, conversely, the process is nonexplosive, and define hg") =
E,exp{-To— -+ —Tn-1}, hEU) = 1. Then just as above
0o . A(i j)h(.n)
n+1 o — n) — )
hz(- = / Z)\(z,j)e yh; e Ay qy = ZilJr/\(g) . (3.3)
O j#i J#i
Now let kK > 0 be bounded (w.lo.g. k; < 1) with Ak = k. Then k; =
> i AE, 3)k; /(1 + A7), and since 1 = hgo) > k;, it follows by induction
from (3.3) that hg") > k; for all n. But Ty + -+ - + T, T w(A) = oo implies
h,E”) — 0. Hence k; = 0 for all <. O

Problems

3.2 Consider a pure birth process (E = N, A(4,7+1) = A(¢) = §;). Show that the
process is nonexplosive if and only if >~° 8, ! = 00, and check that Propositions
2.3 and 3.3 yield the same result.

3d  The Forward and Backward Equations

We now turn to one of the most celebrated classical topics in Markov
process theory:

Theorem 3.4 Let A be an intensity matriz on E and {X:} the corre-
sponding minimal Markov jump process on E constructed in Theorem 2.1,
pi; = Pi(Xy = j). Then the E x E-matrices P! = (pi;)satisfy the backward
equation (d/dt)P' = AP, i.e.

dpﬁj : t
i SR (3.4
kEE
and the forward equation (d/dt)P' = P'A, i.e.
dpi; .
= Pk (3.5)
kEE

Proof. Conditioning upon Tj = s yields

t
pi; = Pi(To > t)dy +/ )x(i)e_’\(l)SZqikp};;S ds
0 ki
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_/\(z)t |:5 + Z/\(Z’k )\(7,)9 9 d5:| )
0 gkt

The integrand f(s) = > ;... is well defined with sup,.7 f(s) for all T' <
oo since Y [A(4, k)| = 2A(7) < oo. This shows first that pf; (and similarly
all PZ]‘) is continuous and thereafter that f(s) is continuous. Therefore pﬁj
is differentiable with derivative

—A(i)e A" [éz-j + / s) ds} + et ()
0
= —A(i)pﬁj + Z A(d, kj)p}fcj = Z A(d, k)pij-
ki keE

The proof of the forward equation is more involved and will only be given
subject to the assumption

sup A(7) < oo (3.6)
ieE
which will be used to infer that the (p§; —dx;)/s are bounded uniformly in

s, j, k. This follows since

0 < bl < AW [ du k2,
0

o
IN

t=pi < AW) [ PO

and (3.5) comes out by dominated convergence (using > pf, < 0o) from

t+s

pz] 7pz] Z ¢ pk] szk)‘ k‘ ] O

keE keE

In the case of a finite F, standard results on existence and uniqueness of
systems of linear differential equations yield together with PY = I yield:

Corollary 3.5 If E is finite, then P = e = Z —|A”, t>0.
n!

Example 3.6 Suppose that E has just p = 2 states 1, 2 and, to avoid
trivialities, that A(1) and A(2) are not both zero. Then A has eigenvalues
0 and A = —\(1) — A\(2) with corresponding right eigenvectors (1 1)T,
(A1) — )\(2))T. Hence

A = ( _AA(%) _AA(g) > = B( 0 ())\>B_1 where

2-(120) " - mweel YY)
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For purposes like those of the present book, the backward and forward
equations are of quite limited utility. This is so in particular for an infi-
nite state space, but even for p < 0o states the Jordan canonical form and
hence the algebra corresponding to Example 3.6 becomes much more cum-
bersome for p > 2 due to the possibility of eigenvalues which are complex
or of multiplicity > 1. One common application is to look for a station-
ary probability distribution (wP" = 7) by means of (wP")|;—o = 0, i.e.
wA = 0. This equation comes out, however, quite easily by a direct argu-
ment in the next section. Also the time—dependent solution (i.e. the pﬁj for
t < 00) can be found explicitly only in very special cases when E is infinite
and is even then frequently easier to obtain by different means. Examples
are the linear birth—-death process (see e.g. Harris, 1963) and the M/M/1
queue to be discussed in III.8.

4 Stationarity and Limit Results

4a. Classification of States

4b. Stationary Measures

4c. Ergodicity Criteria and Limit Results

4d. Spectral Properties, the Fundamental Matrix and the CLT

4a  Classification of States

When defining concepts such as irreducibility, recurrence or transience in
continuous time, one may either mimic the discrete time definition or refer
to the jump chain {Y,,}. We consider in the following a minimal process
and look first at irreducibility. Then:

Proposition 4.1 The following properties are equivalent: (a) {Y,} is ir-
reducible; (b) for any i,j € E we have p; >0 for some t > 0; (c) for any
i,j € E we have pf; >0 for all t > 0.

Proof. Denote here and in the following
w() = inf{t>0: X, = i,l@gxs #i} (4.1)

(w(i) = oo if no such t exists) so that w(7) is the hitting time of 7 if X # ¢
and the recurrence time of ¢ if Xy = ¢. Since j has an exponential holding
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time, it is clear that pj; > 0 if and only if P;j(w(j) < t) > 0 (similarly
we always have pl; > 0). Now P;(w(i) < t) > 0 if and only if some path
ity -+ - ipJ from 4 to j is possible for {Y,,}, and in that case we may evaluate
the conditional distribution F' of w(j) given w(j) < oo by conditioning
on the various paths. Thus F' is a mixture of convolutions of exponential

distributions with intensities A(7,41), A(é1,42), ... and hence has a density
> 0 on (0,00). Thus P;(w(j) <t) > 0 if and only if {Y,,} can reach j from
i, proving the proposition. O

Accordingly we define {X;} to be irreducible if one of properties (a),
(b), (c) hold. Similarly (but easier), it is seen that we can define i to be
transient (recurrent) for {X;} if either (a) the set {¢: X; =i} is bounded
(unbounded) P;—a.s., (b) i is transient (recurrent) for {Y;} or (c¢) P;(w(i) <
00) < 1 (=1). As will be seen in the following, the distinction between null
recurrence and positive recurrence cannot, however, be related to {Yn}
alone. Note also that we do not pay attention to periodicity. This is due to
the fact that even though {Y,} may be periodic, the exponential holding
times smooth away any such behaviour in continuous time.

4b  Stationary Measures

A measure v # 0 is stationary if 0 < v; < oo, vP! = v for all .

Theorem 4.2 Suppose that {X;} is irreducible and recurrent on E. Then
there exists one, and up to a multiplicative factor only one, stationary mea-
sure v. This v has the property v; > 0 for all j and can be found in either
of the following ways:

(i) for some fized but arbitrary state i, v; is the expected time spent in j
between successive entrances to i. That is, with w(i) given by (4.1)

w(i)
0
(i) v; = puj/A(J), where p is stationary for {Yn};

(iii) as solution of vA = 0.

Proof. We first prove uniqueness by considering the Markov chain
Xo, X1,.... This is irreducible since all pﬁj > 0, and any v stationary for
{X}:} is also stationary for {X,}, so in order to apply 1.3.4 we just have
to show that {X,} is recurrent. But for any 4, the sequence Uy, Us, ... of
holding times of 7 is nonterminating since ¢ is recurrent. The Uy being i.i.d.
with P(Ux > 1) > 0, we have Uy > 1 i.o. and therefore also X,, =i i.o.
For (i) we show the stationarity of (4.2) by evaluating the jth component
of vP" in a somewhat similar manner as in the proof of 1.3.2. First note
that {X¢}<,<, and {Xw(i)ﬂ}ogtgh have the same P;—distribution because



52 II. Markov Jump Processes

Xo(i) = 4. Hence

w(7) w(i)+h w(2)
v = [/ / I(X: = j) d] :Ez|:/ +/ I(thj)dt}
w(7) h
(3)+h

w(7)
- Ei[ / I(Xt—ﬁdt} — B[ 10X =) de
h 0

(note that the first equality is valid also if w(i) < h). Thus
oo (o)
Ei/ P(Xepn = jiw(i) > t]|.F) dt = Ei/ P 1 (w(i) > t)dt
0 0

= Zpk] / Xy =k,w() >t)dt = kapr

keE keE

Vj

proving vP" = v and (i). With 7(i) = inf {n : Y;, = i}, we then get

T(1)—1

w (i)
0 n=0

(oo}
D B [T Yo = 5, 7(6) > n [ {Ya}o7]
n=0

oo

L opy
= = J, > n) = ——~—,
PR T X
using I.(3.1) in the last step. That is, v; is proportional to p1; /A(j), showing
(ii).
For (iii) we note that according to (ii) v is stationary for {X;} if and
only if (;A(j));jer is stationary for {Y,,}, i.e. if and only if ), 5 viA(i)qs;
=v;A(j) for all j € E, or, since ¢;; = 0, if and only if

0 = —uA() + Y _vidi,g) = > vidi,j).

i#j i€E

Finally, 0 < v; < oo follows easily say by (ii), since in the recurrent case
0 < A(j) < o0. O

4c¢  Ergodicity Criteria and Limit Results

An irreducible recurrent process with the stationary measure having finite
mass is called ergodic, and we have:

Theorem 4.3 An irreducible nonexplosive Markov jump process is ergodic
if and only if one can find a probability solution w (w1 =1,0<m; <1) to
wA = 0. In that case 7 is the stationary distribution.

Proof. That a solution exists and is stationary in the ergodic case follows
immediately from Theorem 4.2. Suppose conversely that a solution exists
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and define
pz’]n :Pi(Xt:j;T0+"'+Tn>t)) n:071,2,‘...

Now a path starting from ¢ contributes to pfjn either if it has no jumps
before ¢ (and ¢ = j) or it has a last jump, say from k to j at time s < ¢,
and at most n — 1 jumps before s. Thus collecting terms we get

t
Py = dye 0 /O D P A, e ) ds,
k#j

t
Zﬂipgn — Wje—/\(z)t+/ e_/\(J)(t_S)Z)‘(kvj)zﬂipf];n71 ds. (4.3)

i€E 0 k#j i€E
Obviously

£0 —A( . ;
E TP, = Tje A9t < i, i.e. P < .
i€E

It thus follows by induction from (4.3) that wP%" < 7 since then

¢
Z mpf}"“ < e Nty / e (=3 Z Ak, j)my ds
i€E 0 k]

t
= WjeiA(j)t+7Tj>\(j)/ ef)‘(j)sds = ;.
0

. . . tin '3 t
But since the process is nonexplosive, we have Pij — Pij and > jerPi; = 1.

Hence ), 7Tip§j < m;, and since summing both sides over j yields 1,
equality must hold so that wP" = 7. Thus 7 is a stationary distribution.
This implies recurrence (since in the transient case P (X; = j) — 0) and
71 = 1 then finally shows ergodicity. a

As noted in Section 3, the equation wA = 0 is the same as that which
comes out by formal manipulations with the differential equations. In the
literature one occasionally proves ergodicity by checking irreducibility and
finding a probability solution to wA = 0. This procedure is, however, not
valid without having excluded explosion. To see this, consider for example a
transient {Y,,} with a stationary measure p (for an example, see Problem
1.3.2) and choose the A(j) such that m; = u;/A(j) has mass 1. Then as
in the proof of Theorem 4.2(iii), it holds that wA = 0, and clearly the
transience of {Y,,} excludes recurrence of {X,;} (it follows from Theorem
4.3 that {X;} must even be explosive). However:

Corollary 4.4 A sufficient condition for ergodicity of an irreducible pro-
cess s the existence of a probability © that solves A = 0 and has the
additional property Y m;A(j) < oo (which is automatic if sup;c 5 A(1) < o).
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Proof. Letting pu; = m;A(j), it follows as in the proof of part (iii) of Theorem
4.2 that p is stationary for {Y,,}. Since p has finite mass, {Y,,} is positive
recurrent, in particular recurrent, hence {X;} is nonexplosive and Theorem
4.3 applies. O

Exactly as in 1.3.1(ii) one also has:

Proposition 4.5 If the process is ergodic, then there ezists a strictly

stationary version {X;}_ ;oo with doubly infinite time.

We next turn to the limiting behaviour of the pﬁj and have as expected:

Theorem 4.6 If {X,} is ergodic and w the stationary distribution, then
pi; — mj, t — oo, for all i, j.

Proof. As noted above in the case § =1, {X,s} is an irreducible recurrent
aperiodic Markov chain for each ¢. It is ergodic since 7 is stationary, and
hence p%‘s — mj as n — co. The continuity of the p}; being straightforward
to verify, the assertion thus follows by the method of discrete skeletons,
A11.2. Alternatively, we may apply the more elementary Al11l.1. The re-
quired uniform continuity follows say from the backward equation (3.4)
which in conjunction with > [A(4, k)| < oo shows that dpj;/dt exists and
is bounded in ¢. a

As in discrete time, 1.(4.3), time-average properties like

e ,
7 / f(X)dt =5 n(f) = Bef(X) =) _mf()  (44)
0 ,
icE
hold under suitable conditions on f; see VI.3.
Exactly the same argument as for Theorem 4.6 yields

Corollary 4.7 If {X,} is irreducible recurrent but not ergodic (i.e. v1 =
00), then pi; — 0 for alli,j € E.

Corollary 4.8 For any minimal Markov jump process (irreducible or not),
the limits limy_. o pﬁj exist [recall that in discrete time periodicity might
cause an exception to the parallel result].

Proof. Clearly pfj — 0 if j is transient. If j is in a recurrent class C, let

v(©) be stationary for the process restricted to C. Then by Theorem 4.6
and Corollary 4.7
) (©)

¢ J
pi; — Pi(some X; € C) o1 O

Problems

4.1 Consider a Markov jump process {X;} with bounded intensities, say A(z) <
A < 0o. Show that é = A/X+ 1 is a transition matrix. Now consider a Poisson
process {N;} with intensity A and a process {X;} which jumps according to Q
at the jumps of {N;}, say X; = Y, on {N; =n} where {Y,,} is a Markov chain
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governed by @ and independent of {N;}. Show that {X;} is a version of {X;},
that {X,} is ergodic if and only if {Y,} is positive recurrent and that then the
stationary distributions are the same (this procedure is known as uniformization;
see e.g. Keilson, 1979).

Notes For further discussion of the equation wA = 0 is the explosive case, see
Kelly (1983).

4d  Spectral Properties, the Fundamental Matrix and the CLT

Corollary 4.9 If A is an irreducible p X p intensity matriz, then 0 is
eigenvalue with left and right eigenvectors m, resp. 1. Any other eigenvalue
has strictly negative real part.

Proof. The first statement is obvious. For the second, let @ > 0 be larger
than any |A(¢,7)| and consider A = A/a+1I. Then A is an ergodic transition
matrix, so that by 1.6 one of the eigenvalues s, say, is s = 1 and all others
have |s| < 1. Since the eigenvalues of A are precisely the numbers of the
form a(s — 1), the assertion follows. O

Define the fundamental matriz by
o0
Z = / (M —1m)dt = (1w — A)" YT — 17). (4.5)
0

Note that the existence of the integral as well as the inverse is ensured
by Corollary 4.9. Note also that Z is singular (#Z = 0 and Z1 = 0)
in contrast to the discrete time case in 1.7. The second expression for Z
follows from

T T

(].ﬂ'fA)/ (M —1m)dt = f/ AeMdt = T—erT — T—1m.
0 0

Poisson’s equation in continuous time is Ag = — f.

Proposition 4.10 Assume 7(f) = 0. Then g = Zf solves Poisson’s
equation and is the unique solution with w(g) = 0.

Proof. Using the second expression in (4.5) and wZ = 0, we get
—Ag = (-1lm+1r—-A)g = -1nZf+(I —-1m)f = -0+ f —0.

Uniqueness follows since the difference d between two solutions satisfies
Ad = 0. Hence d = c1, and 7(d) = 0 then gives ¢ = 0. O

Theorem 4.11 Let f: E — R and defineg = Z f, o(f) = 2n(fg). Then

TL/( / i - Tﬂ(f)) — N(0,0%(f)).
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Proof. Assume first 7(f) = 0. Then fOTf(Xt) dt = —g(X7) + Mr where
Mr = g(Xr) — fOT Ag(Xy) dt is a martingale (see the Notes to 1.8). Here

2

Var(My) = E; <g<Xh> —g(i) - / " Aa(x0) dt)

= 0 A5 (90G) — 9()” + o(h)
j#i

= 0 Y AG)(9G) — 9@)” + olh)
JEE

= h(Ag*(i) — 29(i)Ag(i)) + o(h),

Vary(Mysn — My | F) = h(Ag*(Xy) — 29(X)Ag(Xy)) + o(h).

Thus the quadratic variation of {M;} is

T
Qr = /0 (Ag(X1)? — 29(X:)Ag(Xy)) dt.

Since TAg? = 0, Ag = — f, the LLN (4.4) yields Q7 /T %% 2n(fg) = o?(f).
The rest of the proof is a straightforward application of the martingale CLT
as in L.7.

For the case w(f) # 0, see Problem 4.2. O

Problems

4.2 For n(f) #0,let f = f — n(f)1, § = Zf. Check that n(fg) = 7(fg).
4.3 Verify using the diagonalization formulas in Example 3.6 that for p = 2
states one has

7z - B(g 2 )B_l - (A(1)+>\(2))_2( _AA(%) fig) )

2 ADAQR)
(f(l) - f(2)> OO

Notes A matrix with nonpositive off-diagonal elements is called a Z-matriz,
and a matrix whose eigenvalues have nonnegative real parts a M -matriz.
Thus if A is an intensity matrix, —A is a Z-matrix and (by Corollary 4.9)
a M—matrix in the irreducible case. For further discussion of Z— and M-
matrices and their spectral properties, see Berman and Plemmons (1994).

a*(f)

5 Time Reversibility

Time reversibility (or just reversibility) of a process means loosely that the
process evolves in just the same way irrespective of whether time is read
forward (as usual) or backward. The concept is studied here mainly for
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the purpose of certain queueing applications in Chapter IV, but its scope
is in fact rather more general. For example, it could be mentioned that
time reversibility of processes occuring in physics is considered a property
of intrinsic physical interest.

Our main interest is in Markov jump processes, but we start by the
Markov chain case in order to motivate the definition to follow and to
make some simple observations.

Proposition 5.1 Let Xo,...,Xn be a time-homogeneous Markov chain
with_transition matriv P and define the time-reversed chain Xo, ..., Xy
by Xp, = XN—n. Consider some fixred Markov probability P, define m;(n) =
P(X,, =) and assume that m;(n) >0 for alli € E, n=0,...,N. Then:
(a) )?0,...,)?1\/ is a time—inhomogeneous Markov chain with transition
matrices P(n) = (pij(n)) given by

ﬁij(n) = IP>(jzn—‘,-1 =] ‘ )}n = ’L) =

If furthermore all p;; > 0, then:
(b) Xo,..., XN is time—homogeneous, i.e. P(n) independent of n, if and

7Tj(N - n— 1)pji

(5.1)

only if Xo,...,Xn is stationary, i.e. wi(n) = m; independent of n;
(¢) Xo,..., XN has the same distribution as Xo,...,Xn if and only if
Xo, ..., XN is stationary and w;pj; = TiPij-

Proof. (a) Letting 7;(n) = P(X,, = i) = (N —n), we must show that

P(Xo =i0,..., XN =in) = Ty (0)Digiy (0)Piyin (1) - - - Din_rin (N —1).
(5.2)
But the Lh.s. of (5.2) is

IP(XQ = iN, e ,XN = Zo) = 7T7;N (O)piNiN—lp’iN—liN—2 .. 'pil’io' (53)

Inserting the definition of P(n) in the r.h.s. of (5.2), the m; telescope and
the r.h.s. of (5.3) comes out.

(b) It is clear that ;(n) = m; implies that P(n) is independent of . For
the converse, first let ¢ = j in (5.1). It then follows that m;(n) = m;pl for
suitable 7;, p;. Since pj; > 0, the independence of p;;(n) of n yields p; = p;.
Hence all p; are equal, say p; = p. But then 1 = > m;(n) = p™ > m; implies
p =1, ie. m(n) = m; and stationarity. In (c) stationarity is necessary by
(b); mjpji = mipi; is then equivalent to p;; = p;; by (5.1). O

This result does not cover the Markov chain case in full generality since
all m;(n) and all p;; being nonzero is a restriction. However, if Xo,..., Xn
is obtained by observing an irreducible Markov jump process at times
0,24,...,(N + 1)d, this assumption is automatic. Since time reversibility
in continuous time should imply reversibility of such discrete skeletons, it
follows by (b) that we can safely restrict attention to stationary versions
of ergodic processes.
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Consider thus, as in Proposition 4.5, a stationary version {X;},.p of
an ergodic Markov jump process with doubly infinite time (we assume for
convenience that {X;} is nonexplosive). Define the time-reversed process

{Xt}te]R

Xt X _; is to obtain right—continuous paths; of course, this is immaterial
for the distribution of finite-dimensional sets (since the probability of a
jump at ¢ is always zero) and therefore of the whole process].

by Xt = X_;_ = limy;_; X, [the reason for not simply letting

Proposition 5.2 {)?t} is a stationary Markov jump process with ©™ as

stationary distribution and intensities A(i,j) = TG, 1)/ ;.

Proof. By nonexplosiveness, {)?t} is a pure jump process which is time—
homogeneous Markov by Proposition 5.1 (consider discrete skeletons). Thus

all that remains to be shown is that the asserted expression for X(z, 7) holds

for i # j. But - - ~
~ P(Xo=17.X_3 =1
Al §) = lim 22 = lim (Ko S 2h i)
hi0 h R0 RP(X_p =1)
— — o BYCR)
— lim ]P(XO =) Xh‘* Z) = lim TjPji _ 7Tj>‘(]vl) )
h|0 h]P(Xh = Z) hl0 h?Ti v

Call {X,} time-reversible if {X}} has the same distribution as {X;}.

Corollary 5.3 Let w be the ergodic distribution. Then a necessary and
sufficient condition for time reversibility is m;A(3, j) = wjA(4,1) for alli # j.

The term m;A(4,7) is the rate at which transitions i — j occur in sta-
tionarity and is often denoted as the probability flow from i to j. Thus the
reversibility condition means that the flow from ¢ to j is the same as the
flow from j to 4, and for this reason it is called the condition of local or
detailed balance in contrast to the equilibrium equation wA = 0 which is
the condition of full balance. More precisely, rewriting wA = 0 in the form
miA(E) = 3254 miA(J,4), the Lh.s. is the total flow out of state i and the
r.h.s. the total flow into state i.

Corollary 5.4 Let A, A* be nonexplosive intensity matrices and 7™ a dis-
tribution such that m; )\(z j) = miA*(4,1) for alli,j € E. Then A and A*
are ergodic with stationary distribution 7 for both, and further A* coincides
with the intensity matrix A of the time—reversed process {Xt}

Proof. Summing m; A(, j) = m;A\*(j,¢) over ¢ and using that the row sums of
A" are zero immediately yields 7 A = 0. Theorem 4.3 then gives ergodicity,
and A* = A then follows by Proposition 5.2. |

Problems

5.1 Show that a nonexplosive intensity matrix A is time reversible if and only
if there is a function ~(¢,5) such that v(4,5) = ~v(4,4) and A(4,75)/~(i,7) is
independent of j.
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5.2 Show Kolmogorouv’s loop criterion: an ergodic Markov process is time re-
versible if and only if for each chain ig,%1,...,1, of states with i9 = i, it holds
that [T} A(ik—1,ix) = TI7 A(ik, ik—1). [Hint: For “if,” show that local balance
holds if one takes m; = [[}" A(jr—1,jk) where jo is arbitrary but fixed and
jo,J1s---,Jm = @ is an arbitrary chain of states with positive transitions rates
connecting jo and 7.]

5.3 Consider a circular birth—death process. That is, E = {eig"k/" ck=1,...,n}
and the transition rate from e'2™%/" to ¢/27(*+1)/7 ig 3, and the rate from e2™*/"
to e2™* =D/ jg 6, (all other transitions have rate 0). Show that the process is
reversible if and only if T[]} Bx = [17 6.

Notes Time reversibility is studied for example in Kelly (1979), Keilson (1979)
and Serfozo (1999). Corollary 5.4 is often referred to as Kelly’s lemma and will
be used repeatedly in Chapter IV.
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la Queueing Theory and Some of Its Daily Life Motivations

Though the general field of applied probability has by now developed into
a diversity of subareas, queueing theory is not only one of the oldest, but
also one of the most notable and prominent. Queueing problems come up
in a variety of situations in the real world and have stimulated an enor-
mous literature which, though in part quite mathematical and abstract,
is not of a purely academic nature. In fact, there has been a considerable
interaction between the developments at the various degrees of abstraction
in the field. Thus, though the more theoretical-orientated part of the lit-
erature (incorporating this book) tends to deal with models and problems
too simplified to be of any great direct practical applicability, the notions
and techniques that are studied are also important for the practical worker
in the field. Conversely, the call for solutions to particular problems has of
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course stimulated not only the theory of queueing but also that of proba-
bility as a whole, fields like Markov processes, renewal theory and random
walks owing their present state and importance to a large extent to the
impact from queueing theory. Queueing problems present a great challenge
to the probabilist and a memento mori to probability theory as a whole.
The development of abstract probability theory may be of great beauty, but
seldom sheds much light on how to come up with the numbers the practical
worker asks for. The crux is more often a thorough understanding of the
particular features of the model combined with a few basic mathematical
techniques, and it is a feeling for this that the present treatment aims at
bringing the reader.

Queueing situations from daily life are almost too obvious, but we shall
list a few anyway: customers queueing up before the m cashiers in a su-
permarket; telephone callers waiting for one of the lines of an exchange
to become available; aircraft circling over the airport before a runway be-
comes free; machines under care of a repairman who can handle only one at
a time; and so on. Of more recent date than these classical examples are a
number of problems connected with computer organization or networks in
teletraffic theory or data transmission: in a time—sharing computer, we may
think of the jobs as customers who are served by the central processor unit
(CPU) and possibly input/output facilities. At each of these units queues
may form, and in particular the queue at the CPU has some rather specific
features (feedback, simultaneous service). In telephone networks there is a
hierarchy of exchanges, so that, for example, local calls need only to pass an
exchange of the lowest level, whereas long—distance calls may be directed
among one of several possible paths connecting exchanges at various levels.
Queues may form at the exchanges and are highly interactive.

We finally mention that a number of other situations may either directly
be formulated in queueing terms or at least are closely related. Examples
occur in inventory processes and insurance risk. For example, in a store
with items placed from time to time and taken out as demand arises, we
may think of items as customers and of the removals as service events.

16 Classification of Simple Queues

The great diversity of queueing problems gives rise to an enormous variety
of models each with their specific features. Incorporating more than one or
two such features usually makes the model not only complicated but also
analytically intractable. Therefore a substantial part of the literature deals
with models of a very simple structure.

Without attempting anything near a classification of all queueing sit-
uations, one might tentatively single out the following relevant features
for the description of a queue of reasonably simple structure: (a) the in-
put or arrival process, i.e. the way in which the customers arrive to the
queue; (b) the service facilities, i.e. the way in which the system handles
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a given input stream. Logically incorporated in (b) but treated separately
in Section lc is (c) the queue discipline, i.e. the algorithm determining the
order in which the customers are served. The descriptions of these features
may be quite complicated and are, at least in their verbal form, always
lengthy. A convenient shorthand notation system was suggested by D.G.
Kendall in 1953 and has to a large extent become standard since then. It
enables one to replace phrases such as “the single—server queue with com-
pletely random arrivals and general service times” with symbolic notation
such as “M/G/1”. The notation covers some simple and basic queueing
systems (but by no means all important ones) which have the following
characteristics:

(i) Customers arrive one at a time according to a renewal process in
discrete or continuous time. That is, the intervals between successive
arrivals of customers are i.i.d. and governed by a distribution A on N
or (0,00). We number the customers 0, 1,2, ... and assume most often
that customer 0 arrives at time 0. Thus, if T,, denotes the interval
between the arrival of customers n and n+1, the T, are i.i.d. governed
by A and the arrival instants are 0,7y, Ty + 171, . . ..

(ii) The service times of different customers are i.i.d. and independent
of the arrival process. We denote the governing distribution (concen-
trated on (0,00)) by B and the service time of customer n by U,.
Thus Uy, Uy, ... are i.i.d. governed by B and independent of the T,.

In Kendall’s notation, a queueing system of this type is denoted by a
string of the type a/8/m, where « refers to the form of the interarrival
distribution, 3 to the form of the service time distribution and m is the
number of servers. The most common values of «, 3 are as follows:

M The exponential distribution. (M = Markovian. Other terms are
“completely random” and “Poissonian.”)

D The distribution degenerate at some point d € (0, 00), frequently d = 1.
(D = deterministic. Also, the term “regular” is used.)

Ej The Erlang distribution with k stages; see Section 4.

Hj, The hyperexponential distribution with & parallel channels; see Section
4.

PH A more general phase—type distribution; see Section 4.

GI or G No restrictions on the form of the distribution. (GI = General
Independent, G = General; we shall here follow the tradition to use
G when referring to the interarrival distribution and G for the service
time distribution.)
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Thus examples of the particular queueing models become M/D/1,
GI/G /oo, Ex, /M /1, M/ Hy/m etc., with, for example, M/D/1 denoting the
single—server queue with Poisson arrivals and deterministic service times.

The notation is widely accepted, but notice should be taken that vari-
ants and extensions abound in the literature. One variant has a different
distinction between GI and G than the (usual) one given here. This is
motivated from the considerable attention that has in recent years been
given to queues where the independence assumptions are replaced by the
sequences {T,,} and {U,} being only strictly stationary. One then writes
G/G/1 etc. and uses GI to denote the classical independent case (e.g. in
G/GI/1 service times will then be independent but interarrival times not).
Other extensions (that will not be used in the present book) are for exam-
ple MX /D/m and M/M/m/n. The first case refers to customers arriving
in batches, distributed as the random variable X, at the epochs of a Pois-
son process. The second may be used for an M/M/m queue with a finite
waiting room of size n, a finite population of n customers or even other
models.

1c  The Queue Discipline
We start with a list of some of the main types of queue disciplines.

FIFO First In, First Out. Also denoted FCFS = First Come, First Served.
The customers are served in the order of arrival. Apparently this is the
usual procedure at an ordered queue and therefore the predominant
assumption in the literature. Unless otherwise stated, this is the queue
discipline in force throughout this book.

LIFO Last in, First out. Also denoted LCFS = Last Come, First Served.
After having completed a service the server turns to the latest arrived
customer. This would occur, for example, in inventories where the
items (customers) are stacked and all in—out operations occur at the
top of the pile.

SIRO Service in Random Order. After having served a customer, the
server picks the next at random among the remaining ones. This
would occur, for example, in technical systems such as telephone ex-
changes where the system does not remember when the customers
arrived.

PS Processor Sharing. The customers share the server, i.e. when n cus-
tomers are present, the server devotes 1/n of his capacity to each.
Equivalently, the customers attain service at rate 1/n and leave the
system once the attained service reaches the service time. The situa-
tion is illustrated in Fig. 1.1. The main example is a computer with
several jobs running simultaneously. Here PS is really only an ap-
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proximation to what physically occurs, namely the next discipline in
the list:

RR Round Robin. Here the server works on the customers one at a time
in a fixed time quantum J. A customer not having completed service
within this time is put back in the queue, and before he can retain
service the other customers are each allowed their quantum of ¢ (or
less, if service is completed). The situation is illustrated in Figs. 1.2,
1.3. As § becomes infinitely small, PS is obtained as a limiting case
of RR.

attained service

Uy
U

U

Ty To+Ty
Figure 1.1

G AN, ; S U S —

queue cpPU

Figure 1.2

attained service

Ty To+Th
Figure 1.3

This list is by no means complete and does not cover all aspects. For
example, it is not quite clear what is meant by a FIFO GI/G/s queue
since the customers may either queue up in one line (what we shall assume
in the following) or in some way form s separate waiting lines. Further
examples of queue disciplines are found above all in the area of priority
queueing. Here the customers are divided into priority classes 1,2,..., K,
a customer from a lower class having priority before one from a higher
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class. The system may be preemptive or nonpreemptive. In the first case
the customer being served is interrupted in his service if a new one of
higher priority arrives, in the second case not. In the preemptive case an
interrupted customer may then either have attained some service or not,
and so on, a great number of variations being possible.

1d  Queue Lengths, Waiting Times and Other Functionals

In connection with a given queueing system, a great variety of stochastic
processes and functionals arise. The main ones that we shall study are the
following three (defined for GI/G/s, but with obvious generalizations to
many other models):

Q@+ The queue length at time ¢ (denoted X in the present chapter where
{Q¢},>0 is a Markov jump process). Also denoted as the number in
system to stress that the customer being presently handled by the
server is included.

W, The actual waiting time (or just waiting time) of customer n, i.e. the
time from arrival to the system until service starts.

Vi The workload in the system at time ¢, i.e. the total time the m servers
have to work to clear the system. Thus V; is the sum of the residual
service times of customers being presently served and the customers
awaiting service. In the case m = 1 of a single server, this is simply the
time needed for the server to clear the system provided that no new
customers arrive, i.e. the waiting time of a hypothetical customer
arriving just after ¢. For this reason V; is sometimes denoted the
virtual waiting time at time t for m = 1.

The connection is illustrated in Fig. 1.4. It is simplest to visualize for m = 1,
where the actual waiting time of customer n + 1 is the virtual waiting time
Vo (n)— just before the time o(n) = Ty + - - - +T5, of his arrival. Thus on the
figure, Wo = Wiy = Wy = 0 and W5 > 0, W3 > 0. For other aspects, see
the Problems.

There are two points worth noting when concentrating interest around
these processes: (a) the processes or functionals of interest are not always
of one of these three types, but have frequently very close relations; (b)
it depends very much on the practical situation whether it is the queue
length, the actual or the virtual waiting time or some other functionals
that are of interest.

An obvious example of (a) is the sojourn time of customer n, i.e. the
total time he spends in the system. This is the waiting time followed by
the service time, i.e. W,, + U,, and since W,,, U,, are clearly independent,
the sojourn time distribution is a simple functional of the waiting time
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distribution, namely the convolution with the service time distribution B.
Another example is busy and idle times, which in GI/G/1 can be described
by the time intervals where Q; > 0 (or equivalently V; > 0) and Q; = V; =
0, respectively. We also mention that the interest in {V;} is due to a large

—U— —U—
—U——
A FUA

Figure 1.4
(a) Input of service times and interarrival times; (b) the corresponding single—
server queue length process; (c) the single-server workload (virtual waiting time)
process; (d) the two-server queue length process; (e) the two-server workload

process.
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extent to the reinterpretations of this process within the areas of storage,
dams and insurance risk; see Chapter XIV.

For (b), note that, for example, sometimes the interest centres around
the workload put on the system itself, in other cases around the inconve-
nience caused to the customers by exceedingly long waiting times (more
typically, the aim is to balance these points of view). A typical example
would be the design problem for the cash system in a supermarket: say for
simplicity that we have m identical servers and want to choose the best
value of m. If m is large, we expect the system to be idle for a considerable
amount of time and thereby be insufficiently utilized compared to the cost
of running. If, on the other hand, m is small, then we expect long wait-
ing times for the customers, which will encourage them to use instead a
less congested competing shop nearby. The quantitative evaluation of this
effect of discouragement is of course a matter of management judgement
and not mathematics. However, once this has been settled we need to say
something about both idle times and waiting times for a given arrival rate.
Possibly the discouragement could be an effect of the visible queue length
and not the related but unobservable waiting time. Therefore, the queue
length is also of potential interest here. It is certainly so in other situations
such as telephone exchanges with a limited number K of lines, where queue
lengths > K mean the possibility of calls being lost.

le Measures of Performance. The Traffic Intensity

Seen from a practical point of view, the purpose of theoretical analysis is
to shed some light on the queueing situation in question. The meaning of
this may be rather vague and, for example, it may be argued that just
formulating a simplified mathematical model is helpful since it necessitates
thinking through and properly clarifying which features of the system are
the basic ones. Having passed this point, however, interest centers on eval-
uating the performance of a given system (and possibly some related ones,
for the purpose of assessing the effect of a change). That is, the first step
is to define some appropriate measures of performance.

In rather general terms, we want to describe the properties of the basic
processes of queue length and waiting times. A main step in that direction
is the study of one-dimensional distributions, say for example P(W,, < t).
Now this is difficult to compute in most situations and the dependence on ¢
is a complicating factor for the sake of comparisons (so is the dependence on
n, but we defer the discussion of this to Section 1f). Therefore, it becomes
appropriate to consider some simple characteristics of a distribution F' on
[0,00), and some of the main ones that are usually considered relevant are
the following;:

(i) The mean = [;° « F(dz), measuring the average values.

(ii) Possibly some of the higher order moments pu*) = Iy a* F(dx).
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(iii) The variance 0% = w? — 42, measuring the dispersion around the
mean; possibly also some higher order cumulants.

(iv) The squared coefficient of variation o?/u?, giving a scale invariant
measure of dispersion.

(v) The tail characteristics describing the asymptotic behaviour of the
tail F(z) = 1 — F(x). For example, the relation F(x) ~ Ce™7®
holds for many distributions in queueing theory (cf. XIIL5), and
appropriate tail characteristics are then C' and (in particular) ~.

Which of these characteristics is appropriate depends on the situation.

There is, however, one measure of performance of a queueing system that
is of universal interest. This is the so—called traffic intensity p, which we
define here for GI/G/m by

_ EBU. Jy «B(dx)
P = WmET, ~ mOfOOOxA(da:) 1)

(there are appropriate generalizations for most other queueing systems)
and the interpretation is as follows. Suppose that for a very large amount
of time t the system is working at full capacity, i.e. that all servers are
busy. Then by the LLN there will be about t/ET}, arrivals and a total of
about mt/EU}, services (t/EU}, for each server). Thus p is about the ratio,
i.e. when p > 1 the number of arrivals exceeds the number of services so
that we expect the queue to grow indefinitely. In contrast, when p < 1 then
eventually even a very long initial queue will be cleared (in the sense that
not all servers are busy; after that the queue may build up again, but will
again be cleared up for the same reason, and so on, the system evolving in
cycles). Thus the behaviour should be like transience when p > 1, and like
recurrence when p < 1. This will be made more precise later in the various
models. Also, results will be shown stating that the behaviour for p =1 is
like null recurrence.

1f Steady State Theory versus Time—Dependence

The notion of steady state is within setting of Markov processes just what
so far has been called stationarity: a Markov chain or Markov jump process
is in steady state if it is ergodic and stationary (another common term is
equilibrium, inspired from statistical mechanics).

The results developed in Chapters I and II state that after a long period
of time an ergodic process attains the steady state (settles in equilibrium).
A similar behaviour is, on intuitive grounds, to be expected far beyond
the Markovian setting: if the capacity of the queueing system is sufficient
to deal with the arriving workload, say the traffic intensity is less than 1,
one expects the system to alternate between being busy and idle, and that
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the initial conditions will be smoothed away by the stochastic variation in
the length of the cycles. Thus, under appropriate conditions there should
exist limiting distributions of Q¢, V; as t — oo and of W, as n — oo, and
there is then an apparent possibility of studying the characteristics of the
queueing system by means of these limiting distributions. More generally,
when studying functionals of the whole process such as departure processes,
one could restrict attention to a stationary, i.e. steady—state, version. This
will be represented either by a governing probability distribution P (e for
equilibrium) or by notation like W to denote a random variable having
the limiting steady—state waiting—time distribution). Thus, for an ergodic
Markov chain {X,} with stationary distribution 7, we have

mo= PXa =) = P(X =) = lm Pi(X, =),

and P, is the same as the P, of Chapter I.

The idea of passing from the study of say P(W,, < z), n = 0,1,2,...,
to Po(W,, < x) = P(W < z) is clearly convenient, if nothing else, by
eliminating the dependence on n. The motivations are in fact deeper than
just this, with the two following points as the cornerstones: (1) a queueing
system will frequently be operating for such long periods of time that the
steady state is entered rather early in that period; (2) in addition to its
limiting interpretation, P, also describes the long—term behaviour in terms
of time averages. For example, one has for a Markovian queue in continuous
time that subject to suitable conditions 7! fOT Q¢ dt =~ E.Q (cf. 11.4), and
this average is frequently an appropriate characteristic of the whole segment
{Qt}ogth'

The overwhelming majority of queueing theory (and also the material
presented in this book) is concerned with the steady—state properties of the
systems rather than finding time-dependent quantities like p}; in a Markov
chain (instead of time—dependent, frequently the somewhat unfortunate
term “transient” is used). The reasons for this are most often motivated
by (1) and (2) above. However, without any doubt the fact that time—
dependent solutions are exceedingly more difficult to come by than the
steady—state ones also plays an important role in practice. Thus, it seems
clear that in many situations it is not clear a priori what a long time period
in (1) means. Hence it is necessary to have at least some estimate on the rate
of convergence to the steady state, i.e. some ideas on the time—dependent
behaviour. Also, it is clear that in other situations such as the presence of a
rushhour where the queue suddenly builds up after having behaved stably,
the steady—state point of view is not adequate at all.

1g Queueing Theory in This Book

A particular practical problem will usually exhibit a considerable number
of the great variety of aspects presented so far, and most likely some further
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specific ones. Comprehensive mathematical models will therefore tend to
be complicated and usually intractable: possibly the existence of a limiting
steady state can be proved, but the derivation of its properties in a form
suitable for numerical calculations is usually out of the question. Therefore
the practitioner may have to use either empirical or semi—empirical methods
such as simulation, approximations or bounds, or to trust that solutions of
greatly simplified models have something to say about his problem as well.

It is not our aim here to present queueing theory in a form ready for
practical implementation, but rather to study some of the basic mathe-
matical problems and techniques. In this and the next chapter, a rather
broad class of problems are studied within the Markovian setting, and af-
ter having developed the necessary mathematical tools in Part B, we then
deal with a more narrow class of problems in Part C, assuming either gen-
eral distributions of interarrival times and service times or, as is in fact
better motivated, Markovdependence.

The Markovian assumptions greatly simplify the modelling and solu-
tion. They are therefore also frequently the first step when faced with a
new type of problem, and they will be used here to look into phenom-
ena requiring considerable effort in more general settings. Examples are
queueing networks, time dependence, the busy—period distribution, the ef-
fect of queue disciplines other than the FIFO one and also some finite
models (clearly, many important models are not touched upon at all). The
Markovian set—up has its drawbacks, however. One is that queue lengths
as discrete variables are more naturally incorporated than the continuous
waiting and sojourn times. For example, in a network we can study the
length of the various waiting lines, but not the presumably more inter-
esting total sojourn time of a customer. Another deficit is the reliance on
assumptions such as Poisson arrivals and (probably more seriously) expo-
nential service times. The phase method (to be developed in Section 4)
presents a partial solution by extending the Markovian set—up to a class of
models that is in a certain sense dense.

Finally, we mention that one of the classical topics in Markovian queue-
ing theory, imbedded Markov chains, has been deferred to X.5. A Markov
chain is imbedded in a (typically non—-Markovian) queue if it is obtained
by observing the queue length at certain random times. Main examples are
M/G/1 just after departure times and GI/M/1 just before arrival times.
However, in M/G/1 in particular, the imbedded Markov chain is only of
limited intrinsic interest, and it requires the more advanced tools of Part B
to relate it to the queue length in continuous time and the waiting times.

Problems

1.1 Consider the LIFO single-server queue. Show that the waiting times corre-
sponding to the input in Fig. 1.4(a) are the same as for the FIFO case, and draw
a different figure where this is not the case.
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1.2 Draw a figure of the PS single-server queue length process corresponding to
the input in Fig. 1.4(a). Find (graphically) the sojourn times of the customers.
1.3 Find (graphically) the waiting times of the customers in the GI/G/2 case
of Fig. 1.4(a).

1.4 Consider GI/G/1 with p < 1. Show heuristically that the server is idle or
busy in an average proportion p, resp. 1 — p, of the time.

1.5 Consider GI/G/1 with p < 1. Show by heuristic time-average considerations
Little’s formula ¢ = Aw. Here £, w denote the steady—state mean of the queue
length and the sojourn time, and A = 1/ET}) the average arrival rate. [Hint:
Evaluate fOT Q¢ dt in terms of the sojourn times of the customers that arrived
in [0,7], neglecting boundary effects; a formal proof is in X.4.] Is the FIFO
assumption essential?

Notes Queueing theory as a whole is an enormous area. Most of the standard
textbooks are listed in the Bibliography, and for the current development of re-
search in the area, some of the main journals to consult are the Advances in
Applied Probability, Annals of Applied Probability, Journal of Applied Probabil-
ity, Mathematics of Operations Research, Operations Research, Probability in the
Engineering and Information Sciences, Queueing Systems, Stochastic Models and
Stochastic Processes and Their Applications.

Obviously, it is not possible to cover all special models in a single book. Of
topics not treated, we mention in particular polling systems (a single server
switches between several queues), fork—join or split-and—match queues (applied
in manufacturing), negative customers (see Chao et al, 1999, for references), join—
the—shortest—queue disciplines (e.g. Foley and McDonald, 2001), retrial queues
(Falin and Templeton, 1997; Artalejo, 1999) and queues with vacations (the server
is temporalily unavailable). All of these areas are currently active, and the reader
interested in one or more is advised to perform a database search for references.

2  General Birth-Death Processes

By a birth-death process we understand a Markov jump process {X¢},-,
on E = N which is skip-free, i.e. from state n it can only move to n — 1 or
n+ 1 (from 0 even only to 1). That is, the intensity matrix is of the form

—Bo Bo 0 0
0 —P1—01 B 0

A = 0 P —B2— 062 (o

We denote the (3, as birth intensities and the §,, as death intensities. In
this terminology, one thinks of the process as the total size of a population
and the most well-known example is the linear birth—death process (3, =
nB, 6, = nd which corresponds to the individuals giving birth and dying
independently of one another, with rates independent of the population
size. In our applications we interpret instead X; as the number of customers
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in a queue at time ¢: a jump upward corresponds to a customer arriving at
the queue and a jump downward to a customer having completed service
and leaving the system. Thus in this generality the arrival rate [, and
the service rate §, depend in an unspecified manner on the number n of
customers present. For example 3, could be decreasing in n, corresponding
to customers being discouraged by long queues, (balking or reneging) and
dn increasing, corresponding to the server working more rapidly when faced
with a long queue. However, the main interest in birth—death processes is
due to the more concrete interpretation of the models associated with the
specific choices of (3,, d, to be presented in Sections 3a—3g. We proceed
here to develop the general theory.

The jump chain {Y,,} is clearly skip—free as well and may be viewed as a
state—dependent Bernoulli random walk (i.e. the increments are 1), with
reflection at zero. The transition matrix is

O 1 0 O
g1 0 p1 O

Q= 0 g 0 po

where p, = B,/ (Bn+n), ¢n = 1—pn = 05/ (Bn+3dr). We assume for a while
that no p, can take the values 0 or 1. This obviously implies irreducibility.

Proposition 2.1 Recurrence of { X}, or equivalently {Y,,} is equivalent
to -

oo oo
P,
2: 1 noo_ q1 dn _ . (2.1)
n—lﬂ..'ﬂn n:1p1...pn

Proof. We apply the transience criterion 1.5.2 with i = 0 to {Y},} and have
to look for h(k), k > 1, satisfying h(j) = > ;. ajxh(k), j # 0, i.e.

h(1) = pih(2),

h(2) = qzh(1)+ p2h(3),

h(n) = gyh(n —1)+pyh(n+1),

If on the Lh.s. we write h(n) = (p, + gn)h(n) and solve for h(n) —h(n—1),
we get

h(2) —h(1) = ah(1)/ps,
hn+1)—h(n) = L(h(n)=hn—-1)) = ---

qndn—1"""q2 dn - q1
= Indnm1TUB o) —p(1)) = a0,
pnpnfl"'p2(() ()) Pn--P1 ()
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and it is clear that there is one, and up to proportionality only one, nonzero
solution that is bounded if and only if

suph(n) = h(1)+ Z [h(n+1) = h(n)] = h(l){l + Z H}
n n—1 n=14" !

is finite. Thus transience is equivalent to (2.1) to fail. a

The criterion (2.1) states loosely that the ¢, in some average sense should
be as large as the p,, i.e. that there is no drift to infinity. Assume, for
example, some smooth behaviour such as the existence of o = limp,,/¢,.
Then if o < 1, (2.1) is infinite and we have recurrence, whereas (2.1) is
finite for o > 1 and we have transience (for 0 = 1 both possibilities may
occur, cf. Problem 2.2).

Proposition 2.2 A birth—death process is nonezxplosive if and only if R <
oo where

o0
5k+1
= E T'n, Tn § 6
n=1 n

Proof. We apply Reuter’s condition I1.3.3, which states that the process
is nonexplosive if and only if any nonnegative solution @ = (2, )nen to
Ax = x is trivial, ® = 0. Equations 0 and n > 1 of Ax = x are

*ﬂOxO + ﬂoxl = Zo, 5nxn71 - (/671 + 5n)xn + ﬂnanrl = Tn,

which, letting A, = 2, — Zpn—1, fn = 1/0n, gn = 6n/Bn, can be rewritten
as

A1 == fO:CO; An+1 == fnxn+gnAn

This shows that the solution with g = 0 is = 0 and that the solution
with 2o > 0 (say o = 1) is strictly increasing. Iterating and noting that
T = Y0 fkGk+1 - gn yields

n
> o
An-i—l = E fkgk+1"'gnxk { < rnz
— n+n

Summing and using the lower bound shows that R < oo is necessary for @
to be bounded. The upper bound yields

Tnt1 < (L+rp)x, < - H (I+7rk),

so that if conversely R < oo and hence [[°(1 + r%) < oo, then x is
bounded. O
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Lemma 2.3 Irrespective of recurrence or transience, there is one, and up
to proportionality only one, solution v = (Vp)nen to VA = 0, given by

Bo - Bn-1
51 0n

Vp =

. (22)
Proof. That vA = 0 means

Bovo = 61v1,  (Bn + 0n)Vn = Bn—1Vn—1 + Ont1Vny1, n > 1.

It is clear that given v, these equations uniquely determine v, and insertion
shows that (2.2) is indeed a solution. O

Corollary 2.4 In the recurrent case, the stationary measure gt = (tn)nen
for {Y,} is given by
[y = Mum n=1,2--. (2.3)
q1--"qn

Proof. Take p as in 11.4.2(ii),(iii), un = vpA(n). Then po = vfBo and for
n=12...

o =umm>=@ifﬁam+%m
5106,
_ P11 DPn— 1ﬁoqn(ﬁn+6n)l/0 _ pl"'pn—luo.
qlnnnqn 5” qln..qn

Now define
S—l—l-zﬂ 6n 1.

Corollary 2.5 {X;},., is ergodic if and only if (2.1) holds and S < oo,
in which case the ergodic distribution 7 = (7, )nen is given by

1 18- Baa

7-(-:_7 T, = =, n:1727....

R R
Proof. Recurrence is equivalent to (2.1), and in that case the total mass
of (2.2) is |v| = Sy so that according to I1.4.3 ergodicity is equivalent to
S < co. In that case, m = v/|v|. O

(2.4)

We conclude with some formulas for the case of a finite state space
{0,..., K}. This occurs if g = 0 since then {0,..., K} is a closed set.
Irreducibility and hence ergodicity will hold if

Bo>0,....,0xk-1>0, B =0, 61 >0,...,0 >0, (2.5)

and in just the same manner as in Lemma 2.3 and Corollary 2.5 one obtains
the stationary distribution as

1 1fBun

=1,...,. K 2.
S 610, n AR/ (2:6)
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where S = 14+ 1580+ Bn1)/(61- - 6n).

Remark 2.6 In many examples, the finite case arises as a modification of
an infinite model by letting some Ox = 0. If the stationary distributions are
7 and w5 respectively, it is seen from (2.6) that 75 is simply obtained
by conditioning (or truncation) of = to {0,..., K}, 70 = /(Mo + -+
i), n < K. Compare also 1.3.9 (or rather the continuous—time analogue),
and see further XIV.3. O

Problems

2.1 Show that recurrence holds if 3,, < §, for all large n.

2.2 Suppose B, =1, 6, = (1—1/2n)” where v > 0. Show that there is transience
for v > 2 and null recurrence for v < 2.

2.3 Suppose Bn =1, 6, = (1+1/n)” where v > 0. Show that there is ergodicity
for v > 1 and null recurrence for v < 1.

2.4 Show that there is transience if §,, = 1 for all n, By = k, B, = 1 for all
other n.

2.5 Consider for £ =0,1,2... birth-death processes with ﬂﬁo) =1, s =2 and,
for k > 1, 57(11@) =2, ﬁ]ik) = 2% all other T(Lk) = 1. Show that there is ergodicity
for k£ > 0, that ﬁy(lk> — B0, 65:“) — 6 as k — oo but that 7 — 7 fails.

2.6 Let m be a distribution on N satisfying 7, > 0 for all n. Show that there
exists an ergodic birth—-death process with 7 as stationary distribution. Are the
Brn, 6n unique? Are they unique up to proportionality?

Notes The more refined theory of birth—death processes owes much to a series
of papers by Karlin and McGregor in the 1950s; see Anderson (1991). For further
examples of results beyond the present (standard) ones, see Keilson (1979), van
Doorn (1980) and Ball and Stefanov (2001).

3 Birth-Death Processes as Queueing Models

3a. The M/M/1 Queue

3b. The M/M /oo Queue

3c. The M/M/m Queue

3d. The M/M/1 Queue with Finite Waiting Room
3e. Erlang’s Loss System

3f. Engseth’s Loss System

3g. Palm’s Machine Repair Problem

3a  The M/M/1 Queue

The M/M/1 queue length process as defined in Section 1d clearly corre-
sponds to a birth—death process with 3, = # and d,, = ¢ independent of
n. This is by far the conceptually most simple queueing system, the one
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of the greatest analytical tractability (at least for an infinite state space),
and therefore it plays a prominent role in the literature.

The traffic intensity as defined in Section le is p = (/4. Thus the
recurrence criterion (2.1) becomes Y o° p~" = oo and we have at once:

Proposition 3.1 The M/M/1 queue with traffic intensity p is recurrent
if and only if p < 1.

This is intuitively reasonable, at least if p < 1, by recalling the interpreta-
tion of p as the ratio (1.1), and will be seen to hold for more general queues
(e.g. GI/G/m). Similary, the ergodicity conditions come out immediately
from Corollary 2.5. We get S =Y " p™" = (1 —p)~! for p <1 and thus:

Proposition 3.2 The M/M/1 queue with traffic intensity p is ergodic if
and only if p < 1. In that case, the steady state distribution 7 of the queue
length is geometric, m, = Po(Xy =n) = (1 —p)p", n=0,1,2,....

This permits us immediately to calculate a number of interesting quantities.
For example, the probability that the server is idle or busy in steady state
is

P(X:=0) =m =1—p, resp. Po(X¢>0)=1—mg =p, (3.1

whereas by standard formulas for the geometric distribution we have

_r
1-p)*

These formulas show among other things that as p 1 1, then (not unex-
pectedly) with high probability p the server is busy and the mean queue
length p/(1 — p) is large. Again, these properties are qualitatively (but not
quantitatively) typical of more general queues, cf. X.7.

E.X;: = L, Var.X; =

T P.(X: > N) = pV. (3.2)

3b  The M/M/oco Queue

This corresponds clearly to the case 3, = 3, 6, = nd. We may think of
each customer being handled by his own server so that his sojourn time in
the system is exponential with intensity ¢ and independent of all other cus-
tomers. A different interpretation is therefore an immigration—death process
with immigration according to a Poisson process and each individual dying
after an exponential time.

The definition (1.1) of the traffic intensity yields p = 0. Instead, the
interesting parameter is 7 = 3/0 and we get

N ST~ I B "
LG T e S Sl g =

Thus Corollary 2.4 yields:
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Proposition 3.3 The M /M /oo queue is ergodic for all values of . The
steady state distribution m is Poisson with mean n, m, = ¢~"n"/nl.

Notes For more advanced aspects of M /M /oo, see Robert (2000) and Preater
(2002). A different case of a Poisson 7 is in Problem 3.1.

3¢ The M/M/m Queue

Here 3, =  and 6,, = m(n)d, where m(n) is the number of busy servers in
state n, i.e. m(n) = m A n. The traffic intensity is p = 5/md and we have
Bn/0n = p, n > m. Thus, as in the case m = 1, (2.1) and recurrence hold
if and only if Y p™" = o0, i.e. p < 1. Similarly, with n = 8/6

ml
:1_'_26 6n1:

moo m— 177 77
M = X s

is finite if and only if p < 1, and we get

Proposition 3.4 The M/M/m queue with traffic intensity p is ergodic if
and only if p < 1. In that case the ergodic distribution 7 is given by

wnfézl,n:(),...,m, ;’Zﬂp -m
This solution is analytically slightly more complicated than those encoun-
tered so far since the functional form of m, is not the same for n < m
and n > m, and also S is more complicated. The probabilistic interpre-
tation is, however, quite interesting: 7r is a combination of the M /M /oo
solution and the M /M/1 solution, with the M /M /oo solution on the states
{0,...,m} with full server availability (no customers awaiting service) and
the M/M/1 solution on the states {m, m + 1,...} where some customers
must await service.

Again it is straightforward to evaluate functionals. For example, the
probability that all servers are busy and the mean queue length are

1nm™ 1

T = ,nm=m,m+1,....

P(X¢ >m) = T+ Tmg1 + -+ = gﬁ?ﬂ’ resp.
[e%s) m—1 ) )
1 n" n" P m
E.X;, = n = = _n e .om b

3d  The M/M/1 Queue with Finite Waiting Room

So far we have had the infinite state space {0,1,2,...} in all examples.
However, clearly in many practical situations there is a limited capacity of
the system so that the queue may not be arbitrarily long, and examples of
this will now be given here and in the following subsections.
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A simple basic case is the M/M/1 queue with waiting room of size K.
That is, at most K customers at a time can be present in the system
(including the one being served) and customers arriving to a full system
are lost. Thus 8, = 3, n < K, Bk =0, 6, =9, n=1,..., K. Referring
to Remark 2.6, we get for p = (/6 < 1 the stationary distribution by
conditioning (or truncation) of the geometric M /M /1 solution,

_ p _ _L=» _
Tn = Tt 4K 1_pK+1pn, n=0,..., K.

It can be immediately checked from (2.6) that this also holds for p > 1,
whereas all 7, = (1 + K)~! when p = 1.

n

3e  FErlang’s Loss System

A well-known and historically important example was considered by Erlang
in connection with design problems for telephone exchanges. Suppose we
have an exchange of K lines, that calls arrive at rate # and have exponential
durations with rate ¢, and that calls arriving while all lines are busy are
lost. Let n = 3/6. What is (in steady state) Ex(n), the fraction of calls
that are lost?

To solve this problem, we may model the number of busy lines as a birth—
death process on {0,..., K} with Sy = -+ = k-1 = 3, 0 = ko, k =
1,..., K. This corresponds to letting Sx = 0 in a M/M /oo (or M/M/K)
queue so that by Remark 2.6 the stationary distribution is conditional
Poisson,

n"/n!
Ty = [ g oL n=20,..., K.
The probability of a particular call being lost in equilibrium is now simply
the probability 7w of arriving at a full system so that

" /K!
1+n+-+nK/Kl

Ex(n) =

(3.3)

This is the well-known Erlang’s loss formula (also referred to as Frlang’s
first formula or Erlang’s B—formula) and of considerable interest in tele-
traffic theory. The formula is insensitive to the distribution of the duration
of calls, i.e. it holds also in a M/G/1 setting with § ! replaced by the mean
duration of a call, see IV.3.

3f Engseth’s Loss System

All examples considered so far have Poisson arrivals, i.e. 3, = (3. This is
adequate if we have a finite but large population of customers. Here “large”
also means large compared to the sizes of the queues building up, so that
even with queues of rather unlikely lengths the proportion of customers in
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the system is vanishing, i.e. the intensity of the source does not decrease
significantly. Clearly this is not the case in all practical situations, and
here and in Section 3g we shall consider two of the models that have been
suggested in specific situations.

The first example is a teletraffic model considered by Engseth, essen-
tially by just modifying Erlang’s loss system to a finite population of N
subscribers. Let K be the total number of lines and X; the number of busy
lines at time ¢t. Any call is assumed to involve only one subscriber. Assum-
ing that N > K, we then have a birth-death process on {0, ..., K} with
Bn = (N—n)B, 8, =nd. Thus fy - - - B,_1 = N " (descending factorial),
010, = nlé™, and letting n = 3/ we obtain the stationary distribution

as
n 7
T, = n=0,...,K.

N Y
1+Nn+-~-+(K)nK

Choosing p € (0,1) such that p/(1—p) =n (i.e.p=n/(1+n) = 3/(8+9)),
we see that this is the binomial distribution with parameters (N, p) condi-
tioned to be in {0, ..., K}, i.e. a truncated binomial or Engseth distribution.

39  Palm’s Machine Repair Problem

Consider a population of K machines that each break down with intensity
0 and is immediately taken care of by one of N repairmen working at rate
d, as soon as one becomes available. Thus if X; is the number of machines
under repair or awaiting repair, we have

Bn=(K-n)p, n=0,.... K—1, §,=(NAn)s, n=1,..., K.

One might wish to study the way in which the production loss due to stop-
pages and repairs depend on N, for the purpose of allocating the optimal
number N of servers. To this end we need the wage expenses per unit time
which are N times a known constant, and the average number of stopped
machines per unit time, i.e. the equilibrium mean Zé( nm,. Obviously 7
can be immediately computed by means of (2.6). We shall not spell out
the formulas, but mention only an important reinterpretation in the case
N = 1. Considering the number X; = K — X; of working machines instead
of X, the intensities change to

On=0k-pn=0,n=0,.... K—1, 6, =0x_n=n8, n=1,...,K.
This is of the same form as for Erlang’s loss system, and we conclude
immediately that 7 is truncated Poisson in equilibrium.

This model has recently received renewed attention due to a computer
system interpretation, where one thinks of the customers as terminals and
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the repairman as the computer handling requests from the terminals (with
or without processor sharing). Thus each terminal generates requests with
intensity 3, and X; is the number of requests being presently handled by
the computer.

Problems

3.1 Consider the case 8, = 3/(n+1), 6, = § of the customers being discouraged
by long queue lengths (reneging). Show that the ergodic distribution exists and
is Poisson.
3.2 Show the recursion formula Fx+1(n) = nEx(n)/[K +1+nEk(n)]; cf. (3.3).
3.3 Let 8n = B(N + n), §» = nd. Show that there is ergodicity for /6 < 1 and
that 7 is negative binomial,

mo= () Ema-o
Give a demographic interpretation of the model.
3.4 Consider Erlang’s loss system and let H (k) denote the probability that k
lines are busy. Show the Palm—Jacobeus formula H(k) = Ex(n)/Ex—r(n).
3.5 Consider the same model as in Engseth’s loss system except that now N <
K. Show that 7 is binomial (N, p) where p = /(5 + 9).
3.6 Consider the M /M /2 queue with heterogeneous servers, i.e. servers 1, 2 have
intensities 8" > §®). There are many ways to model the system behaviour if
one or both servers are idle, but we assume here that if server 1 becomes idle,
the customer served by 2 switches to 1. Explain that this corresponds to 3, = S,
5 =6W, 6, =M + 63 =23, .. . Show that there is ergodicity if and only
if 3 < 6™ + 8@ and find the stationary distribution.
3.7 Same questions as in Problem 3.6, but the model is now modified such that
the customers cannot switch to 1 and an arriving customer always joins 1 if the
system is idle. [Hint: Look first at the system restricted to {2,3,...} as a birth—
death process, and next split state 1 into two states indicating which server is
busy.]

4 The Phase Method

The amenability of Markovian models to analysis should by now have be-
come apparent, and further examples are given in the following sections and
Chapter IV. However, the Markovian set—up puts some restriction on the
modelling and one of the most serious ones is that whereas it will frequently
be very reasonable to assume that interarrival times are exponential (i.e.
we have Poisson arrivals), then this is not the case for service times.

The first idea on how to overcome this apparent difficulty was the so—
called method of stages due to Erlang. The idea is to think of the customer
as being composed of k stages each having an exponential service time, say
with intensity §. The stages are then served one at a time, and the customer
completes service when all stages are served. That is, the service time of
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the customer himself is the Erlang distribution with k stages, namely a
convolution of k exponentials with the same intensity ¢ so that the density
is

k-1

E_T —ox

The point is now that if we count stages instead of customers and the arrival
process is say Poisson, then we get a Markov process { X}, Indeed, since
the arrival of a customer corresponds to the arrival of k stages, the nonzero
off-diagonal intensities are A(n,n + k) = 8, A(n,n — 1) =40, n > 1. The
queue length process {Q:} is then obtained simply by summing the stages
out. For example, if we want to determine P.(Q: = n), we solve for the
stationary distribution 7 for {X;} and have

Pe(Qt = ’I’L) = 71-(n*l)k+1 + 7T(nfl)k+2 + - Tk

Apparently what we have just described is, in the Kendall notation, the
queueing system M /FEj /1. It should be stressed that this way of imbedding
an apparently non—Markovian queue into a Markovian set—up is essentially
an artifice: the stages themselves usually can be given no physical interpre-
tation. The gain is the greater flexibility in the choice of the service time
distribution.

A related classical idea is to use instead a service time distribution
that is a mixture of exponentials corresponding to a density of the form
Zlf a,0,.e %% 2 >0, where 0 < a, < 1, Zlf a, = 1; such a distribution is
denoted by Hy, the hyperexponential distribution with k parallel channels.
The state space of the Markov process describing the M/H/1 queue is
N x {1,...,k}, the first component describing the number in system and
the second the channel in which the server is currently operating (will serve
the next customer when the system is idle), and the nontrivial intensities
are

Anr,(n+1)r) =06, Anr,(n—1)s) = dras.

In Fig. 4.1, some examples of E— and Hy, densities are given. The plots
illustrate among other things the behaviour of the squared coefficient of
variation (s.c.v.) n. This is 1/k for Ey, i.e. n € (0, 1] with 1 attained for the
exponential distribution E; and 0 in the limit & — oo (i.e. Ej approaches
D). For Hy, always n > 1 (provided at least two ¢, are different) and the
range is (1, 00) for all k. To derive these properties, use for Fj, either stan-
dard moment formulas for the gamma distribution or the representation as
a sum Si of i.i.d. exponentials Y7, ..., Y}, yielding

VarSy kVarYy k/5? 1

TT S T REV)?  RO2 K
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A

k=1

k=4 -----
k:lﬁ ..........
k:loo ...............

\

Figure 4.1(a)

n =1 (exp. distr.)

,,,,,,, n:9(§1 =O.1,52=1.8,6:0.047)
\

A n=145 (5, =0.1,5,=4,0=0077)

1
Figure 4.1(b)

For Hj, we may use the representation Y, where P(t = r) = «,, Y,

has density &,e~%% (i.e. mean j, = ! and variance 02 = §,2) and is
independent of 7. Then conditioning upon 7 we get
VarY, Varp, + Eo? Eu? — (Epr)? + Ep? 2E 2 )
’[7 = = = = —
(EY7)? (Epr)? (Epr)? (Epr)?

which is > 1 provided Varp, > 0, i.e. at least two d,. are different.

In early literature, the discussion sometimes stopped at this point, the
argument being that for a given distribution one can always choose an
appropriate Hy or Ey with a good fit to the s.c.v. However, not only is this
point of view very rigid (two densities with the same s.c.v. may be very
different), but in fact it turns out that usually no additional difficulties
arise when working with general phase—type distributions and that in fact
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these approximate any distribution arbitrarily well. Such a distribution F
is defined in terms of a Markov jump process {J;},., with finite state
space £ U {A}, such that A is absorbing and the states in F transient,
and an initial distribution c, such that F' is the distribution of the time
¢ = inf{t>0: J. = A} to absorption, F(t) = Po(¢ < t). It is usually
assumed that a has mass 0 at A such that we can write a as an F—vector.
Further, the intensity matrix @ partitioned according to states in E, resp.
the single state A, must have the form

Q—<€8> (12)

(the form of the last row follows from A being absorbing) where t = —T'1
with 1 = (1 ... 1)T since the rows sum to 0. We refer to the E x E matrix
T as the phase generator, to the E—column vector t as the exit vector, to
(E,a, T) or sometimes just (o, T) as the representation of F' and write
FePx

Proposition 4.1 Let F € P have representation (E, o, T). Then:

(i) For x > 0, the c.d.f. is F(z) = 1 — aeT®1 and the density is f(x) =
aeTt.

(ii) The nth moment is (—1)" n'aT”’l

(iii) The Laplace transform Fls = [ e f(z)du is Fls] = a(sI-T)"'t
and is rational [a ratio between two polynomlals]

Proof. Tt follows easily by induction from (4.2) that the upper left corner

of Q™ is T". Hence the upper left corner of eQ% is eT® and therefore
1-F(x) = Po((>z) = Pa(Je €E) = ae’™1,
d : : :
flx) = —d—aeT"l = —aeT'T1 = ac™ t.
x

For (iii), note that according to II.4d all eigenvalues A for T have negative
real part. Hence so is the case for A = —sI + T when R(s) > 0, and the
matrix analogue of the formula [~ e dz = —1/a, R(a) < 0, then yields

Fls] = a</ e“eTxdx)t = a(/ eAxdac)t = —aA't;
0 0

that F[s] is rational then follows since all elements of (sI — T)~! are so
because the determinant and all subdeterminants of sI—T' are polynomials.

Part (ii) follows by differentiating the m.g.f., which yields the nth
moment as

dn —1 o n+1 | —n—1
ds”a( sI—-T) ts:o = (-1)""nla(sI +T) ts:o

= (-)"nlaT "' = (-1)"nlaT " 'T1 = (-1)"nlaT "1.

O
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A major property of the class #5is that any distribution F' on [0, co)
can be approximated arbitrarily well by a phase—type distribution. In the
proof of this fact, we will employ the class 274 g of (finite) mixtures of
Erlang distributions with the same intensity, i.e. with densities of the form

n(i)

k
P QRS )
Zazénz n(i)!e oo >0, (4.3)

where n(i) € N, a; > 0 for all ¢ and 21 a; = 1; this class is obviously a
subclass of the class Z%p of exponential dzstmbutzons in series and/or

parallel, that is, with a phase representation as in Fig. 4.2 or equivalently
with a Laplace transform of the form

k n(i)
Z H ”—i—s (4.4)

Clearly, Z 4 E corresponds to 0; = § and PHgp C PH.

I 912 I 1 [ |51n(1)

1
Jon )
Figure 4.2

Theorem 4.2 The class P is dense (in the sense of weak convergence)
in the set & of all probability distm’butions on (0,00). More genemlly, to

any F € & with finite pth moment pF there are Fy, € PA with F, 5 F

and M(Q) — ugg) for all ¢ < p.

Proof. Let d be a metric for weak convergence in & and define
dy(F,G) = d(F.G) + |plf) = u®|, p>0

so that dy = d). Since F, = F and p(p) — U5 (p) implies u( — N(Q)
F

for ¢ < p (uniform integrability!), it is sufﬁ(nent to show that W%ME is
dense w.r.t. d, in &), = {P S ug) < oo}. Letting Fl4 be F' truncated
at A (i.e Fa(z) = F(x AN A)/F(A)), it is easily seen that d,(F,Fa) — 0
as A — oco. Hence if 2 is the set of distributions supported by (0, A],
U A<Oof@(‘4) is dense in &. Further, it is standard that the subset Té(A) of
P consisting of distributions with a finite support is dense w.r.t. d, and

. . —(4)
hence w.r.t. d, since d, d, are equivalent on P Nowlet G € 2 have
atoms t1,...,t, with weights a1, ..., ax. For each 4, choose integers n, ;
such that n,, ;/m — t;, m — oco. Consider the Erlang distribution G, ;
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with n,, ; stages and intensity d,, = m. The mean is n,, ;/m and the s.c.v.
is n;ﬁi, hence the weak limit as m — oo is the distribution degenerate at t;.

Thus with G,,, = Z’f ;G i we have d(Gp, i, G) — 0. An easy calculation
shows that also all moments converge. In particular, d,(Gp, i, G) — 0 so

(A
that Ak O @( ). Taking first the union over A and next the closure
shows that Z 4k is dense in &2),. Hence £ is so. O

The denseness of P77 is illustrated in Fig. 4.3, where it is shown how fits
F, € Z#with p phases (produced by maximum likelihood for p = 2,3 and
6) provide a convergent sequence of approximations of a given distribution
F (in this case an inverse Gaussian having density XIII.(4.3) with £ = 1,
c=2).

A
Inverse Gaussian
-———== Fitted PH(2)

———————— Fitted PH(3)
Fitted PH(6)

025 - /4 Q

Figure 4.3

T o I e FE e B
a1 e 1 i
Pa—1

P1 P2

Figure 4.4

In much of the older literature, one works within the class Z.Z7 of distri-
butions with rational Laplace transforms. In addition to the special classes
of phase—type distributions discussed above, the class Z2#¢ of Coxian dis-
tributions is also frequently encountered. This is defined by a representation
as in Fig. 4.4 or equivalently by a Laplace transform of the form

n k 5
4
E Q1---Qk—1pkH5i+S
k=1 i=1

where g = 1 — pi. One has:

(4.5)

Theorem 4.3 PR g C P = PHgp C PHAC RLT.
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Proof. Assume w.l.o.g. that n(i) =7 — 1 in (4.3) (take some a; = 0). Then
letting n = n(k), 6; = 6, p1 = a1, p2 = az /(1 —a1), p3 = ag/(1 — a1 — ),
. in Fig. 4.4 shows that A/ C LA (that the inclusion is strict
is obvious; e.g. P contains the convolution of two exponentials with
different intensities which is clearly not in Z54g). That P C P /P
follows (say) from the expressions (4.5), (4.4) for the Laplace transforms.

Figure 4.5

Figure 4.6

For the converse, consider G € &5 p represented as in Fig. 4.2. We may
clearly assume that §;7 > d;,0 > --- for all 7, and define \; as the largest
d;1- Now for any 3 < A1 a simple calculation shows that the distribution in
Fig. 4.5(a) is simply the exponential distribution with intensity 5. Applying
this to a channel with 5 = d;1 < A1 yields the representation in Fig. 4.5(b),
and altogether we may represent G as in Fig. 4.6(a) where G has the same
intensities as G, except that A; has been removed. In any case, the maximal
number of occurences of A1 in any channel has been reduced by 1, and
continuing in this manner we end up with the situation in Fig. 4.6(b) where
G, has a representation with possibly many channels but only one intensity.
That is, GG, is an exponential distribution so that indeed G € Z#. That
PAHsp © PH is trivial; that the inclusion is strict is shown in Problem
4.6. Finally, 256 C #£7 follows from Proposition 4.1(iii), and the strict
inclusion from Problem 4.7. O

Noting that the proof of Theorem 4.2 only used the class Zg, we
get:

Corollary 4.4 The conclusion of Theorem 4.2 holds true if P is
replaced by any of the classes P g, PHc, PAyp or RLT.

When faced with a queueing problem on say M/G/1, we may now ap-
proximate (say by maximum likelihood) the service time distribution B by
some B € 2 and think of the server as moving in F in the same way
as {J;} during services and being restarted according to a at each service
completion. Exactly as for M/E}/1 or M/Hy/1, this yields a Markovian
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representation of the approximating queue, and the steady—state solution
may then be used as an approximation to the steady—state solution of the
given M/G/1 queue. However:

1. From the theoretical point of view, it must be proved that approxi-
mation of B with B also implies approximation of the corresponding
steady—state characteristics of the queue. This is a question of so—
called continuity or robustness, and far from trivial or without pitfalls;
see Problem 2.5 and X.6.

2. From the practical point of view, a good approximation of B may for
certain types of distributions require a large E (note the slow conver-
gence to 1 in Fig. 4.1(a)!), so that the solution of the approximating
M/PH/1 queue will be computationally demanding.

3. Modelling by a Markov jump process is not the only way to exploit
phase—type distributions in queueing theory. Another is to use the
probabilistic interpretation to provide solutions to certain fundamen-
tal random walk problems; see further VIIIL.5. Still another point of
view is taken in the literature based upon transform methods, where
the class Z£7 is exploited in a purely analytical way.

Problems

4.1 Write up the appropriate state space and intensities for some queueing
system such as Hy/FE¢/1, M/Hy/c, etc.

4.2 Show that the s.c.v. in Hy can attain any value in (1, 00).

4.3 Let Iy, Fy € £ Show that the convolution Fj * F» and a convex
combination 0F; + (1 — 0)F> are again in P

4.4 Show that if X has distribution F' € £ with representation (a,T), then
the overshoot distribution F*) (the distribution of X — z given X > z, ie.
F(z)(y) = F(y + 2)/F(z)) is phase-type with representation (a‘*),T) for some
a'®’ | and give an expression for a'*’.

4.5 Give an alternative derivation of the form of the mean of F € P by
deriving equations for the E;( by conditioning upon the first jump. Do the same
for the Laplace transform.

4.6 Show that (a) if F € &%,p has the Laplace transform Q/R with Q, R
polynomials without common roots, then R cannot have complex roots; (b) if
F=(1-0)Y70""'G" with G € PH, then F € P (c) if G = E3 in (b),
then F' ¢ PHsp.

4.7 Show that (a) the density f(z) of F € P satisfies f(x) > 0, z > 0. [Hint:
F contains a component of exponentials in series.] Show that (b) the distribution
with density proportional to (1 + sinz)e™" is in ZLT\PAH

Notes The modern revival of the class Z#is due to a large extent to M.F.
Neuts, a main source being his 1981 book; some later textbooks with more ex-
tensive treatments are Wolff (1989), Rolski et al. (1999) and Asmussen (2000).
Statistical fitting is treated via maximum likelihood in Asmussen et al. (1996)
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and via a Bayesian Markov chain Monte Carlo approach in Bladt et al. (2003).
A survey of the class Z.2.7 is in Asmussen and O’Cinneide (1999); there is also
much discussion, in part at the more heuristical level, in Lipsky (1992).

5 Renewal Theory for Phase-Type Distributions

We consider a point process on [0,00) with epochs 0 = Sy < S < So
such that the interarrival times Y, = S, — Sip_1 are i.i.d. with common
distribution F' of phase-type, say with representation (E, c, T).

The key idea in studying such a process is to piece together the phase pro-
cesses governing the individual Y} to a Markov process {X;},-,. Namely,

assume given i.i.d. Markov processes {Jt(l)}, {Jt@)}, ...on BU {A} with
the same distribution as {Jt} in Section 4. We can then represent Y} as
the absorbtion time of {Jt(k)} and define X; = Jt(l), 0<t<Y, Xy = Jt(Q),
Y1 <t < Y7+ Y5 and so on; cf. Fig. 5.1 where there are two Markov states
1 =thin, 2 =thick.

1
iy

Yo

Y3
Y

Xt
| | |

i Yi+Ye Yi+Y:+ Y3
Figure 5.1

Proposition 5.1 {X;} is Markov on E with intensity matrizc A = T+ta.

Proof. Let i,j € E, i # j. Then a jump from i to j occurs if the {Jt(k)} cur-
rently in operation is in state ¢ and either makes a jump to j (the intensity
is t;5), or if it jumps to the absorbing state (intensity ¢;) and J(gkﬂ) =7
which occurs w.p. a;. Hence the intensity is ¢;; +¢;c; independently of the
past, which shows the Markov property and that the off-diagonal elements
of A are as asserted. It only remains to check that the rows sum to zero,
which follows since a1 = 1 implies (T'+ ta)1 = -t +t = 0. O

We define as in 1.2 the forward recurrence time By as the waiting time
until the next renewal, i.e. By = S, —tif S,,_1 <t < S,,. The renewal
density u(t) is defined as the density of the intensity measure of the renewal
point process {S,} (cf. A3).

Corollary 5.2 (a) The distribution of By is phase—type with representation
(o, T) where a; = aeTTt)t (b)) the renewal density exists and is given
by u(t) = aut = ae(THt)E,
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Proof. Since {X;} has initial distribution e and intensity matrix T + to,
a is simply the distribution of X;. Part (a) is then immediately clear from
the probabilistic interpretation. For (b), just note that w(¢) must be the
same as the density of B; at 0, which is c;e™ "0t = ayt. O

Corollary 5.3 Assume that A is irreducible. Then the stationary distri-
bution of {X;} is @ = —aT ' /ur where up = —aT "1 is the mean
of F. Further, B; has a limiting distribution that is phase—type with
representation (w,T).

Proof. The expression for up (Proposition 4.1(ii)) shows immediately that
7l = 1, so that stationarity follows from

prrA = —aT (T +ta) = —a+ala= —a+a = 0.
The last statement follows since by ergodicity oy — . a

Remark 5.4 Since et — 1, it follows that

ut) — almt = wt = pp'(—aT ) (-T1) = pplal = pp'.
This is a continuous time and nonlattice version of 1.2.2, and the general-
ization to a completely general (rather than phase—type) distribution F' is
equivalent (in the absolutely continuous case) to the renewal theorem to be
presented in V.4. But note that this generalization has no easy proof using
the denseness of phase—type distributions. |

Example 5.5 Consider the case of two phases where

t11 +tiay f12 +tiae A1 M
A= THta = _ ,
o ( tig +loar  taz + o > < Ay —Ag (say)

Here 7 = (m1 m2) = (A2/(A1+ A2) A1/(A1+A2)). The nonzero eigenvalue of
A is A = —)\; — \g, and by standard diagonalization techniques (see 11.3.6
for details) we get the renewal density as

u(t) = aett = (o 042){( Zi Zz ) + e < —W;l ;7;2 >} < 2 )
= () s (2020

= ity + moty + M (1 — aamy) (t1 — t2)

1
= — 4+ e/\t (0417'('2 — 0527'('1) (tl — tg)
HF
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Example 5.6 Consider the Erlang distribution with n stages and, w.l.o.g.,
mean n, i.e. § = 1. Here A = T + ta is the matrix

1 1 0 - 0 0 0

0 -1 1 0 0 0

: S I (1 00 -0 0)
0O 0 0 -1 1 0

0 0 0 0 -1 1

1 1 0 0 0

0 -1 1 0 0

0 0 0 - —1 1

1 0 0 - 0 -1

(this form of A is also probabilistically obvious since {X;} is cyclic). The
characteristic equation of this matrix is (14+X)"™ = 1, with roots A\, = 6% —1,
k=0,...,n—1, where § = 2™/" is the nth root of unity. The corresponding
left and right eigenvectors are
9k
92k
1 93k
I, = ( 9—1@ 9—2k 9—3k . 9—(n—1)k 9_"k ), rp=—
n :
e(n—l)k
an

(here 6~"% = 9™ = 1) where 1/n occurs to obtain Iz = 1. Thus

n—1 n—1
A = E )\krklk, eA“’ = E eA’“xrklk,
k=0 k=0

n—1 n—1 ek
_ Az _ /\k;c . — /\k;c_ .
u(r) = ae’'t = Ze (arg) - (Igt) Ze - 1
k=0 k=0
1= { 27k /. 2tk 27k
= —Zexp (COS—71)1'+1(S11’1—1‘+—)
n n n n
k=0
1= ok _ork  2nk
= —Zexp —(1—005—)30 cos(sm —:c—l——)
n n n n
k=0
(using u(z) € R in the last step). O

Returning to the general theory, consider a doubly infinite stationary
version {X;}_ __, ... of {X;}. Let {X;} denote the time-reversed process

(X; = X_,_) and A its intensity matrix with rsth element m (s, r) /7,
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and define

~ ing Tstsr ~ Qe
Qp = pptymp, trs = ——, tp = .
T UETy

Then a is a probability vector since
al = ppt = (—aT 1) (-T1) = al = 1.

Further, just the same argument as in I1.5.2 shows that transitions s — r
of {X:} not taking place at a renewal epoch (i.e. governed by the T—part
of A) correspond to transitions r — s of {Xt} governed by T'. Since

7r ~ ~
A(r,s) = ﬂ—s(terrtsar) = tps + tra,

T

it follows that transitions s — r (r = s is included) of {X;} at renewal
epochs (i.e., governed by the ta—part of A) correspond to transitions r — s
of {)?t} governed by tae. Thus the time reversed renewal point process
must be a phase-type renewal process with representation (e, f1~“) of the
interarrival distribution. However, the long—run distribution of interarrival
times is the same no matter whether time is read forward or backward, and
hence:

Proposition 5.7 Let F be phase—type with representation (c, T'), and as-

sume that T + ta is irreducible. Then (a, f1~“) s again a representation of
F.

For an algebraic proof, let A be the diagonal matrix with the 7, on the
diagonal. Then

(MFAt)TeA_lTTAt(aAfl/'ulF)T
= AN A T A (A Q)

T
_ tTeT taT — (aeTtt)T — aeTtt

aeTtt

(any 1 x 1 matrix is symmetric!) shows that the two representations lead
to the same density. _

For obvious reasons, we refer to (&, T) as the time—reversed representa-
tion of F. It becomes important in IV.3—4.

Problems

5.1 Doublecheck using Examples 5.5, 5.6 that the renewal density for E2 with

density 6%ze™*" is u(t) = § (1 - ™).

5.2 Show that the renewal density for Ho with density cne %1% 4+ ape™%2% is
2
u(t) = 0102 e~ (Braz+dzan)t (61 —d2) naz
d1ag + dac1 0102 + oy

5.3 Let F be phase-type. Show that deleting states r € E such that Po(J; =
r for some t < ¢) = 0 leads to a representation with T' + ta irreducible.
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5.4 Verify algebraically that t=-T1.

Notes For an additional explicit example in renewal theory, see V.2.8;
references to the area can be found in Asmussen and Bladt (1996).

6 Lindley Processes

By a Lindley process, we understand a discrete time process of the form
Wo = w, Wpp1 = (Wa+X,)", n=0,1,..., (6.1)

(T means max(z,0)) where w > 0 and Xy, X1,... are i.i.d. (in general
having both positive and negative values), say with common distribution F.
Equivalently, the process may be described as a Markov chain on E = [0, c0)
with transition kernel given by

P(w,[0,m]) = P(Wi<m|Wo=w) = IP((w+X0)+ <m)
= Plw+Xo<m) = Flm—w), w,m>0. (6.2)

If F is lattice concentrated on {0, £h, £2h,...} and we consider only ini-
tial values of the form w = kh, then the state space may be reduced to
{0, h,2h,...}.

The interest in the Lindley process stems classically from the way it
comes up in the GI/G/1 queue (see the basic Example 6.1 below), but it
is quite common that in a particular queueing model one or more of the
processes of interest may be related to a process that is Lindley or at least
of a somewhat similar structure. One example has already been given in
1.5.7, one more follows below in Example 6.2, and further examples are in
the Problems and (in continuous time) Section 7.

Example 6.1 Consider the GI/G/1 queue and let as in Section 1d W,
be the waiting time of customer n = 0,1,.... What is the sample path
relation between W,,, W, ;17 Say that customer n arrives at time ¢ and
customer n+1 at ¢t +T),. The residual work in the system is W, just before
t, Wy, + U, just after ¢ (recall that U, is the service time of n) and W, 1
just before t + T,,. Since the residual work decreases at a unit linear rate in
between arrivals so long as it is positive, W, 41 will be W,, + U,, — T}, when
this quantity is > 0 and 0 when it is < 0 (a graphical illustration of the
argument is contained in Fig. 1.4(c) with n = 2). Hence (6.1) holds with
X, = U, — T, and clearly the X,, are i.i.d. For example in the M/M/1
case P(U, > u) = e~ % P(T,, > t) = e P it is readily seen that F is the
doubly exponential or Laplace distribution with density

ﬁﬂf{;e T x>0

f(@) = . 0
ﬂﬂféem <0
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Example 6.2 This is the embedded Markov chain in GI/M /1 mentioned
in Section 1d, i.e. W, is the number of customers just before the arrival
of customer n. Let A denote the interarrival distibution and ¢ the service
intensity. We may think of service events being given in terms of a Pois-
son process with intensity J, such that an event in the Poisson process
corresponds to a customer being served if the queue is nonempty and is
just dummy otherwise. To describe the relation between W,, and W, 41,
let K,, be the number of Poisson events in the interval between arrivals of
customers n and n + 1, and define

> s ()"
G = P(Kn=k) = / o0t O Agar) (6.3)
O .
Then clearly W,, + 1 customers are present just after the arrival of n and
W1 = (W, +1— K,)" just before the arrival of n + 1. Thus (6.1) holds
with X, =1 — K, (clearly, the X,, are i.i.d.). We have E = N, and letting

Tn = qnt+1 + Qnt2 + - - -, the transition matrix of {W,,} is easily seen to be
o qo 0 0
T @ q O

T2 g2 g1 Qo . (6.4)

O

Figure 6.1

Now define Sp =0, S, = Xo+ -+ X,,—1. Then (6.1) reflects that the
Lindley process {W,,} has the same transition mechanism as the random
walk {S,} except when the random walk crosses from positive to negative
values (the Lindley process then stays at 0). The relation is illustrated
in Fig. 6.1. It is actually typical for many queueing processes that they
are nonnegative but can be described by modifications at (or near) 0 of
a process on the whole line (the netput process) with some basic simple
structure (such modifications may well be more complex than in the present
case).

Exploiting the relation between the paths of {W,,} and {S,,} even further
yields:
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Proposition 6.3 W,, = max(Wo 4+ 55,8, —S1,...,8, — Sn_1, 0).
Proof. By (6.1), the increments of {W,,} are at least those of {S,} so that
Wp —Wpg > 8, — Sn_k, k=0,...,n. (6.5)

Letting k& = n yields W,, > Wy + S, and using W,,_; > 0 we get W,, >
Sp — Sn—k, proving W, > max(...). For the converse, we shall show that
either W,, = Wy + S,, or W,, = S,, — S,,_, for some k. The first case occurs
apparently if Wy + .S, > 0 for all £ < n. Otherwise, W, = 0 for some ¢ < n,
and letting k& be the last such ¢, (6.1) yields W,, = S,, — Sp—; see Fig. 6.1.

O

Now define M,, = maxo<k<n Sk, M = Maxo<i<oo Sk. Since the distribu-
tion of (Sn, Sn —S1,...,5, — Sn_1, O) is the same as the distribution of
(Sn, Sn_1,...,51,5 = O)7 we get:

Corollary 6.4 W, =4

then W, Zz M,,.

max(Wy + Sy, My—1). In particular, if Wy = 0,

It should be noted that this holds in the sense of one—dimensional distri-
butions only and not processes. For example in the case Wy = 0, the paths
of {M,} are nondecreasing, those of {WW,} not.

Suppose now E|X,,| < oo and write p = EX,,.

Corollary 6.5 If i <0, then M < co a.s. and W, ZM (and in t.v.).

Proof. From S, /n *¥ 1 we have S,, *3 —oo. This implies in particular
M < co. Also Wy + S, 23 —oo and M,, T M a.s. and in distribution. Thus
max(Wy + Sy, Mp—1) = M,,—1 eventually and W, Z, M follows. O

For the limiting behaviour for p > 0, see Problem 6.6.

Corollary 6.6 If u < 0, then M 2 (M + X)*, where X is independent
of M with distribution F. Furthermore H(m) = P(M < m) is the unique
distribution function on [0,00) which solves Lindley’s integral equation

H(m) = /_m H(m —z) F(dx), m >0. (6.6)

Proof. The first statement can be proved by a limiting argument or from

(M+X)" = max(0,M +X) = maX(O,X,X—l—XO,X+X0+X1,...)

IS

maX(O,X(),X()+X1,X()+X1+X2,...) = M.

Furthermore the r.h.s. of (6.6) is just P(M + X <m) = P((M—i—X)"" < m)

evaluated by conditioning upon X = x. Thus (6.6) is equivalent to M 2
(M + X)*, i.e. H being stationary for {W,,}. Thus if Hy, H2 both solve
(6.6), we may consider the two stationary chains with initial distributions
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Hy, resp. Hs. From the fact that they both converge in distribution to M
we conclude that Hy = Ho. O

It is nontrivial even in such simple models as Example 6.2 or the doubly
exponential M/M/1 case in Example 6.1 to derive the distribution H of
M, and this is in fact the subject of the detailed investigations in VIII.5
(of course, given a trial solution H, one can just check whether H solves
Lindley’s integral equation).

Problems

6.1 Let {An};”, {Bn}y beindependent sequences of i.i.d. r.v.’s and define Wy =
By, Wpi1 = (W, — An)Jr + Bn+1. Show that {W,, — B,} is a Lindley process
corresponding to X,, = B, — A,. Show that if EB,, < EA,,, then in the limit
W, is distributed as M + B where M = sup S, and B is an independent r.v.
distributed as B,.

6.2 Consider the fized—cycle traffic light, with the cycles divided into the green
period where customers (say cars or pedestrians) can pass and the red period
where they cannot. Let W, be the number of customers just after the start of
the nth green period and BS the number of customers arriving during the nth
green period (similar conventions define W.E BS). Assuming that the maximal
number of customers which can pass during a green period is some fixed number
p, show that

+ +
Wi = (Wi + B+ Bl —p) . Wi, = (WS +BI-p) +BIL

6.3 Consider the M/G/1 queue and let W, be the queue length just after the nth
departure, B, the number of customers arriving during the nth service period.
Show that W41 = (W,, — 1) + By41, and find the distribution of B,, in terms
of a formula similar to (6.3). Show also in the M/M/1 case with p < 1 that the
stationary distribution of {Wy} is given by m, = (1 — p)p".

6.4 Assume that F has negative mean and density pde °% on (0,c0) (clearly,
p = F(0)). Let v satisfy J7_e"F(dz) = 1. Show by direct calculation that
H(m)=1-(1—~/8)e™"™ is the unique solution to Lindley’s integral equation.
Show hereby that the steady—state GI/M /1 waiting time distribution is of this
form.

6.5 Compute the matrix (6.4) for the M /M /1 case and show that 7, = (1—p)p"
is stationary when p < 1.

6.6 Consider a Lindley process with px > 0. Show that W, /n %3 u. Show also
that the process is a null recurrent Markov chain in the lattice case with p =
0. [Hint: Let 7 = inf{n : Sp, <0} and show that ET < oo contradicts Wald’s
identity.]

x

Notes Among textbooks with systematic discussion of Lindley processes, we
mention in particular Feller (1971,V1.9) and Borovkov (1976). A Lindley process
is most naturally viewed as a reflected random walk, and we return to a more
systematic study of reflection allowing also for dependence in IX.2 (a preliminary
discussion of the continuous time case is in the next section).
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Lindley’s integral equation is of Wiener—Hopf type,; see further the Notes to
VIIL.3.

The Laplace distribution in Example 6.1 has received considerable attention
outside of queueing theory; see Kotz et al. (2001).

7 A First Look at Reflected Lévy Processes

A natural way to define a random walk in continuous time is as a process
{Si},>0 with Sp = 0 and with stationary independent increments. We will
return to a study of such processes, usually referred to as Lévy processes, in
IX.1. In this chapter, it will suffice to note that basic examples are a linear
deterministic drift (S; = 60t), standard Brownian motion and a compound
Poisson process, and independent sums of such processes. If the mean is
well defined, it must be linear, ES; = ut.

How to define a reflected version {V;},-, of {S;} in continuous time is less
obvious than in discrete time. Also this topic is studied more systematically
later; see IX.2. The definition used there is the continuous—time analogue
of Proposition 6.3,

Vi = (Vo+ 58V Orgsagt(st —Ss); (7.1)

when x = Vj is of importance, we will write V; = Vi(z). The following
results are obtained as special cases of results to be shown in IX.2 (for
the strong Markov property in Proposition 7.1, combine with 1.8.3). Define
Mr = supg<i<1 Sty M = supy<icono St-

Proposition 7.1 {V;} is a strong Markov process.

Corollary 7.2 Vy Z (Vo+St)AMyp. If u < 0, then M < oo and Vip — M
in total variation.

Proposition 7.3 Define w = inf{t >0: V5 +S; <0}. Then also w =
inf{t>0:V; =0}, and Vo; = Vo + S; fort <w.

The content of this last result is that {V;} evolves as {S;} until the first
hitting time of 0, so that in examples the crux is to describe the behaviour
starting from V) = 0 or, equivalently, in Markov state z = 0.

Example 7.4 Consider a compound Poisson process of the form S; =
Nt(ﬁ) — Nt(‘s) where {Nt(ﬁ)}, {Nt(‘s)} are independent Poisson processes with

intensities 3, resp. d. The reflection then means that jumps of {Nt(a)}
are ignored when V; = 0. Thus, {V;} is a Markov process on N where
the only nonzero off-diagonal intensities are A(i,i — 1) = §, i = 1,2,...,
Ai,i+1) =p06,7=0,1,..., and we recognize {V;} as the M/M/1 queue
length process in Section 3a. O
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Example 7.5 Consider a compound Poisson process with only positive
jumps and a negative drift, S; = ivt U; — t where {N,} is a Poisson
process with intensity 3, and Uy, Us, . .. are i.i.d. with common distribution
B (concentrated on (0,00)) and independent of {N;}. The reflection then
means that the downward drift at unit rate is cut off when V; = 0. Thus,
{V;} has the same upward jumps as {S;} and a downward drift at unit rate
in states z > 0 so that we recognize {V;} as the M/G/1 workload process.

O

In the next example as well as at other places in the book, we shall need:
Proposition 7.6 If {S:} is standard Brownian motion, then the joint
distribution of Sy and My is given by

PSS <z—y, My >z) = P(S; > z+vy) (7.2)
for x,y > 0. Also My 2 |St].

Proof. Define 7(z) = inf {¢ > 0: S; > x}. Since M; > z is equivalent to
7(x) <t and is automatic if S; > = + y, we may rewrite (7.2) as

P(S;<x—vy, 7(x) <t) = P(S;>z+y, 7(x) <t).

The truth of this follows by the reflection principle, which states that Brow-
nian motion, being symmetric (S Z —S4), is equally likely to proceed from
Sr(z) = x to levels > o +y or < —y within s = ¢ — 7(x) time units (here
we have also used the strong Markov property). We then get

= 2P(S; >x) = P(|S| > x),

using (7.2) in the second step. O

Example 7.7 Assume that {S;} is Brownian motion with zero drift and
unit variance. Then {V}(:c)} is reflected standard Brownian motion starting
from z and has the same distribution as {|:c + St|}. In fact, since both
processes are strong Markov and evolve as {x + S;} until the first hitting
time of 0, it suffices to show that the transition functions starting from
x = 0 are the same, i.e. that Vr(0) Z |St|. However, Vi (0) Z My by
Corollary 7.2 and My 2 |S7| by Proposition 7.6. O

Problems
7.1 Show that the number of stages in M/FE) /1 is a reflected Lévy process.
Notes We return to reflected Lévy processes in IX.2. Aspects of the topic are

closely related to dams and storage processes; see Chapter XIV, Prabhu (1980)
and references therein.
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8 Time-Dependent Properties of M /M /1

8a. The Doubly Infinite Queue and Its Maximum
8b. The Transition Probabilities

8c. The Busy Period Distribution

8d. Transform Methods

8e. The Relaxation Time

8a  The Doubly Infinite Queue and Its Maximum

The key to our more refined study of the M/M/1 queue length process
{Xi},> is the Lindley process representation in Example 7.4. Combining
with Corollary 7.2, we have:

Proposition 8.1 The distribution of the M/M/1 queue length X, at time
t given Xo = i is that of max(i+St, M) where Sy = By— Dy is the difference
between two independent Poisson processes with intensities 8 and §, and
M; = supp<,<; Su-

The process {S;},~, is frequently denoted as the doubly infinite queue. It
models, for example, a queueing situation with taxis and passengers in front
of a railway station, with B, D; denoting the number of passengers, resp.
taxis arriving before ¢t. Thus if S; > 0 at time ¢, there is a queue of length
S; of passengers, whereas if S; < 0 there is a queue of length —.S; of taxis.

Letting M = supg<;., St, the following simple observation will be useful
in the following:

Proposition 8.2 Let p = (/6. Then a.s.: (i) Sy — —oo, M < oo when
p < 1; (ii) S¢ — +oo, M = oo when p > 1; (iii) lim; 0 S: = 400,
lim, ., S; = —o00 when p=1.

Proof. Let T, be the value of S; just after the nth jump, Ty = 0. Then
{T,} is a Bernoulli random walk with

B P g 1

P86 " 11y 1T Brs 11y

Hence if p < 1, ET; = p — ¢ < 0 and by the LLN T}, /n 23 p — ¢, implying
T, 2 —00, Sy 2% —o0 and hence M < co. The case p > 1 is treated
similarly. The case p = 1 is slightly more intricate and can be treated
either by appealing to a general random walk result given in VIII.2.4 or by
a direct argument (see Problem 8.1). O

Despite the simple relation to the Poisson distribution, the explicit form
of the point probabilities of S, is not elementary. Define the modified Bessel
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function of integer order n € Z by

o0
1[,’/2 ’ﬂ+2k
kZ:O o @) = @), nen,

and let u = /38, p = 3/6. The argument of I,, will be z = 2ut throughout,
so unless otherwise stated I,, just denotes I,,(2ut), and we shall let ¢, =
e~ B+t /21y € 7, so that

by = p "Ly, MEZL. (8.1)

As a technical tool (a particular case of the change of measure technique
studied in Chapter XIII), we shall use a process with 3, § both replaced
by w. This is denoted by Py and has traffic intensity 1 and the same value
of u, and we have

+ (B (5t)F
P(By=0,Dy=k) = e (Fto) Nk
= B, (=R)/2py (B, = 0, Dy = k). (8.2)
Proposition 8.3 P(S; =n) = eh=8-0tyn/2p (S, =n) = 1, n € Z.

Proof. For n > 0 we get

P(Sy=n) = > P(Bi=n+k Dy =k) = =Pt yn/2py(S, = n)
k=0
oo n+k k
—B—d)t n e ()" (ut _ n
N T /2;0e MEnik)!e ut(k!) Ly S

The case n < 0 is treated similarly or by a symmetry argument (when
passing from S; to —S, the arrival and service intensities are interchanged
and p changed to p~1). O

As a corollary, which will be used in formula manipulations in the
following, we note the identity

o0

L= > . (8.3)

n=—oo

In order to apply Proposition 8.1, we have more generally to find the
joint distribution of Sy and M;:

Lemma 8.4 Forn4+m >0, m>0

P(St =n,M; >n+ m) = pian+2m; (84)
P(S; =n,My=n+m) = p "(tntam — p_15n+2m+2)- (8.5)
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n+2m

n+m

Figure 8.1 The path --- has the same B; and D; as -— but a different M;.
The path - - - is obtained by reflection after n + m has been reached.

Proof. Let F = {S;=n,M; >n+m}, G, = {B:=n+k,D; =k}. Then
conditionally upon Gy, it depends solely on the order of the n+ k& increments
of S; and the k decrements whether or not F' occurs; cf. Fig. 8.1. But by
well-known properties of the Poisson process, this ordering is determined
by two independent samples of sizes n + k, k from the uniform distribution
on [0,t]. Hence P(F|G}) is independent of the intensities and in particular,
P(F|G)) = Po(F|Gy) so that using (8.2) we get

PF = Yo PFEGH = ) ]POGkIP’O(FGk)

k>0:n+k>0 k>0:n+k>0

= u=F=0)t yn/2p |
Now since the Pyp—process is symmetric, it follows by the reflection principle
just as for Brownian motion in Proposition 7.6 (cf. also Fig. 8.1) that
PoF = Po(Si =n+2m) = e I, ,0,.
Hence
PF = e@u=B=0)t,n/2e=2uty o mmy
and (8.4) follows. Finally (8.5) is a consequence of (8.4). 0

8b  The Transition Probabilities
Proposition 8.1 and Lemma 8.4 solve in principle the problem of evaluating
pij = P(Xy =j| Xo=1i) = PF where F = {max(i + S;, M;) = j},
and it only remains to collect terms. Now F' is the disjoint union of
F, ={S;=j—i<M<j} and Fy = {S; <j—1i, M, =j}
But

PR, = Z]P’(St:jfi,Mt:jfz‘er)

m=0
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i

- -1
= E P " (Ljmit2m — P lj—it2m+2)

m=0
—i—1 j+1
= i =P T vtz = Lj—z'—PjJr b—j—i—2,
j—i—1
. n—j —1
Pr, = Z P (bng2i—n) = P lng2(j—n)+2)
n=-—oo
—j—i-1 —j—i—1
— j j+1
SV ID DT AL S
n=—oo n=-—oo
—j—i—2 —j—i-3
—i—1 j j+1
= p "l + Z i — P/t Z ln
n=-—oo n=-—oo

where we have used (8.1) repeatedly. Adding these two expressions, we
obtain:

Theorem 8.5 In the M/M/1 queue with 0 < p < oo, pi; = P(X; =
J| Xo =1) is given by

—j—i—2
vii + p7 i + (1= p)p? Z In- (8.6)

n=—oo

Analytical manipulations or alternative derivations provide a number of
alternative expressions for pﬁj, for example

Py = (A=p)p’ + 1 — pU 0
= (Q=-pPIp<1) + J
where
oo
Ji = / e 0TI 5(2ps) — 20" * Ty j 11 (2us) + By j12(2us)] ds,
t

267(5+6)tp(j77;)/2 7T 62Mt cos 6
no i(0)g;(0)do
2 - A 1*2p1/2cos0+pg( )g;(0)

with g;(f) = sinif — p'/?sin(i + 1) (see Cohen, 1982, p. 178, for (8.7) and
Takdcs, 1962, p. 23, for (8.8)). That trigonometric functions are involved
may be understood from the standard analytical identity

1 ™
I,(t) = —/ b9 cosnd dh.
T Jo

The message of these formulas, as well as those for the busy—period
distribution to be derived shortly, is perhaps not so much their particular
form, but rather that they are extremely complicated. The M/M/1 queue
being the very simplest queueing system, this probably suggests that time—
dependent explicit solutions are in general not possible and indeed this is
the case. Even the numerical evaluation on a computer requires some care
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and the most feasible approach may be to apply numerical integration of
formulas such as (8.8), thereby avoiding manipulation of infinite sums or
integrals of Bessel functions of high order.

8c  The Busy Period Distribution
We first prove:

Proposition 8.6 The first passage time T = inf{t >0: Sy =1} of the
doubly infinite queue from 0 to 1 has density

ft) = BT I(2ut) — I(2ut)] = %/Qe_(ﬁ“)th@ut). (8.9)

Note that if p < 1, then by Proposition 8.2 S; drifts to —oo and hence
(8.9) is defective, [f =P(r < o0) < 1. More precisely, from P(7 < oo) =
P(M > 1) = P.(X; > 1) it follows that [f = p.

Proof. Using (8.5) we get

0
P(r>t) = P(M;=0) = > P(S,=n,M =0)

0
- Z pn(Lfn - p71L27n) = Co(t) - pCQ(t)

n=—oo

where

Cn(t) = Y e =2 (2pt).
n=N
Hence f(t) = pC4(t) — C{(t) and to evaluate the derivatives, we need the
formulas

L) =1I(t), I.(t) = %[In_l(t)+ln+1(t)], n=12..., (810

2n
In_1(t) = L1 (t) = Tln(t)’ n=12,..., (8.11)

which may easily be seen from the power series definition of I,. Using
(8.10), we get for N > 1 that

Cn(t) = —(B+)CN(E) + D e T2l g + Topy)
n=N
= *(/6 + 5)0]\](15) + 50}\[,1(0 + BCNJrl(t)
e~ BHO 5= (N=D/2 _ gp=N/2[ .

Hence

F1) = pCh(D) — O3 — e PO (2p)]
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= o B sl 2L — BI, — 51o + Bp~ Y211 + (B + 6) 1o — 2ul4]
ef(ﬁ+5)t5[_ro — 1),

and combining with (8.11), the proof is complete. a

-

G H

Figure 8.2

We understand the busy period G of the queue to be the time from when
a customer enters an empty system until the system is empty again. The
busy period is followed by an interval of length H where the system is
empty, the idle period, and G + H constitute the busy cycle; see Fig. 8.2
(the notation G, H is used only at this place). In the M/M/1 case, it is
clear that G and H are independent and H exponentially distributed with
intensity 0. Furthermore, we may identify G with the time of passage of
the doubly infinite queue from 0 to —1. The distribution of this follows
by a symmetry argument since we just have to interchange § and ¢ in
Proposition 8.6, and thus:

Corollary 8.7 The busy—period distribution of the M/M/1 queue is given
by the density

/2
g(t) = de” T Iy(2ut) — Ir(2pt)] = pTef(ﬁH)th(?ut)- (8.12)

As above, g is defective for p > 1. Moments will be derived shortly.

8d  Transform Methods

In some cases, where quantities such as the pﬁj cannot be derived in closed
analytical form, it may still be possible to find explicit expressions for
transforms or double (bivariate) transforms. As an example, we quote for
the present M/M/1 case the formula (Problem IX.3.4 or Prabhu, 1965,
Chapter 1.2a)

> o0t - Sipt. _ s (1=t /(1-9)
/ Lt = gy 1)

where £ = £(0), n = n(#) are the two roots of
B2 —(B+5+0)z+6 =0, (8.14)
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with € <, i.e.

B+5+0—RO)  B+5+0+R(0)
26 ’ n = 26 ’

where R(0) = /(B + 6+ 0)2 — 4/36. Classically this is proved, for exam-
ple, by careful manipulation of the differential equations for the pﬁj (but
see IX.3 for a more elegant approach). Though more generally applicable,
this method has serious drawbacks, however. In more complex cases, the
expressions are even less transparent than (8.13) and their derivation may
require much ingenuity. Also, even in the present case, the inversion of
(8.13) is not easy no matter whether the purpose is to derive formulas like
(8.6)—(8.8) or numerical computation.

We shall consider only one example where the transform calculations
work out in a quite elegant fashion, namely the distribution of the busy
period G and its moments. We first note that since {B;}, {D;} are (inde-
pendent) Lévy processes with the so—called Lévy exponents (see further
IX.1) logEe®Pt | logEe*Pt given by B(e® — 1), resp. §(e® — 1), then also
{St} = {B — D:} is a Lévy process with Lévy exponent

k(a) = logEe®" = log[Ee®P'-Ee *P'] = B(e*—1)+d(e”*~1), (8.16)

& =

(8.15)

and we have:

Lemma 8.8 For any a, {Y;} = {e*5 ()} s a continuous-time mar-
tingale, and we have for p < 1 and k'(a) < 0 (le. @ < —logp/2)
that

1 = EYy = EYg = e “Ee &%) (8.17)
Proof. The martingale property follows from
E [exp {aSi4n — (t + a)} ‘ w)o<u<t
= exp{aS; — tli( )}]E[exp {a(St4v — St) —vr(a)} | w)o<u<t]

= exp{aS; —tk(a)} E exp{aS, —vk(a)} = exp{aS;—tr(a)}.

Now @G, being the first passage time from 0 to —1 of {S;}, is clearly a
stopping time and the assumption p < 1 ensures G < oo a.s. Since clearly
Yo = 1 and Sg = —1, the formula (8.17) thus follows by verifying the
conditions of a suitable version of the optional stopping theorem given in
XII1.4.2(b) (the discussion there also explains why the condition x’(a) <0
is involved). O

Remark 8.9 It is clear that the proof of Lemma 8.8 shows that {Y;} is
a martingale for any Lévy process. This martingale is known as the Wald
martingale and will be used at a number of later occasions. Its analogue
for a discrete time random walk {S,} is Y,, = e*%» /F[a|® where F[a] =
EeS1, a
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Proposition 8.10 For p < 1, the Laplace transform of the M/M/1 busy
period G is given by

1
B¢ = £(0) = 55 (8+6+06-V(B+o+02-485)  (818)
for 8 >0, cf. (8.15). In particular, the mean and variance are given by
1 1+p
]E = — / = — = " ¢ 2 = = - 1
G = ~€(0) = s VarG = (0 =¢ (0 = e (819)

Proof. Let £(6) = Ee~%¢. Tt follows readily from (8.16) that x(a) decreases
monotonically from co to 0 on (—oo, 0]. Hence for § > 0 we may find o <0
such that k() = 0, and (8.17) then yields E(G) = e®. Now letting & = e®
in (8.16) we get 6 = B(€ —1) +6(¢" — 1) which after some algebra shows
that & solves the quadratic (8.14). But in (8.15) we have n(0) > 1, 6 > 0,
hence §~ = ¢ since €~ < 1. Finally (8.19) follows by some more algebra from
R(0)=0—p3, R'(#) = (B+4+6)/R(0) and

= i( w) 51/(9) — (ﬁ+6+9>2_R(9)2

26 R©O) )’ 26R(0)?

¢'(0)

Distributional properties of the busy cycle follow easily as a corollary,
since we just have to convolve the busy—period distribution with the dis-
tribution of the idle period, which is exponential with intensity (. For
example, the mean busy cycle is

_t i1
(1—p) B Bl-p)°

EG+EH =

8e The Relaxation Time

Suppose p < 1. We shall consider the question on the rate of convergence
of pﬁj, as given by the formulas of Section 8b, to its limiting value (1 —p)p’.
To this end, we need the asymptotic properties of the Bessel functions:

Lemma 8.11 Ast — oo,

t i 4 2 _ 1 i
I(t) = \/e%{tl/ztapnT} + ndt32et0(1),

where the o(1) terms here and in the proof are uniform in n.

Proof. Letting § = 6 = pu = 1/2 for the moment, we shall appeal to
the interpretation I,(t) = e'P(S; = n), cf. Proposition 8.3, and apply
the higher—order expansion in the local CLT for lattice distributions (see
Bhattacharya and Rao, 1976, p. 231, or Gnedenko and Kolmogorov, 1954,
p- 241; the result is stated there for discrete time random walks but is also
valid in continuous time as may be seen by the same proof or by the method
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of discrete skeletons; cf. A11). To this end we need the cumulants &, of Sy,
i.e. according to (8.16)

d” 1 « —«
G 5(6 +e)
Hence if ¢, denotes the rth derivative of the standard normal density
evaluated at g, = n/v/t, we have

P(St = TL)

1 1 k3 1 |ka K3 —3/2
Vi {‘po 6vi 22" T |:I<L%<p4 Fagse| HtTeW)

kr = K(0)

~J 0 7 uneven
a=0 1 7 even

N % {0 g} +170%0)
_ 1— n2/2f/—%4t_20(1) {1 n % +n4t_20(1)} 4 t‘3/20(1)
_ \/;—m (1 B 4n28t— 1) + nit320(1).

O
We can now evaluate the desired rate of convergence. Using (8.6), (8.3)
and Lemma 8.11 we get

(1 =p)p’ =l = (L=p)p Z b = tjmi = P Mg
n=—j—i—1
S (YIRS S
n=—j—i—1

— =02, — p(j—i+1)/2[i+j+1}

_ e(2u—pB—0)t cl(i’j)fp(jfi)/2fp(jfi+1)/2 Co(i, 5) N o(t*3/2)
o (2put)1/2 (2ut)3/2 ’
where
oo —(j+i+1)/2
.. _ _ j n/2 __ _ pi
Ciid) = Q-pp 3 = =0 =7
n=—j—i—
— U2 4 i)/,
PR 4n? — 1 ol —i)? -1
Coli.i) = (1— J n/220° - _ JG-9/22\ Y
2(i,4) = (1=p)p n:;Hp 2 p 3
i di i A1

8
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(Cs can be reduced, but we shall not carry out the tedious algebra). Hence
the t=1/2 term vanishes, and we have proved:

Theorem 8.12 If p < 1, then

—rt —rt
o (1) - & 47320 e
p; = 1L—p)p + WL Ca(i5) + o\ 7z
ast — oo, where r = B+ —2u = (V6 — VB)?.

It is seen that the remainder term decreases essentially exponentially
at rate 7 no matter 4,4, and for this reason r~! (or some multiple) is
frequently denoted as the relazation time of the system, measuring in some
appropriate sense the time needed for the initial condition Xy = 7 to become
unimportant and the system to relax in the steady state.

Problems

8.1 Show that if p = 1 in Proposition 8.2, then {7} is a recurrent Markov
chain by (a) explicit calculations of y ;° p(()%"), (b) test function techniques and
Ei|Th| = |il, i # 0.

8.2 Find asymptotic expressions for the tails P(G > t) and P(G + H > t) of the
busy period, resp. the busy cycle, in M/M/1.

8.3 Evaluate the Laplace transform (or generating function) of the number N
of customers served in a busy period. Check the formula by EN = ¢EG (and
explain why this is true!).

8.4 Consider M/M/1 with p > 1 and let S; = f’t U, —t with {N;} the arrival
process and Uy, Us, . .. the service times, and define 7(u) = inf {t > 0: S; > u},
B(u) = S,(4) — u. Evaluate the Lévy exponent x(a) = log Ee®**. Explain heuris-
tically that B(u) is independent of 7(u) with P(B(u) > x) = ¢ °® and that
Eexp {aS; () — T(u)k(a)} = 1. Evaluate thereby the Laplace transform of 7(u).
How is 7(u) related to time-dependent properties of the workload?

8.5 Let 7 =inf{t > 0: |S¢| = 2} with {S:} the doubly infinite queue. Evaluate
in the symmetric case 8 = ¢ the Laplace transform of 7 by a similar method as
used for the busy period, and check with Proposition 4.1.

Notes What we have called time—dependent properties are often referred to
in the literature as transient properties (not a good terminology!). Textbook
treatments of the topic for queues in general and for M/M/1 in particular can
be found in (among many) Takdcs (1962), Cox and Smith (1961), Prabhu (1965)
and Cohen (1982), whereas a detailed study of aspects of M/M/1 is in Abate
and Whitt (1988). Cohen’s book is also a monumental treatise of the general area
of transform methods in queueing theory. For Bessel functions, see for example
Abramowitz and Stegun (1972).
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9 Waiting Times and Queue Disciplines in M/M/1

la. Waiting Times and Workload in the FIFO Case
1b. The LIFO Case

lc. The STRO Case

1d. The PS Sojourn Time

So far queue length processes have received considerably more attention
than the waiting times. The main reason has simply been that as discrete
state space processes they are easier to handle by Markovian methods than
the continuous waiting times, but we have now actually collected enough
results to be able to say something about waiting times. We shall concen-
trate on M/M/1 in the steady state and the effects of changing the queue
discipline.

9a  Waiting Times and Workload in the FIFO Case

Theorem 9.1 Consider the M/M/1 queue in the steady state. Then the
waiting time and the workload have a common distribution that is a mixture
with weights 1 — p, p of an atom at 0 and an exponential distribution with
intensity v =6 — 3,

Pe(Wn <y) = Pe(Vi<y) = 1—p+p(l—e) = 1—pe 7. (9.1)

Before embarking into the proof, we stress that when talking about “the
M/M/1 queue in the steady state” we must distinguish between time and
customer stationarity. More precisely, a time-stationary version {V;*},-,
of the workload process is not customer—stationary since, for example, the
first customer to arrive has a waiting time with distribution different from
(9.1). Indeed, his waiting time is V7, where Tt is the first arrival time, and
obviously Vi _ = (V5 — Ty)™T is effectively smaller than the representative
Vg for (9.1). In different terms, the particular customer is not “sampled at
random.” We return to such phenomena in V.3 and VIIL.6.

Proof. The workload at time ¢ is 0 if the system is empty which occurs w.p.
1 — p in the steady state. If X; = n > 0 customers are being served, the
workload is the residual service time Y7 of the customer in service plus the
service times Y3, ...,Y, of the ones waiting in line. But by the memoryless
property of the exponential distribution, Y7 is exponential with intensity
6 and independent of Ys,...,Y,. Hence Y7,...,Y,, are i.i.d. exponentials
with intensity ¢ given X; = n and thus

P(Vi<y) = 1fp+2 (1= p)p"B(Yi + - + Y < )
n=1
which reduces to the r.h.s. of (9.1); cf. I1.3.2.
We shall give three different proofs that also P.(W,, < y) is as in (9.1)
(some routine calculations are omitted in (a), (b)):
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(a) Apply the uniqueness of the solution to Lindley’s integral equation (6.6)
and show directly that if F' is doubly exponential as in Example 6.1, then
the r.h.s. of (9.1) is a solution (cf. also Problem 6.4).

(b) Letting M (k) =11 + -+ + Tx—1 be the arrival time of customer k, we
have Wi, = Viy)—. Hence it suffices to show that the limiting stationary
probabilities for the Markov chain {X M(k)_} are the same as the ones
T = (1 — p)p" for {X;} since we may then condition upon X and
proceed as above. But {X M(k.)_} is the Markov chain studied in Example
6.2. Inserting A(dt) = Be Ptdt yields qx = p/(1 + p)**1, and it is then
immediately checked that 7 is stationary for the transition matrix (6.4)
(cf. Problem 6.5).

(c) We use the maximum representations of r.v.’s W, V having the steady—
state distributions, i.e.

W Z max{0,Uy — To,Up+ U = To = Ti,...}, V£ max {S] —t}

0<t<o0

where StT = Zjlv’ Uk, cf. Corollaries 6.5 and 7.2 and Examples 6.1 and
7.5. Then {StT —t} increases only at times M (1), M(2),... so that the
maximum is attained either at time 0 or at some M (k). Now just note that
by sample path insection, Sg/l(k) —M(k)= g_l(Un —T,) so that the two
maxima above are equal. O

In connection with (b), one may feel on intuitive grounds that it can
be inferred from the Poisson arrivals alone and without calculations that
the steady—state distribution of {XM(k),} is the same as that of {X;},
the reason being heuristically that the state of {X;} seen by the arriving
customers is “chosen at random.” Such reasoning is obviously important
for intuition but requires some tightening which will be done in VII.6 in
the framework of PASTA (Poisson Arrivals See Time Averages).

Note also that the proof of (c) immediately yields:

Corollary 9.2 The steady-state workload and the steady—state waiting
time in the FIFO M/G/1 queue have the same distribution.

9b The LIFO Case

The basic observation is that passing from FIFO to (nonpreemptive) LIFO
discipline neither changes the distribution of the queue length at a fixed
time ¢ nor prior to an arrival. Hence exactly as above, we may evaluate
P. (W) < y) by conditioning upon the events {XM(;C), = n} having prob-
abilities (1 — p)p™. Now clearly Wj, = 0if n = 0. If n > 0, customer k must
wait for the server to finish the customer presently in front of him and to
clear customers arriving later than customer k. Thus his service can start
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at time
M(k)+W(k) = inf{t > M(k): X, =n—1}.

But this shows that independently of n > 1 W}, is distributed as the time
of first passage of the doubly infinite queue from 0 to —1, or equivalently
as the busy period; cf. Section 8c. Hence by Corollary 8.7:

Corollary 9.3 Consider the nonpreemptive LIFO M/M/1 queue in the
steady state. Then

Y1
P (W, <y) = 1—p + p*/? / ;e’('BJr‘s)tIl(Z,ut) dt. (9.2)
0

9c¢ The SIRO Case

We say that a customer is of type n if he meets n other customers in the
system upon arrival (this occurs in the steady state w.p. m, = (1 — p)p",
cf. proof (b) of Theorem 9.1; obviously the queue length has the same
distribution for both the FIFO and SIRO cases).

Considering the steady—state SIRO case, let H,,(y) denote the probability
that the waiting time of a customer of type n strictly exceeeds y > 0. Then

Wy >y) Z T H = (1-p) Z ann(y) (9~3)
n=0

(here obviously Hy(y) =0, y > 0).

Consider a n—type customer (n > 1) arriving at time 0 and let u be the
time of first exit from state n. If u is a departure time, then the customer
is selected for service w.p. 1/n. That is, he continues to wait w.p. (n—1)/n
and behaves then as a type n — 1 customer who has already waited u time
units. It follows that

H,(y+1t) = e~ (y)

' -1
+/ {5Hn+1(y+tu)+6Hn1(y+tu)n }eww)udw
0 n

Hence up to o(h) terms

Ho(y) + How)h = (1= (B4 6)h) Ho(y) + BHo o (9)h+ 5Hy 1 (y)

h,

n—1

Hy(y) = 0Hn1(y) —(B+00)Hn(y) + BHna(y)  (94)

It follows by induction from (9.4) that H,, is C*° on [0, co) with ‘H(k) )‘
< (B+9)k. This is sufficient to ensure the validity of the series expansions

— (V" yk
= > P L (W > 9) Zh(k) L (9.5)
k_
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(k) _ \o© (k)
where A% =3 o Tnhn  and

n n

_ —1 _
W — HW () = 5h§f_f>”T—(ﬂ+5)hg’“*“+ﬂhi’15% (9.6)

h =0, 0 =1 (9.7)
(note for (9.7) that Hyo(y) = 0 and H,,(0) = 1 for n > 1). In summary:
Theorem 9.4 The steady—state M/M/1 SIRO waiting time distribution
is given by (9.5) with the K recursively determined by (9.6) and (9.7).

Notes Flatto (1997) gave the complete form of the SIRO waiting time
distribution:

Pe(Wy > y) =

_ ™ (26(0)—0) cot 0—Fn(0)y
204 ”)/ ¢ sin 6 do (9.8)
0

’ (=7 n(0)?

where £(0) = arctan(sin@/[cos@ — 1/\/ﬁ]), (@) = 1—2cos0/\/p+1/p. In
particular, this implies the intriguing asymptotics

Po(Wo > ) ~ ex(By)* e sy o, (9:9)
where ¢z = (1/\/p — 1)2, c2 = 3(n/2)**p~ /6,

= 92/3371/2,5/6 17/12 1+p o1V (1=v/P)

(1= vp)?

C1

9d  The PS Sojourn Time

In PS, the waiting time cannot be given a similar sense as for FIFO, LIFO
and SIRO (or at least it is then always 0) since a customer k starts service
as soon as he arrives (though in general at a reduced rate). Instead we shall
be interested in his sojourn time W;:. We always have W} > U;, where Uy
is the service time, and so W = W} — Uy may be interpreted as the delay
caused by the possible presence of other customers.

A type n customer is defined as for SIRO and we let K, (y) denote the
steady—state probability that his sojourn time strictly exceeds y > 0. A
service event within h time units after arrival of a type n customer will
terminate the sojourn of any particular customer w.p. 1/(n + 1) + o(h).
Letting K_1(y) = 0, it follows that up to o(h) terms

Knly+h) = (1= (B+0)h)Ka(y) + BEny1(y)h + 6K, 1 (y)—

n+1

Y

w7 (B OEa(y) + BEnsa(y)- (9.10)

This means that ﬁo =K 1, ﬁl = Ky, ﬁg = K satisfy exactly the same
set of equations (9.4), (9.6), (9.7) as Hy, Hy, Ha, ... in the SIRO case. The
solution being unique, we get:
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Theorem 9.5 The distribution of the steady—state M/M/1 PS sojourn
time W} is given by

00 00
PG(WI: > y) = ZﬂnKn(y) = Zﬂ'an-i-l(y)
n=0 n=0
S y* > k
(L=p) > T D hls.
k=0  n=0

In particular, pP.(W} > y) = P. (WSRO > ) where WSRO s the SIRO
waiting time from Section 9c.

It is also of interest to ask for the conditional distribution of the sojourn
time W), given the service time Uj. For example in a time-sharing com-
puter, Uy represents the size of the job (ideal execution time) and W} the
actual execution time. At the intutitive level, the following result states
that PS (and therefore presumably also RR with a small quantum) is fair
in the sense that the average sojourn time is proportionally dependent on
Uk:

Theorem 9.6 E.[W; |Uy] = Ux/(1—p).

Proof. We let m,,(u) denote the conditional expectation of the sojourn time
of a type n customer with service time u and write m(u) = > mm, (u)
so that we have to show m(u) = u/(1 — p). Now if no services or arrivals
occur within ¢ time units after the arrival of a type n customer with service
time u, he will have attained t/(n 4 1) units of service and hence behave
like a type n customer with service time u — t/(n + 1). Also the sojourn
time has increased by ¢ unless the customer has been served. For small ¢,
this service event occurs with intensity ¢/(n + 1) and other service events
with intensity nd/(n + 1). Letting ¢t = h, we get up to o(h) terms that

1 h n
mn(u) = h(l_(sn—ﬂh) + m”(u_ n+1>{1_ﬁh_5n+1h}
n
+ Bmpq1(u)h + 5mn,1(u)n 1
— b mau) — () — Bma(u)h — G () —
= mp (U M () mp (U M ()=
n
+ Bmpg1(u)h + 5mn,1(u)n n 1h,
m, = n+1-=03n+1)m,—ndmy+Bn+1)m,i1+ dnm,_1, (9.11)
m = anm;
n=0

oo o0

- Z(n + ), — 3 Z(” + Dmpm, — 6 i NI My,
n=0

n=0 n=0
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+BY nma_amy + 8 (04 D)mppamn. (9.12)

n=1 n=0

Using mp41 = pmp, 0w, = p/(1 — p), this reduces to

% +1 - BZmrnmn — Bm — 5Zn7rnmn
- n=0 n=0
B oo oo

+ o Z NI My, + po Z NTpMp, + pom

n=0

= n=0
1 > &
= 1 + nz%mrnmn{—ﬁ—(ﬂ—; +p5} + m{—=p+pd}.

But since p = /4, the two {-} are 0. Thus m’(u) = 1/(1 — p) and since
clearly m(0) = 0, we have m(u) = u/(1 — p) as desired. a

It should be noted that some technical details (not coming up in the proof
of Theorem 9.5) have been omitted. For example, to differentiate under the
sum sign in (9.12) we need some bound on the m/, (or equivalently the m.,;
cf. (9.11)).

Notes The proof of Theorem 9.6 carries over also to find the Laplace trans-
form of W), given U,, = u. For references to this and other early work on PS,
see the surveys by Yashkov (1987, 1992) (where also a relation to branching pro-
cesses is discussed). For more on the connection to SIRO, see Borst et al. (2003).
Other recent contributions include Zwart and Boxma (2000) and Jelenkovic and
Momcilovic (2003) who derive heavy—tailed asymptotics.

Generalized processor sharing is a queueing discipline for r > 1 customer classes
where class i receives service at rate ¢; (¢p1+- - -+¢» = 1) and the service discipline
within each class is FIFO. See, for example, Dupuis and Ramanan (1998) and
Jelenkovic and Momcilovic (2002).



IV

Queueing Networks and Insensitivity

1 Poisson Departure Processes and
Series of Queues

We start by noting:
Proposition 1.1 Any ergodic birth—death process is time reversible.

Proof. We must check the conditions m;A(¢, j) = m;A(j, ) of detailed balance
in I1.5.3. If |i — j| > 1, then by the skip—free property both sides are zero
so we can suppose |i — j| = 1, say i« = n, j = n + 1, where the condition
reduces to 7,03, = Tnt10n+1 which is clear from III.(2.4). It is instructive
to indicate how alternatively the proof can be carried out without first
computing 7r: in equilibrium, the flow from {0,...,n} to {n,n+1,...}
must balance the flow the other way. But the only possible transition the
first way is from n to n+ 1 so the flow is 7, 3,. Similarly, the flow the other
way 1S Tp4+10541- O

Consider now a doubly infinite stationary version {X,} and

~ —oo<t<oo
define X; = X_;,_ = limg—¢ X,. Then a departure for {X;} at time s
corresponds to an arrival for {)Zt} at time —s. Considering the case of
Poisson arrivals, §,, = 3, the collection of such instants —s form a Poisson
process with intensity (8 by reversibility. Hence the instants s do so too,
and we have proved:
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Corollary 1.2 The departure process of an ergodic birth—death queue with
Poisson arrivals with intensity B is itself a Poisson process with intensity

g.

This is the first in a series of results in this and the next section that may
be argued to be contrary to intuition or at least surprising. A discussion of
this is deferred to Section 2d.

A main application of the Poisson departure property is to series of K
queues, where customers enter queue 1 according to a Poisson process with
intensity 3, after being served proceed to queue 2, from there to queue 3
and so on (the system with K = 2 is called a tandem queue). Suppose
that queue k has exponential services with intensity (5,(Lk ) at queue length
n. Then queue 1 is a birth—death queue with Poisson arrivals, hence has a
Poisson departure process in equilibrium. But this process is just the arrival
process to queue 2 so that this is a birth—death queue with Poisson arrivals
which hence delivers Poisson input to queue 3 and so on. It follows that in
equilibrium the number of customers at queue k and their waiting times
have the same characteristics as if the queue was considered in isolation
and subject to Poisson arrivals. We generalize below this reasoning to the
simultaneous behaviour of the queues, but first we shall give one more of
the classical examples of a Poisson departure process.

Theorem 1.3 The stationary M/G/oco queue {X:}
infinite time has a Poisson departure process.

with doubly

—oo<t<oo

Proof. The departure process M has epochs {o(n)+ Up},; where
{o(n)}, 7 are the epochs of of the arrival process N and {Uy, U1, , Uxa, . ..}
the sequence of service times. It is a general fact about the Poisson process
that such an i.i.d. translation is Poisson with the same intensity (say ()
as N but here is a self—contained proof. The idea is to observe that this is
trivial if the U,, are discrete, and next to apply a discrete approximation:
Suppose first that the U, can assume only the values 0, 9, 24, . .. and let
pr = P(U,, = kd), k € Z. Then, by standard properties of Poisson thinning,
the o(n) with U, = ké form a Poisson process N¥) with intensity Bpy,
and the N are independent. Letting M *) denote N*) translated by kd,
M) is Poisson with intensity Spj and the M(*) are independent. Hence
M=% M) is Poisson with intensity (3 as asserted.

To deal with the general case, let U,(f) =kd, k6 <U, < (k+ 1), and
let Mjs have epochs {U(n) + U”(;s)}nGZ' If I,...,Ir are disjoint intervals,
then M;5(I,) ¥ M(I,) for all r as § | 0 since U 2% U, and the probabil-
ity of an epoch of M at a boundary point of I, is zero. Hence {M(;(L«)}f
Z {M(I,.)}f”. But by what has just been proved, Mjs is Poisson with in-
tensity (. Hence the joint distribution of the M (I,) is the common joint
distribution of the Ms(I,.) so that M Zz Ms. O
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Preparing for a more thorough study of series of queues, we start by
noting:

Proposition 1.4 Consider the equilibrium version {X}__ _, . of an
ergodic birth—death process with Poisson arrivals at rate 3. Then the
departure process prior to t is Poisson at rate 8 and independent of X;.

Proof. It only remains to check the independence. The argument is a slight
variant of the proof of Corollary 1.2: the departure process prior to t is the
arrival process after —t of the time-reversed process and hence independent
of its queue length X _; which a.s. coincides with X;. O

Corollary 1.5 Consider a series of K queues in series where the arrivals
to the first are Poisson at rate 8 and the K servers work independently,
with rate 6£Lk) for server k at queue length n. Suppose that for each k the
birth—death queue with G, = 3, 6, = &(lk) is ergodic, and let w*) denote
its stationary distribution, w,(Lk) = S,;lﬁ"/((ﬁk) 5,@) Then the series
system is also ergodic and the steady state is described by the queue lengths
Xt(l), . ,Xt(K) being independent with Xt(k) governed by w®)

1 K 1 K
P(X{Y =n(1),..., X[ =n(K)) = i) all.

Proof. Letting # = 7V @ --- @ #(5) be the distribution (1.1), we pro-
ceed by showing wP" = 7 for any fixed ¢ (an alternative proof involving
7A = 0 is in Problem 1.2). Suppose thus that the Xék) has been assigned

initial joint distribution 7 and let N*) be the departure process from
queue k in [0,¢]. The conclusion will follow if we can show that for each

k, Xt(l)7 . ,Xt(k), N®) are independent, governed by 7™, ... «(5) and
the distribution of the Poisson process respectively. The case k = 1 is just
Proposition 1.4. Suppose the assertion holds for k. Both Xt(k+1) and N*+1)
depend on N*) X(gkﬂ) and the action of server k + 1 only, hence the set
(Xt(kJrl), N(k+1)) is independent of Xt(l), .. ,Xt(k), N®) But since N*) is
Poisson and Xék) governed by 7(¥) | it follows by applying Proposition 1.4
once more that the joint distribution of Xt(kﬂ),N(kH) is as asserted. O

The simplest case is of course that of M /M /1 queues in series, 57(1@ =6k,
Then py, = 3/6) is the traffic intensity at queue k and

K
n(1)...n( Hﬂ-n(k) = H(l_pk)/’z(k)

k=1
Problems
1.1 Consider the case K = 3, but assume that customers leaving queue 1 do not
necessarily go to 2 but choose between 2 and 3 with probabilities p, resp. ¢ =

1 — p. Show that if queue 1 has Poisson input and is ergodic, then in equilibrium
the input to 2, 3 are independent Poisson processes. Formulate the criterion for
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ergodicity of the whole system and show that the stationary distribution is of
product form as in (1.1).

1.2 Check that (1.1) satisfies wA = 0 and that {(Xt(l), .. .,Xt(k))} is
nonexplosive.

Notes References and discussion covering the whole of this chapter IV (except
Section 3) are given at the end of the chapter.

2  Jackson Networks

2a. Model and Examples

2b. Ergodic Theory for Open Networks
2¢. Ergodic Theory for Closed Networks
2d. Pitfalls for Intuition

2a  Model and Fxamples

One of the simplest examples of a queueing network, queues in series, has
already been encountered in the preceding section. It imposes, however,
together with simple generalizations as in Problem 1.1, the restriction that
customers can only move along a feed—forward path.

We consider now more generally a queueing network where there is a
finite number K of individual queues, the nodes of the network, at which
customers arrive from external sources according to independent Poisson
processes with intensities oy, ..., ax. A customer having completed service
at node k goes to node ¢ w.p. yx¢ and leaves the system with w.p. yx0 =
1-— Z{( pre (external drain). A graphical illustration is given in Fig. 2.1(a),
an arrow from k to ¢ denoting vx¢ > 0 and arrows to and from the external
world (node 0) denoting vxp > 0 and «y, > 0, respectively.

In this section, we consider the case of a single exponential server at
each node (one then talks frequently about Jackson networks), and we
denote the corresponding service rates by d1,...,d0r. Two main types are
considered, open networks where external input is received and external
output is delivered by customers entering and leaving the system, and closed
networks where the customers can only move internally in the system. Thus
a closed network has all o = 0 and all y,9 = 0, and the total number of
customers in the system does not vary with time. In an open network some
ag > 0 and some Y9 > 0, and the number in system is a nondegenerate
stochastic process.

Networks of this type come up in a great variety of problems, the
most important of which are of rather recent date and associated with
data communication systems and the internal organization of time—sharing
computers. Also, colonies of biological individuals with migration between
colonies have been modelled in this way. We shall give two examples, one
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of an open and one of a closed network, with the reservation that it should
be stressed that the above model does not pretend to be anything but a
crude first approximation. For example, there would frequently be a strong
positive correlation between the service times of a customer at the different
nodes. In other cases the choice of the customer of the path along the nodes
could depend on the length of the waiting lines.

B
\
02
/ \5
—_— O—
a1
O
\ /4
0%
I }
(@) (b)
Figure 2.1

Fig. 2.1(b) depicts a communication network, say connecting three
branches A, B, D, of a bank, or three computers via a transmission station
C. Messages are sent by the directed channels 1, 2, 3, 4, 5 and if a channel
is busy, a queue may be formed. Thus if we reinterpret channels as nodes
and messages as customers, we arrive at the network in Fig. 2.1(a). This
is open since new messages are created currently and a message leaves the
system after having reached its destination.

queue CPU
queues I/0

Figure 2.2

Consider next jobs (customers) circulating in a time-sharing computer
as in Fig. 2.2. The nodes are the CPU and input/output facilities, the
allowance of feedback at the CPU corresponding to some sort of PS or
RR. At first glance this looks like an open network. However, the number
of steps taken by each job is typically very large and thus within time
intervals of moderate length, the number of jobs is fixed and a description
by a closed network may be more appropriate.

Now let Xt(k) denote the number of customers at node £ at time ¢ and let

X, = (Xt(l), e ,Xt(K)). The state space is N& and the states are denoted

(+)
k

n=mnp...ng. We write n,'’ for the state obtained by increasing ny by 1,



2. Jackson Networks 119

nfc_) for the state (defined only when ny > 0) obtained by decreasing ny by
1, and ny, ¢ for the state (defined only when ng > 0) obtained by decreasing
ng by 1 and increasing ny by 1. It follows that the possible transitions are

S Mgy Ok Vhe
n — n\’) Ok VKo (2.1)
N n}(€+) €73

with the right column giving the intensities; the first row corresponds to
a customer going to node ¢ after being served at node k, the second to a
customer leaving the system after being served at node k£ and the last to an
arrival at node k. Thus only the first type of transition occurs in a closed
network.

We first need to make an appropriate definition of the throughput rate
Bk at node k, that is, the common rate of the input and output processes
(these need not be Poisson but the rate should exist in terms of long—term
averages). The input rate is the sum of the rate oy, of external arrivals and
the rate of internal arrivals from nodes ¢ # k. But customers leave node ¢
at rate By and go then to k with probability 4, so that we should have
the traffic equations

K
Or = Oék—l-Zﬁg’ygk, k=1,....K. (2.2)
=1

2b  Ergodic Theory for Open Networks

We shall assume that each node k£ may both receive external input and
deliver external output (possibly via other nodes), i.e. for each k (i) ei-
ther o > 0 or some ay,Ve,e,---7ve,kr > 0, and (ii) either io or some
Viky Yk ks - - - Vhn0 > 0. This is easily seen to imply irreducibility of { X ;},+,-

Proposition 2.1 The traffic equations (2.2) have a unique nonnegative
solution (B1,...,0Kk). It satisfies 0 < B < co.

Proof. Consider a Markov jump process on {0,..., K} with off-diagonal
intensities A(k, £) = vie, k # 0, A(0,k) = ag. Our assumptions apply irre-
ducibility and hence the existence of a stationary distribution v, uniquely
given by ¥A = 0, which amounts to the K + 1 linear equations

K

v = V()ak+ZV€72k; k= 13"'7Ka (23)
(=1

K K
] Z ar = Z Veyeo - (24)
k=1 (=1

It is therefore clear from (2.3) that 8y = v/ solves (2.2). Suppose con-
versely (81, ..., fk) is a solution and define By = 1, v} = Oi/ Zé( B¢. Then
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(2.3) holds for v* and (2.4) is a consequence of (2.3), as is seen by summing
over k=1,..., K and performing some algebra. Thus v} = v, i.e. Zé( Be
= 1/wy, Br = vi/vo, proving uniqueness. |

Theorem 2.2 Assume that pr, = B /0 < 1 for all k = 1,...,K. Then
{X} is ergodic with stationary distribution 7 given by

K

Ty = 7Tn1.“nK = H(l*pk)pzk
k=1

Proof. The intensities are bounded, cf. (2.1), and hence it suffices to show
that wA = 0, cf. I1.4.4, which by (2.1) amounts to

K K
Tn Z{O&k + 5kl(nk. > 0)} = Z{?Tnl(;)akf(nk > 0) + ﬂ'nl(j)(skfyko}
k=1 k=1
K
+ 3" wny Oyl (0, > 0). (2.5)
k=1

Now Tp(h) = PhTns Ty, = pglpmn. Hence using (2.2) we get

K K K K
Zﬂng)(gk’}/ko = T Y Bk = Wn25k<1 - Z’m)
k=1 k=1 k=1 =1

K K K
= Tn Z(ﬁe - Zﬁk%e) = T Y ar,
=1 k=1 =1
K K
T () Ok D T v = Tnpy ! {ak +y 5@7%}
=1 =1
= ﬂnplzlﬂk = 7rn5k; ng > 0;
and (2.5) follows. O

2c  Ergodic Theory for Closed Networks

For a closed network, clearly En = {n : Z{( nE = N} is a closed set, and
to discuss irreducibility and ergodicity, we therefore have to restrict the
state space of {X} to En. The traffic equations (2.2) reduce in matrix
notation to 8 = BI' where ' = (Yre)1<k o<k, and since vz = 0, T is
a transition matrix. We shall assume that T' is irreducible on {1,..., K}.
This implies the existence of a 3 (unique up to a constant) which satisfies
B = BT, and also, as is readily seen, that {X.} is irreducible on Ey and
hence ergodic since Fy is finite.
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Theorem 2.3 Under the above assumptions, {X} is ergodic on En with
stationary distribution © = 7)) given by

K

— — N
Tn = Tny..n, = CON pLE-
k=1

where p = Bi/0k and Cn is a normalization constant ensuring || = 1.

Proof. In the same way as for (2.5), we have to check that

K K
Tn Z dpl(nk >0) = Z Ty, O0verd (ng > 0) (2.6)
k=1 k=1

But since m, , = p,?lpmn, we get for ng > 0 that

K K
D T vk = Tpit Y Bevek = Tnpy Br = T,
=1 =1
which implies the truth of (2.6). O

Theorem 2.3 will now be shown to have as a consequence a bottleneck
type of system behaviour: if N is large, then with high probability most of
the N customers will be in the waiting line at the node with the highest
pk- Such a knowledge could be useful say for design purposes, since it
would in some situations suggest an allocation of the total service capacity
01 + -+ - + dx such that max pjy is minimized.

To illustrate this effect, we shall assume that one pg, say p1, is effectively
largest and we may then choose the scale of 3 such that

p1:1, p2<1,...,pK<1. (27)

Consider the marginal steady state distributions n¥), 0N of {Xt(l)},
K
resp. {(Xt(Q), . ,Xt( ))},

ny(LN) e ]P)e (Xt(l) — n) = Z Wnnz...nK;
nag+--4ng=N-—n
G’SL];[)’ILK = ]P)C(Xt(z) :n27"'7Xt(K) :nK) = Fnlng...nK;
where ny = N —ng — -+ — ng. Then in the limit N — oo, n(N) becomes

degenerate at oo, whereas 0™) has a proper limit of the same form as the
steady—state solution of an open network:

Corollary 2.4 As N — oo, 777(1N) — 0 for all n and

K
08 e = 1A= pr)op.
k=2
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Proof. Since p; = 1, we have

K K
oyt = > IIe= > IIat

ni4--+ng=N k=1 no+-+ng <N k=2
K
SEPYRCD 30 | IR | (EVAREI e
n(2)= n,=0 k=2 k=2

Here 0 < D < oo and hence if p, <d < 1, k=2,..., K, we get

2d

M= Cy Z Hp”"

no+-+ng=N-—-n k=2

K+N-n—-2\ x_.
< CN< N—n >5 — 0,
K K
08 . = Cnv][ex — TIQ—pr)oi
k=2 k=2

Pitfalls for Intuition

We have now given rigorous mathematical proofs of a number of results on
queues delivering Poisson output, and queues in series or networks that be-
have in a certain sense as if they were totally independent and each subject
to Poisson arrivals. Many of these results may be difficult to understand
on more intuitive grounds. For example, one may ask:

()

How can even such a simple queue as M/M/1 deliver Poisson output
at rate 67 The server has idle periods with no output and busy periods
where departures are Poisson at rate §. Also, observing the output
alone, we can tell the value of 8 but not 4.

How can the departure process M ! prior to ¢ be independent of the
departures M~ after t? Observation of M ! should tell us some-
thing on {X,},., (e.g. if there are few departures just before ¢, we
expect X; = 0 with greater probability than the average 1 — p), and
conditionally upon X;, M —* is certainly not Poisson.

In a network rather than a series, the arrivals to node k are not in
general Poisson. Why then is this not reflected in the behaviour of
x®9

How can Xt(k) and Xt(z) in a network be independent? If Xt(k) is large
and yge > 0, then node £ should have received more input prior to ¢
than on the average, hence also Xt(e) should be large.
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Of course, the mathematical proofs tell that such reasoning has to have gaps
or errors, and it is not difficult either to elaborate further on the intuitive
reasoning to deduce that important aspects have been ignored (e.g. the
independence in a network refers only to a fixed instant of time and not the
time evolution). Our point here is merely to stress that intuitive reasoning,
though an indispensable part of applied probability, has its pitfalls and that
care has to be taken that it can be followed up with a more rigorous proof.

Problems

2.1 Show that the timereverse of a (open or closed) Jackson network is again a
Jackson network, with routing probabilities given by Je, = Brvki/Be-

3 Insensitivity in Erlang’s Loss System

We consider Erlang’s loss system as in I11.3e with K lines and intensity 0 for
arrivals of calls, but assume now that the duration of a call follows a phase—
type distribution B, say with p phases, initial vector e and phase generator
T (the exit rate vector is t = —T'1). The system can then be modelled as
Markov process {X;} whose state space E consists of all i =ny ...n, with

ng=0,...,K, |i| =n1+---+n, < K, such that nj gives the number of
lines where the call is currently being handled in phase k. We write iﬁ)
for the state (defined only when |i| < K) obtained by increasing n, by 1,
igf) for the state (defined only when n, > 0) obtained by decreasing n, by
1, and i, s for the state (defined only when n, > 0) obtained by decreasing
n, by 1 and increasing ns by 1. It follows that the possible transitions are

/ ir,s nrtrs
i— i gt (3.1)
N pa,

with the right column giving the intensities; the first row correspond to a
phase change of some call, the second to a call being completed and the
last to an arrival of customer.

The loss probability is then

EK = Z ’/Tnl.,.npa
ni+-4n,=K
where 7 is the stationary distribution, and we will show:
Theorem 3.1 Let pp = —aT 1 denote the mean of B and let n = Bup.
Then
n"/K!

Ex = .
K T+ nK/K]

(3.2)
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Proof. We will undertake the program of Kelly’s lemma I1.5.4, i.e. come up

with trials ;, X(z, j) for the stationary probabilities and the intensities of
the reversed process, and verify m;A(7,j) = WjX(j, i).

Let v = —aT '/up. Since (cf. IIL5) v is the stationary distribution
of a renewal process with interarrival distribution B, we can interpret v,
as the probability that the current phase of a randomly selected call is r.
Therefore a plausible candidate for the stationary distribution is

i n
= By (m .|.|.np>u;“...ypp, (3.3)

where By, = (n*/k!)/(1+n+---+ 1% /K!) (note that everything following

Ej; is just the probability of getting nj...n, by multinomial sampling

of |i| objects with probabilities v1,...,1,). Once (3.3) is verified to be the

correct m;, we get Zu _i T = B}, and taking k = K, the proof is complete.
A plausible guess %or the time-reversed system is another loss system

with the same K and (, but with the given phase—type representation

replaced by the time-reversed one, which according to I11.5.7 is given by

> Vstsr g Qr

Qp = UBtplp, trs = y Uy = .
Uy UBVr

That then indeed m;A(4, j) = m;A(j,4) is now obtained as follows. First

(i) o By + DAGET) (4 1)Bay
meoMi, ) B (i + Ve @0 (e + Dt
Bay _ 1
Bupvr(cr/1upvy)
That m)\(i,igf)) = 7TZ.5‘7>X(@'§«7),2') then follows by a symmetry argument.
Finally,
TN, ) _ Vrns A2, ips) _ Vet Vplrs _1 o
T X(i,-s, i) Vsn,.X(i,.s, i) Ve Mslsy Vs(Urtys [ Vs) ’

Notes The fact that the loss probability depends on the service time distri-
bution only through its mean pp is referred to as insensitivity. Some further
examples will be given in the next section where it is shown that the station-
ary queue length distributions in the preemptive LCFS M/G/1 queue and the
PS M/G/1 queue are insensitive (the same as the geometric distribution in the
M/M/1 queue with the same traffic intensity). Some general treatments of insen-
sitivity are in Whittle (1986) and Miyazawa (1993), where references to earlier
work can also be found.
Kelly (1991) is a standard reference for loss systems.
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4 Quasi—Reversibility and Single-Node
Symmetric Queues

We consider a simple queue with multiple customer classes ¢ € % (the
set € of classes is assumed finite or countable). A simple example is sev-
eral types of customers with each their service requirements, say cars or
trucks that arrive at a gas station. However, a main motivation that first
becomes apparent when we proceed to networks is non—Markovian routing;
cf. Example 5.1.

We assume that the time evolution of the queue can be modelled by an
ergodic Markov process {X;},., with a finite or countable state space E.
We assume given subsets A., D., ¢ € €, of E x E such that i # j when
ij € A. or ij € D, and that A. N D, = (. Most often, the interpretation
is that X;_ = i, Xy = j corresponds to an arrival of a customer of class ¢
when ij € A, and to a departure when ij € D., and one has ij € A, <~
ji € D, (but see Problem 4.2).

Example 4.1 For a simple example, let customers of class ¢ have Poisson
arrivals at rate 0. and exponential services of rate d., and let the queueing
discipline be FIFO with no priorities among classes. Then we can take

E ={i=cica...cn: nEN, ¢1,...,ch€ €},

with Xy = c1co ... ¢, indicating that there are n customers in the system,
with the one currently being served of class ci, the next waiting in line
of class ¢o and so on (the empty word corresponding to n = 0 is the idle
state). Then ij € A, precisely when 4, j are of the form i = ¢1¢a...¢p, j =
c1Co...cpc, and ij € D, precisely when i, are of the form i = ccy...cp,
j =c1...cp. We will see more complicated examples later on, say with
phase—type service times where E also contains information on phases. O

The random sets Nc(+)(t) = {s>t:(X,—X,) € A}, Ng_)(t)
{0 <s<t:(Xs—X;s) € DC} represent the arrival process of class ¢ cus-
tomers after ¢, resp. the departure process prior to ¢ (they can be viewed
as measurable elements of the space of counting measures on the appropri-

ate intervals). The queue is called quasi—reversible if X; and all ]\LSJF)(t)7
NC(_)(t), ¢ € E, are independent in the steady state for any ¢ > 0 .

Proposition 4.2 For a stationary quasi—reversible queue, the arrival pro-
cesses Nc(+)(0), ¢ € G, are independent Poisson processes, and so are the
departure processes NC(_)(oo), cEG.

Proof. Tt is clear by stationarity that N§+)(O) has stationary increments
so to see that it is Poisson, it suffices to show that the increments, say
I, ..., I,, over intervals [tg,t1),[t1,t2),. -, [tno1,tn) With 0 < tp < &1 <
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- < t,, are independent. However,

E[fi(1h) - foIn)] = BE[fi(11)--- fu(In) | F,]

= E{A()E[fa(L2) - fulln) | F1,]}
E{fA()E[f2(L2) - fulln)| X1,]}
Efi(I) E[fa(I2) - fu(In)],

where we used the Markov property in the third step and quasi-reversibility
in the last. Proceeding in the same way, the expectation becomes factor-
ized as Ef1(I1)---Ef2(I2), proving independence. The independence for
different ¢ follows in just the same way, as does the case of the departure
processes. O

The definition of quasi-reversibility immediately implies:

Corollary 4.3 The timereverse {Xt} of a quasi—reversible queue is itself
quasi—reversible corresponding to A, = ={ij: ji € D.}, D, = ={ij: jie A.}.

Write A = (A(,5)) for the intensity matrix of {X;} and = = (m;) for
the stationary distribution.

Corollary 4.4 For a stationary quasi—reversible queue, the rates MH), uﬁ_)

of NP(0), NST)(o0) are given by
p = > ML), (4.4)

jiijeA,
- 1 o
po) = p— Z TiA (4, j)- (4.5)
J iijeD.
In particular, (4.4) does not depend on i and (4.5) not on j.

Proof. The naive way to compute uﬁﬂ is of course as ZijeAc w1, 7) (con-

dition upon the state ¢ just before the arrival). That the stronger (4.4) holds
follows by quasi-reversibility implying independence of ¢. Corollary 4.3 then
yields independence of }_, ;. 3 A(j, @) of j, but this sum is just the r.h.s.
of (4.5). O

Conversely:

Proposition 4.5 If the r.h.s. of (4.4) does not depend on i and the r.h.s.
of (4.5) not on j, then the queue is quasi—reversible.

Proof. Clearly, NC(+)(t) is a Poisson process with stochastic intensity
Zj:Xg,jEAC MXs—,7), s > t. However, by assumption this intensity does
not depend on s, in particular it is unaffected by X; and therefore N£+)(t)
is independent of X;. Similarly, the whole set (N (Jr)(t))cecg is indepen-
dent of X;, and considering the time-reversed process shows that the

same is true for (Né_)(t))cecg. To complete the proof, just observe that
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the independence of X, (Nc(+)(t))ce<ga (N,E_)(t))cég then follows from

(Nc(+) (t))ce%’ (N,E_) (t))ce% being conditionally independent given X; (the
Markov property). O

Example 4.6 Consider first a single class queue modelled as a standard
birth-death process { X;} with birth rate 8 in state k = 0,1,... and death
rate Jy in state k = 1,2,.... We take A = {01,12,...}, D = {10,21,...}.
For quasi-reversibility, the arrival process must be Poisson, i.e. 3, = 0,
and this is in fact also a sufficient condition. To see this, use Proposition
4.5. The r.h.s. of (4.4) is ;, which we assumed independent of i. The r.h.s.
of (4.5) is 7T;17Tj+1(5j+1, which according to the local balance equations
miBj = Tj+1054+1 is (5, again assumed to be independent of j. See also the
proof of Proposition 1.1. O

Example 4.7 (MULTICLASS M /M /1 QUEUES) Consider the model of Ex-
ample 4.1. Let § = chgﬁc denote the overall arrival rate and assume
that 8 < oo (e.g. that € is finite) and that the service intensity § = 4. is
independent of ¢. Denote by p. = ./ the probability that an arriving
customer is of class ¢. The traffic intensity is p = /0.

Our candidate for the stationary distribution is

Teyen = (1=p)p"Pey - Peys

and we first verify that this is indeed the correct one by means of Kelly’s
lemma. Since the possible transitions of {X;} out of state (word) c¢;...c,
are to either the state obtaining by deleting the first letter ¢; in the word
or to a state obtained by adding a letter in the end, the possible transitions
of the time-reversed process out of state c; . ..c, are to the state obtaining
by deleting the last letter ¢, in the word or to a state obtained by adding a
letter at the beginning. That is, informally the queueing system is similar
except that ¢, now is the customer being currently served, etc., and thus
the trial candidate for the nonzero off-diagonal time-reversed intensities
are

Aey.ooen,c1eoocpm1) =0, X(cl...cn,ccl...cn) = f..

In this setting, we must verify m;A(i,j) = ﬂjX(j,i) for ¢ # j. The only
cases where not both sides are 0 are (1) i =c¢1...¢n, j =c¢1...cpc and (2)
i=0¢C1...Cn, J =cCa2...cp. In case (1),

ﬂ-ZA(Zﬂj) _ ﬂiﬂc _ (1 - P)Pnpcl . ~pcn65 _ ﬂc _ ﬁ -1

miA(Jj, 1) ;0 (L—=p)p"tpe, . .Pe,pcb  pped — pd ’
and in case (2),

miMi,g) o mid (L= p)p"Pe - Ped P pS

Fj)\(j, ’L) 7Tj661 (1 - p)pnilpq e 'pcnﬂcl ﬂcl ﬂ
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It follows that for j =c¢;1...cn,

1 1
— T, §) = (1= p)p" ' pepe, - - pe, 6
T UEE:D ' (1= p)p"pe, - - Pe,, Z;é e
= pdY po=pd =f
cE?
is independent of j, whereas trivially > . ;.c 4 A(i,j) equals 3 for all 4.
Hence the system is quasi—reversible by Proposition 4.5. ]
In most cases, of course ugﬂ = ugf) (but see Problem 4.1). Proposition

4.4 immediately gives:

Corollary 4.8 For a quasi-reversible queue with ,ugﬂ = ,ugf) forallc € €,
the stationary distribution satisfies

o>, A = Y mAG). (4.6)

Jrij€EA. J:ji€D,

We now introduce a general framework for the study of quasi—reversibility
(and insensitivity), having the advantage that in many examples one can
deal with general (or rather phase—type) service times, the so—called sym-
metric queues (more precisely, the system we consider could be called a
symmetric multiclass M/PH/- queue). Different customer classes have in-
dependent Poisson arrivals with rate 3. for class c. Let 3 =) <% P denote
the overall arrival rate and assume (3 < co. We further assume that class ¢
customers have a phase—type service time distribution B., say with initial
vector o = (Qer)r=1,...,p, and phase generator T'. = (tcrs). The exit rate
vector is t, = =T .1 = (t.), the mean service time is m. = —acTc_ll and
the overall traffic intensity is p = Zce%pc where p. = B.m.. Let further

T, Beme

Ve = (Vcr) = y Per = Vers
Me p

v, is the equilibrium distribution of the phase of service of a class ¢ customer
and p. is the probability that a randomly selected customer in service is
of class ¢ and in phase 7 of service. This is an important intuition behind
the formula (4.8) for the stationary distribution given below.

We think of the customers as ordered in positions k£ = 1,2,... in front
of the server (only finitely many are present at a given time) and refer for
brevity to the customer in position k as just customer k. A state of the
system has the form i = ¢171 ... ¢, and indicates that there are n = n(i)
customers, such that customer k is of class ¢ and has current phase r of
service. The server works at rate ¢(n) when there are n customers in the
systems and then devotes the fraction w(n, k) of his capacity to customer
k (thus (w(n, k))Z:1 is a probability vector for each n > 1). Further, it
is assumed that a customer arriving to a system with n customers takes
position k =1,...,n+ 1 w.p. w(n + 1, k) independently of his class.



4. Quasi—Reversibility and Single-Node Symmetric Queues 129

Note that the w function has a double interpretation: it is the same for
position allocation as for service (hence the term symmetric). The “current
phase” of a class ¢ customer is chosen according to a. upon arrival, even
if the customer may not physically start service at once. If he has been
interrupted in service, the “current phase” is the one in which interruption
occured.

To describe intensities and transitions, denote by (k) the state obtained
by deleting the customer k = 1,...,n(i) (thus customers 1, ...,k — 1 main-
tain their position and customers k + 1,...,n(i) move up one position).
Similarly, i(k,c,r) is the state where a customer of class ¢ and in phase
r of service is added at position k (thus customers 1,...,k — 1 maintain
their position and customers k, ..., n(i) move down one position). Finally,
i(k, s) is the state where customer & (of class ¢j) has changed the phase of
service from rj to s.

It follows that the possible transitions are

/ i(k, s) p(n)w(n, k)te,r,s
i=ciricary...cpy — i(k) o(n)w(n, k)teyr, (4.7)
N ik, e, ) Bew(n + 1, k)aer

with the right column giving the intensities, and we can take
A, = {ij : j =1i(k,e,r) for some k:,c,r},
D. = {ij: j=/i(k) for some k}.
Theorem 4.9 Let

s

= H(b(k')’ o = Z@pn
k=1 n=0

If § < oo, then the symmetric multiclass M/PH/- queue is ergodic and the
stationary distribution is given by

Ty = Teiri...cntn 6_1 p Hpck'rk (48)
Further the queue is quasi—reversible with ,u(ﬂ ugf).
Proof. Since ) . Peyry = 1, we have

>

Mn,C17T1...CnTn

T
k‘) : kl;[lpckrk

Thus indeed (4.8) is a probability distribution when § < oo, and since
the process is nonexplosive by Problem II1.2.4, we are again in a position
to apply Kelly’s lemma I1.5.4. As in Section 3 our trial candidate for the
time-reversed system is the given system with the phase representations
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reversed. That is, the changed parameters are

~ it Veslesr  ~ Qer
Qer = MelerVer, ters = ———, ter = ———.
VC"’ mCI/CT
With this trial system (for the intensities, just add tildes in the right column
of (4.7)), we must verify mA(¢, j) = m;A(4, 1) for i # j.
Let first j = i(k, s). Then m;/mj = ve,r,, /Ve,s S0 that (4.7) yields

E )\(Z)j) VCka tckrks VCka tckrks

T NG ) Vews deere | Vews Vewrslewms/Vens b
If j =i(k), then ¢ = j(k, cx, ri) and we get
ﬂ.i(i,j) _ patery O, B)ter,  PeVepryters L
T A1) o(n)  Bew(n, k)dc,r, BeyMeyteyrVerrs
Finally, the case j = i(k,c,r) follows from the case j = i(k) by

interchanging the given system and the tilded one.
To verify quasi-reversibility, we have

Z A, j) = Z)\(i,i(k’,c,s)) = Zﬁcw(n—i-l,k)aqs

JrijEA. k,c,s k,c,s
Zﬁcac,s = Zﬁc = f.
c,s c

This is independent of i so that (4.4) does not depend on ¢. Therefore by
symmetry, also (4.4) holds for the tilded system which is the same as saying

that (4.5) holds for the given system. O
Example 4.10 (MULTICLASS PREEMPTIVE LCFS M/PH/1 QUEUES)

This corresponds to ¢(n) = 1, w(n,1) = 1, all other w(n, k) = 1. m|
Example 4.11 (MmuLTICLASS PS M/PH/1 QUEUES) This corresponds
to ¢(n) =1, and all w(n, k) = 1/n. O
Example 4.12 (MuLTICLASS M/PH/0o QUEUES) This corresponds to
¢(n) =n, and all w(n, k) =1/n. O

Corollary 4.13 The queue length distributions in the multiclass M/PH/-
queues in Examples 4.10—4.12 are insensitive in the sense that the steady—
state distributions only depend on the B. through their means m..

Proof. The probability of queue length n is p” /6®(n), and here p, § depend
only on the B, through the m.. O

Problems

4.1 Consider the M/M/1 queue with two customer types 0,1 arriving with inten-
sities (o, B1. The state of the system is n0 if n customers are present and the last
arrival was of type 0, and similarly for nl. Interpreting both types to be of a sin-
gle class, take D = {((n + 1)i,ni) : i =0,1} and A = {(ni, (n +1)0) : ¢ =0, 1}.
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Show that the queue is quasi-reversible but that the arrival and departure rates
are not the same.

4.2 Consider a finite birth—death process on {0,1,...,L} with death rates dx
and birth rate 3 = (i independent of kK = 0,...,L — 1. (a) Show that the naive
definition of A, D, etc. does not lead to quasi-stationarity. (b) Splitting state L
into two, let £ = {0,1,...,L — 1, Lo, L1} and let an (dummy) arrival in state Lo
trigger a transition (flip) to L1 and similarly for arrivals in state Li. Show that
appropriate definitions of A, D, etc. lead to quasi—stationarity.

5 Quasi-Reversibility in Networks

We now consider a queueing network of K nodes. Let a state space E(*) be
associated with the kth, and let Agk) , Dék) be disjoint classes of transitions
that we think of as arrivals, resp. departures. The set € of classes is the
same for all nodes and it is assumed that class ¢ customers arrive at node
k according to a Poisson process with intensity ., and that these Poisson
processes are independent for different kc. The routing is Markovian in the
sense that if a transition iy — ji with ixjr € ng) occurs at node k at
time t, then a node ¢ and and a possibly different class d is selected with
probability . ¢a, such that a class d arrival occurs at node ¢ at the same
time; Yre,0 = 1 — Dy Vhe,ea then gives the probability of a departure from
the network.

Example 5.1 A major restriction of Jackson networks as treated in Sec-
tion 2 is that of Markovian routing: the node ¢ to which a customer goes
after leaving node k is chosen with a probability depending only on the
current node k visited and not on which nodes were earlier visited and how
many times. However, in a number of applications the routing is not Marko-
vian and incorporating this is indeed a major motivation of the multiclass
set—up.

A particular case that is often met is that a customer selects among a
set %1, Xs, ... of possible routes w.p. say q(%,) for %, (each route Z is
a finite string ky ...k: of nodes). The set € of classes is then the set of
similar finite strings ¢ = £ ...¥¢;, such that ¢1,...,¢; gives the remaining
set of nodes (including the current one) to be visited by the customer,
which upon leaving node ¢; becomes a {5 ... ¢, customer; thus, yrceq = 1
whenc=¥;... 0, d=V{y... 4, k=11, { = {3, and otherwise yxc ¢4 = 0.

Markovian routing as for a Jackson network corresponds to

Z{( A,

Note that here indeed € is countable rather than finite. O

Gk ...kt Vi1ka *** Vikg—1ke Ve O+
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As for a Jackson network we arrive at the traffic (throughput) equations

Bre = Oékc+Zﬁede,kc, k=1,...,K, ce®. (5.1)
td

In the following, we let (Brc)k=1,... k, ccz be some fixed solution (assuming
existence; uniqueness is not essential).

The basic assumption about node k is now loosely that it is quasi-
reversible when operating in isolation with Poisson input. The precise

content of this is that we assume given an ergodic intensity matrix
(k)

()\(k) (i’j))ijeE(k> with stationary distribution say (7, );cpx , such that

the corresponding Markov process on E(*) is quasi-reversible when the
common input and output rates are given by (5.1); according to (4.4),
(4.5), this means

. 1 k .
Bre = > A8k, 5i) = N0 > A iy, i) . (5.2)
S (k) P (k)
JriikjR €A Ik igiigjpr€De
The network has state space F = H{{ E®) | a typical state being denoted
t = (ik)k=1,...,k in the following, and for the Markov process { X ;} describ-
ing the network, we write similarly X, = (Xt(l), e ,Xt(K)). The nonzero
off-diagonal intensities are defined as follows:
o AP (i, gy
(a) Ali. ) = DA et)
6kc
() A, 5) = A® (ix, k) Vkeoo if 4,4 differ only at node k and ixjx € DI,
(¢) A(4,7) = A®) (iy, jp) if 4, § differ only at node k and 4j; do not belong
to any A% or D
y Ae¢” or Le 75

(d) )‘(7/7J) = )‘(k) (Zkajk)’ykc,éd

irjs € D igjr € AW

if ¢, j differ only at node k and ixji € Aﬁk);

A (i, jo)

if ¢, 7 differ only at nodes k, ¢ and
Bed

Note in (a) that A*) (iy, jx)/Bre is the probability (in node k in isolation
or in the network) that a class ¢ customer arriving to node k and seeing state
ir, will trigger a transition to state j;, and analogously for A\(©) (¢, 7¢)/ Bea in
(d); that these probabilities should coincide for the nodes in isolation and
in the network is the crux in how to build the nodes together to a network.

The main results follows: as for a Jackson network, the stationary
distribution is of product—form.

Theorem 5.2 The network of quasi—reversible nodes is ergodic with
stationary distribution of product form, i.e.
K
T = Tiy. i = 7T§11)...7T§K) (5.3)
Proof. We will provide trial values X('L, j) of the time-reversed inten-

sities and verify that m;A(¢,5) = m;A(g,4) for all 4,j. The trial is
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another network of quasi-reversible nodes, with A&k) replaced by /ng;k)
= {ixgr : rin € DV}, DI by DI = Ligji « i € AP}, AP (i, )
by A5 (iy, 5k) = 7rj(-]:)/\(k) (jk,ik)/wgf) and arrival intensities and routing
probabilities by

_ ~ Beaved ke  ~ ke
Oke = BreVhe,0o Vhetd = —5——1 The,0 = .
ﬁk‘c ﬁk’c

To see that these are reasonable guesses, note for example that the flow of
£d customers to kc customers is B¢qyea ke and must coincide with the flow
@.C%C,M of kc customers to ¢d customers in the time-reversed network;
however, since the input and output rate of class ¢ customers at node k
were assumed equal, we must have By. = Sic. Note also that 1 = Jie0 +
> 0 Vke,ed is a consequence of the throughput equations (5.1).

To verify m;A(i,5) = WjX(j,i), let first 4,7 be as in (a) above. Then a
transition from j to ¢ in the tilded system corresponds to a departure from

node k accompanied of a transition from ji to 5. The intensity is given by
(b) with tildes added and hence

Fz)\(’b,]) ng)akc)\(k) (ikvjk)/ﬁkc Oékc/ﬁkc

= = = = 1.

A7, %) 7T§f)x(k) (Jks 1) Vre,0 Vie,0

Case (b) is symmetric, whereas (c) follows trivially once one notices that
ikjk & AP U DY if and only if jrir & APy DM, Finally in (d),

N4, 5) ng)ﬂgf)A(k) (iks J) Ve, O (e, 5e) / Bea
mA(F, ) 7T§f)77](f)>\“) (Jes ie)Ved, ke A®) (ks in) / Bre
_ Dketd/Bea 1
Yed, ke/ Bre )

6 The Arrival Theorem

In a single-node queue with Poisson arrivals, the PASTA property to be
formalized in VII.6 implies that the steady—state distribution of the state
of the queue seen by a customer just before his arrival is the same as the
steady—state distribution of the state of the queue at an arbitrary point
of time. We will show here that results of rather similar form hold for
networks.

In the network we have considered, a customer going to node ¢ after being
served at node k does so instantaneously. However, we may imagine that he
observes the state of the rest of the network during the infinitesimal interval
where the transition takes place. Typically, these transition instants do not
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form a Poisson process so PASTA does not apply. Nevertheless, we will
show here that results of rather similar form hold. First:

Theorem 6.1 In the model of Section 5, the steady-state distribution
nketd of the state seen by a customer in transition from node k as a class c
customer to node ¢ as a class d customer coincides with the time—stationary
distribution .

Proof. Clearly, the rate of a kc¢ customer making a transition to a ¢d cus-
tomer is BicYie,ea- To determine n?c’éd, we note that if the state seen during
the transition is j, then the state ¢ just before the transition must be in

the set E;?C’Zd of states with i,, = j,,, m # k, and ipjx € Dﬁk). Thus

1
ke, bd .o
i = o A2, J) Vke,ed
s BreVke,td Z;cgd A 3)ee
ZEEJ. ’
1 k .
= Bre H 773(':) ‘ Z W§k)A(k)(lkaJk)
m#k ik:ikjkGDék)
1 K
k
RN T F
¢ m#k m=1
using (5.2) in the third step. O

Corollary 6.2 Let 5 = {kc}, & = {ld} be arbitrary subsets of
{0,..., K} x € Then the steady-state distribution of a € customer in
transition to become a J customer is .

Proof. Letting 0y, ¢q denote the probability that a .7Zcustomer in transition
to become a JZ customer is a kc customer just before the transition and a
ld customer just after, the distribution in question has point mass

0 ke,bd 0 o
ke,td 1; = ked Tj = Tj

kee A, tded kee s, tdex
at j (note that the case k = 0 is covered by PASTA). ad

Remark 6.3 If 7' = {{} x 6, #= {0,...,K} x &, then the statement
of Corollary 6.2 means that a customer arriving at node ¢ (as an external
arrival or from some other node k) sees distribution 7 just at the arrival
instant (in the above sense of being in transition). Similarly, taking J# =
{k} x €, #=10,..., K} x €, shows that a customer departing node k sees
distribution 7r just at the departure instant. O

The arrival theorem takes a striking form for closed Jackson networks.
In the notation of Theorem 2.3:

Theorem 6.4 For a closed Jackson mnetwork with N customers, the
steady-state distribution n(N#0 of the state seen by a customer in transi-
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tion from node k to node ¢ coincides with the time—stationary distribution
aN=1) of the network with one customer removed. That s, nﬁlN;k’Z) =

CN_l HMZIpZ’Im when nG+---+ng= N — 1.

Proof. In a closed network, the (3 are only determined up to a constant
and can therefore not a priori be identified with the throughput rates, say
Bi,-..,B%. Instead, we can identify 3; with the output rate d,0; = the
service rate §; times the probability 6 of node k being busy where

K K c
I S | G D Y e

ni+-+ng=Nn;p>0 £=1 ni+-+ng=N—-1 m=1

where the 8, (and accordingly p1,...,px and Cn,Cn_1) are calculated
based upon some fixed solution of 3 = BT

It follows that the rate of transitions of customers from node k to node
Cis Bive = BryiCn/Cn—1. Hence for n € En_1,

K K

vk - N S = s o — -

M = mﬂnéﬂ kYl = 5k Pk kH pm = N1 H Pl
m=1 m=1

whenn € En_;. 5

Notes Among many texts on queueing networks, we mention in particular
Kelly (1979), Walrand (1988), Serfozo (1999), Chao et al. (1999) and Chen
and Yao (2001); see also the volumes edited by Kelly and Williams (1995) and
Kelly et al. (1996). Buzacott and Shantikumar (1993) contains a large number of
applications to manufacturing system.

Extensive lists of references can be found in these texts. Some milestones in the
theory exposed in Sections 1-2 and 4-6 are Jackson (1957), Gordon and Newell
(1967), Baskett et al. (1975) and Kelly (1979). One often meets the terms BCMP
network, meaning the models of Baskett et al. (which are special cases of the
model of Section 5), and Kelly network, denoting the special case where customer
classes are the routing schemes.

Queueing networks form maybe the most active and challenging area of re-
search in queueing theory. The developments go in several directions. One is
characterization of conditions for product—form solutions and the study of non-
product form networks in a Markovian setting; see Serfozo (1999) and Chao et al.
(1999). Another is stability theory (when do ergodic limits exist?) where certain
unexpected phenomena occur. A classical example is the network in Fig. 5.1,
dicussed in length in Chen and Yao (2001).

Node 1 Node 2
Class B1 Class B2
-— - T e T le— BB
Ba——— - Class A1 _ Class A2 N

Figure 5.1
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Here we have two arrival streams A,B, such that a type A customer enters node
1 as a class Al customer and goes to node 2 as a class A2 customer after being
served, and a type B customer enters node 2 as a class B2 customer and goes
to node 1 as a class Bl customer after being served. Class B2 customers have
preemptive priority over class A2 customers and class Al over class B1. With
a1, etc. the mean service times, the natural stability is that the traffic intensity
at each station is < 1, i.e.

p1 = Bapar + Beusr < 1, p2 = Bapaz + Beps2 < L. (6.1)

However, assuming (6.1), we have Saua2 < 1 and A2 customers block B1 cus-
tomers in a fraction Saua2 of time in a stable system. Similarly, B2 customers
block A1 customers in a fraction Spup1 of time, so that if Sapa1 + Beus2 > 1,
blocking occurs all the time and the number in system must build up, contradict-
ing stability (obviously there are examples where this extra inequality and (6.1)
hold at the same time).

Even just to show that pr < 1 at each node in a generalized Jackson network
(the model of Section 2 with nonexponential service times) is sufficient for stabil-
ity presents considerable difficulties; see e.g. Baccelli and Foss (1994). A survey
of the literature on stability of queueing networks is given p. 341 of Chao et al.
(1999). An interesting direction not mentioned there is the connection between
stability and the existence of fluid limits (also called hydrodynamical limits) (LLN
type limits approximating, e.g., the netput process for the M/G/1 workload by
the straight line (p — 1)t); see e.g. Dai (1995a,b). See also Cohen (1992), Fayolle
et al. (1995) and Fayolle et al. (1999) for further stability issues.

A further active area is heavy-traffic limit theorems. With K nodes, the limit
here is typically Brownian motion in [0,00)® and so—called oblique reflection at
the boundary (see the Notes to IX.2 for more details). In contrast to the case
K = 1, few characteristics of this process can be found in closed form. One
reason that heavy-traffic limits are nevertheless useful is state—space collapse: the
distinction between the customers classes, say there are M of them, vanishes so
that the dimension of the state space is reduced by a factor of M. Some selected
papers in this area containing further references are Reiman (1984), Harrison and
Williams (1987, 1992), Bramson (1998) and Williams (1998).

Finally, we mention large deviations studies such as Glasserman and Kou
(1995b), Atar and Dupuis (1999), McDonald (1999), Ignatiouk—Robert (2000)
and Miyazawa (2003).
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Methods
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Renewal Theory

1 Renewal Processes

Let 0 < Sy < 51 < S < --- be the times of occurrences of some phe-
nomenon and Y, = S, — S,_1, Yo = So; see Fig. 1.1. Then {S,}, y
is called a renewal process if Yy,Y1,Ys,... are independent and Y7,Y5, ...
(but not necessarily Yy) have the same distribution.

—Y,—+—Y FY; ——t—

v

0 So Sy S,y
Figure 1.1

The S,, are called the renewals or the epochs of the renewal process. The
common distribution F' of Y7, Y5, ... is the interarrival or waiting—time dis-
tribution. To avoid more than one renewal at a time we always assume
that the Yj have no mass at zero, F'(0) = 0. The renewal process is pure
or zero—delayed if Yo = Sp = 0 a.s.. Otherwise it is delayed and the delay
distribution is the distribution of Y. One also sometimes considers termi-
nating or transient renewal processes, where the interarrival distribution is
defective, i.e. may have an atom at 400, |F|| = lim;—e F(t) < 1 and in
which case S, = co eventually. If ||F'|| = 1, the renewal process is proper.

A main case of a renewal process is, of course, the Poisson process, where
the interarrival distribution is exponential. For example, the Poisson pro-
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cess provides an adequate description of the emission of particles from a
radioactive source. We next list some further phenomena, which it has been
suggested can be modelled by renewal processes.

Example 1.1 Consider an item, say an electric bulb, that fails at times
S0, 51, ... and is replaced at the time of failure by a new item of the same
sort. Then F' is the distribution of the lifetime of an item. The process is
delayed if the item present at time ¢ = 0 is not new, so that its lifetime
need not have distribution F. O

Example 1.2 Consider a road on which vehicles are driving in one direc-
tion only and all with the same constant velocity. Two interpretations are
possible: (i) the S,, are the instants when vehicles pass a certain point on
the road, (ii) the timescale [0,00) is a map of the road and the S, the
positions of the vehicles at a certain instant. In both cases, the form of the
interarrival distribution to be expected depends in an essential manner on
whether there is little or much traffic on the road. In the first case (say
on a rural road) F' might be taken to be exponential, while in the second
case (say on a main street in a city) the vehicles would rather be equally
spaced, i.e. F' concentrated at one point. O

Example 1.3 Consider a continuous-time Markov process {X;},., or a
discrete-time Markov chain {X,}, .y with discrete or continuous state
space, and let ¢ be some fixed state. Then the instants .S,, of visits to ¢ form
a renewal process (provided in continuous time that the strong Markov
property holds and that P;(7(i) = 0) = 0; the last requirement fails say for
Brownian motion). The process is pure if and only if Xy = ¢ and transient
if and only if state 4 is visited only finitely often (which is the definition of
transience in the case of a discrete state space).

1 — [ em—
2
S S, S, i
Figure 1.2

Fig. 1.2 illustrates the case of a two—state Markov jump process with ¢ = 2.
If the exponential holding time of state k has rate A(k), then F is the
convolution of two exponential distributions with rates A(1) and A(2),
respectively. O

Though the main probabilistic object describing a renewal process is
nothing but a sum of nonnegative i.i.d. random variables, the point of view
of renewal theory is somewhat different from the one usually taken when
studying such sums. In particular, rather than in the behaviour of S, as a
function of n we are interested in the number of steps needed to reach size
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t, i.e.
Ny = #{n:O,l,Q,...: Sngt} = ll’lf{’n, Sn>t}

the number of renewals up to time ¢. Note that

Ny <n <= S, >t, (1.1)
Sn,—1 <t < Sn,, (1.2)
{Ny=n} = {Sn_1<t<S,} (1.3)

These equations state, loosely speaking, that ¢ — N is the inverse function
of n — Sy, and suggest that classical results on {Sy, }, oy could be converted
to results on {N;},,. For example:

Proposition 1.4 Let = EY1 = [« F(dz) be the mean of the interar-
rival distribution. Then (irrespective of the distribution of Y{ or whether
p < 00 or p=00)

N/t 2% ™t t— oo, (1.4)
EN:/t — M_l, t — oo, (1.5)

Proof. Since S, /n %3 p and N; 3 oo, it follows by dividing (1.2) by
N; that t/N; %% p, ie. Ni/t 2% p=t From this also the lim > part of
(1.5) follows by Fatou’s lemma. To get lim <, consider a renewal process
{gn}n eN where the interarrival times are i/v'o =Yy, 57” =Y, Aa, and let

Ny, 1, etc. be defined in the obvious way. Now by (1.3), N, is a stopping

time w.r.t. ?1, Ys, ... for any fixed value of Yj. Hence we may apply Wald’s
identity conditionally upon Y, and get

E(Yi+ - +Yg) = EEM+ +Yg, | Yo)] = E[FE(N:|Yo)] = GEN,.

Clearly, N, > N, and by (1.2), S‘Nt = gﬁrl + ffm <t + a. Thus

lm EN;/t < Tim ENy/t = Tim g 'B(Yi + -+ Yy, )/t
t—o0 t—o00 t—00 t

T ~—lpa ~—1
< tlirgo,u ESg,/t < n .
Now i 1 p+ as a T oo and (1.5) follows. O

A CLT analogue is given in Section 6.

One of the main points of renewal theory turns out to be obtaining re-
finements of (1.5). For this reason, (1.5) is sometimes called the elementary
renewal theorem.

In the same way as in 1.2, we shall now define the backward recurrence
time process {A;},~, and the forward recurrence time process { By}, as-
sociated with the renewal process. In the language of Example 1.1, A; is
the age of the current item and By its residual or excess lifetime. That is,
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Ay is the time elapsed since the last renewal and B; the waiting time until
the next renewal epoch > ¢,

Ay = t_SN,,—l, B; = SN,, —t

(note that By = Yy on {Yy > 0} and By = Y7 on {Yy = 0}). The paths have
the form illustrated in Fig. 1.3 and are right—continuous by definition.

A
Ay
/! ;
1 2
’ ’ 1 Y !
, | | 1
’ 1
——
* - = . >
a 0 S Sy S, 4 t S,
A
By
1
] 1
1 1
1 1
Y, ! 1
Y] 1 1 1 |
\: 1 1 1 1

Figure 1.3

For a given renewal process, it is only possible to attach sense to A, if
t > Yy. However, for any a > 0 with F(a) = 1 — F(a) > 0 we can define
a renewal process by “starting with a renewal at —a,” i.e. letting Yy have
the conditional distribution of Y; given Y; > a,
Fla+
]P)(Yb>y) = IP’(Y1>y+a|Y1>a) = M (16)
F(a)
Letting A; = a+t, t < Y, we then get a version of {A;} that is defined
for all t > 0 and has Ag = a. In fact, we shall show:

Proposition 1.5 The processes {Ai},~ and { B}, are time-homogene-
ous strong Markov processes.

Proof. The Markov property is intuitively obvious from the construction in
the same way as in discrete time in 1.2: B; decreases linearly (and deter-
ministically) until 0 is hit, then jumps to Y7, decreases linearly to 0, jumps
to Y5 and so on, and this motion clearly has the asserted properties. The
motion of A; is also linear (but the jump times are not predictable). Given
{As}y< <4 the evolution of the process after time ¢ depends on the past
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only through the distribution G of the waiting time until the next jump.
But the tail G(y) is given by (1.6) with a = Ay, which implies the Markov
property.

For the strong Markov property for {B;}, let f be continuous and
bounded and let g(b) = Euf(Bs). An inspection of the paths immedi-
ately shows that g(b —t) = Epf(Bi1s), 0 < t < b. As t | 0, we have
f(Biys) — f(Bs) and hence by dominated convergence g(b —t) — g(b),
i.e. g is left—continuous. For u | ¢t we have B,, T B; so that g(B,) — g(Bi).
Thus {g(B¢)} has right—continuous paths, and the strong Markov property
for {B;} follows by 1.8.3. For {A:}, let h(a) = E,f(As). Using first the
right—continuity of {A;}, we get for ¢ | 0 that

h(a) = Eqf(Astt) +o(1)

_ % {F(a+t)]Ea+tf(As) + /{:jt ]Eof(As+t—y)F(dy)} + o(1)

= Euptf(As) +0(1) = h(a+1t)+o(1).

Therefore h(a) is right—continuous, which in view of 4,, | A¢, u | ¢, implies
the paths of {h(A¢)} to be so. O

We note that a number of Markov processes associated with queues and
related models (see e.g. Problems 1.3, X.3.2, XIV.1.1) have paths of a
similar shape as {A;}, {B:} and that the strong Markov property in such
cases follows by small variants of the proof of Proposition 1.5

It was remarked in Example 1.3 that the recurrence times of a point ¢ in
a Markov process {X;} form a renewal process. Proposition 1.5 shows that
any renewal process is of this type (with X; = A; and i = 0).

Problems

1.1 (THE TYPE I COUNTER) The incoming particles constitute a Poisson pro-
cess, but the registrations do not, since for technical reasons the counter cannot
register the second of two particles emitted at almost the same time. Suppose
that each registered particle locks the counter for a time with distribution G,
that particles arriving in a locked period have no effect and that locking times
of different particles are independent, both mutually and of the Poisson process.
Show that the registrations constitute a renewal process and find the interarrival
distribution.

1.2 (THE PEDESTRIAN DELAY PROBLEM) At time 0, a pedestrian arrives at a
road and wants to cross. Crossing is possible when the gap beween two cars is at
least £. Find the distribution of the waiting time until crossing is performed.
1.3 Show that {(A:, Bt)},~, has the strong Markov property. [Hint: Consider

Ea+t,b—tf(As )Q(BS)~]

Notes A classical reference for renewal theory is Chapter XI of Feller (1971).
In view of the basic importance of renewal theory, it is not surprising that
several generalizations have been considered, in particular renewal theory for
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Markov chains (VIL.4 and references therein), for more general dependent se-
quences (Berbee, 1979; Lalley, 1986; Alsmeyer, 1994), for random walks (surveyed
in Gut, 1988), nonlinear renewal theory (Woodroofe, 1982; Siegmund, 1985;
Zhang, 1988), multivariate renewal theory, (Carlsson and Wainger, 1984, and
references therein), and finally renewal theory with infinite mean where a recent
paper with reference to older literature is Doney (1997).

2 Renewal Equations and the Renewal Measure

The renewal equation is the convolution equation Z = z + F x Z (for the
convolution notation, see the Notes at the end of this section), i.e.

Z(t) = z(t)Jr/OtZ(tu) F(du), t>0. (2.1)

Here one thinks of Z as an unknown function on [0,00), z as a known
function on [0,00) and F as a known nonnegative (Radon) measure on
[0,00). It is often assumed that F' is a probability, i.e. |F| = 1, in which
case (2.1) is proper. If || F'|| < 1, the renewal equation (2.1) is defective, but
we shall also consider the ezcessive case ||F|| > 1. We always assume that
F(0) = 0. We shall first give some examples.

Example 2.1 Consider a pure renewal process with interarrival distribu-
tion F' and the recurrence times A;, B; defined as in Section 1. Let £ > 0
be fixed and define Z4(t) = P(4; < &), Zp(t) = P(B; < &). Then Z4,Zp
satisfy the renewal equations

Za=za+FxZaza(t) = P(A <Y1 > 1) = I(E<OF(), (22)
ZB:ZB—FF*ZB,ZB(t) :P(Btgf,Yi>t) ( +f) ()(23)

The proof of this is carried out by the renewal argument, i.e. (i) conditioning
on the value u of Y7, which yields

t
Za(t) = P(A <Y > 1) + / P(A; < €|Y1 =u) F(du),  (2.4)
0
and (ii) remarking that the process starts from scratch at time Y7, which
yields P(A; < £1Y; = u) = P(A4—,, < &) for u < t. Thus, since A; =t on
{Y1 > t}, (2.2) and (2.4) are the same equation. Equation (2.3) is derived
in a similar manner using B; = Y; —t on {Y; > t}. O

Example 2.2 (LOTKA’S INTEGRAL EQUATION) This comes from classical
deterministic or semi—deterministic population theory associated with the
names of Sharpe and Lotka. Consider the female part of a population,
where women aged a give birth (to a single daughter) at rate A(a) and
survive to age a + t in a proportion of ;p, (in traditional demographic
notation). We are interested in Z(t), the overall birthrate at time ¢, which



144 V. Renewal Theory

can be split into the rates z(t), Zo(t) of births from women born before,
resp. after, time ¢ = 0. To determine z(t), we must know the age structure
of the population at time zero, which will be represented by its density
fo(a) (thus fooo fo(a) da is the initial population size, not necessarily = 1).
Then women aged a at t = 0 have density fo(a)ip, at time ¢ and are aged
a + t, and hence

2(t) = / " fo(@)par(a+ 1) da

Similarly, women born at time ¢t—s provide a contribution Z(t—s)spoA(s) ds
to Zp(t) so that

Z(t) = z(t)+/0 Z(t — s)spoA(s) ds (2.5)

and we have a renewal equation with F'(ds) = spoA(s)ds. Note that | F|| =
fooo sPoA(s)ds is the average number of daughters born to a woman, the
so—called net reproduction rate. This could have values both < 1, =1 and
> 1, but the typical case is that of a growing population with ||F| > 1,
where (2.5) is thus excessive. Note also that other quantities of interest,
such as the density

fola—t)pa—y t<a
Z(t — a)apo t>a

of women aged «a at time ¢ and the total population size

t 00
N(t) = / Z(t —a)epoda + / fola)t—apa da (2.6)
0 0
are readily expressed in terms of Z. O

Example 2.3 (THE RUIN PROBLEM OF INSURANCE MATHEMATICS) As-
sume that the claims incurred by an insurance company arrive according
to a Poisson process {N;} with intensity A, that the sizes of the claims are
i.i.d. nonnegative random variables X1, Xo,..., with common distribution
say G, and that the inflow of premium up to time ¢ is ct. Thus the risk
reserve at time ¢ is

N
U = u+cthXn,

n=1

S

t

>

>

Figure 2.1
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with w = Up the initial value (cf. Fig. 2.1). We are interested in the
probabilities

Z(u) = P(U, > 0¥t | Uy = u), 1—Z(u):IP>(<1n<f Ut<0\U0:u),

0<t

of ultimate survival and ultimate ruin of the company, say for the purpose
of assessing whether ¢ has been chosen sufficiently large compared to u,
and we will see that

Z(t) = Z(0)+ — /t Z(t — 2)G(z) du. (2.7)

This is of the form (2.1), with F(dz) = (\/c)G(z) dz. We note that || F|| =

Av/c, where
v = / G(r)dz = / yG(dy)
0 0

is the mean claim size, and that Av is the mean size of the claims received
per unit time, ¢ the inflow of premium per unit time; in practical situations,
the company will typically have chosen ¢ > Av such that ||F|| < 1.

The shortest proof of (2.7) exploits one of the most basic ex-
plicit formulas in Wiener—-Hopf theory, to be proved in VIIL5.7: if
o = inf{t>0: Uz <u=Up}, then u— U, has the (defective) density
(A\c)G(x) when Av/c < 1. From this, (2.7) follows immediately by
conditioning upon z = u — U, and noting that Z(0) = P(c = c0).

A longer and more naive (but classical!) argument uses instead condi-
tioning upon the time s of the first claim where the process renews itself,
holding the new initial fortune u + ¢s — X1 (terminates if X; > u + cs).
Therefore

(') u+tcs
Z(u) = / e ds/ Z(u+ cs —x) G(dx).
0 0

Letting t = u + cs, we get
)\ [e'e] t
Z(uw)e /e = = / e Medt / Z(t — x) G(dx).
CJu 0

This representation shows that Z is differentiable, and differentiating w.r.t.
u yields

e*M/C(Z'(u) - %Z(u)) = f%ew/c /u Z(u— z) G(dz),
Z'(u) = %Z(u) - %Au Z(u — z) G(dx).

Integrating w.r.t. du from 0 to ¢ and letting

t—y
h(y) :/ Z(u)du, 0<y<t, h(y) =0, y>t,
0
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yields
Z(t)—Z(O)——h - ——/ du/ (u — 2) G(dz)
A [t
= —E/O h(z) G(dz) = —E/O h(xz) G(dx)
= 2w -2 /O W (2)G(x) da,
which is the same as (2.7). O

We shall now study questions of existence and uniqueness of solutions.
Asymptotic estimates will be derived in Sections 4 and 5 for the case || F|| =
1 and in Section 7 for ||F|| # 1.

Given F, we define the renewal measure by U(dz) = Yo" F*"(dz) and
the renewal function Uby U(t) = Yo" F*™(t) (see again the Notes at the
end of this section for notation).

Theorem 2.4 (i) The renewal function U(t) is finite for all t < oo;

(ii) if the function z in the renewal equation (2.1) is bounded on finite

intervals (i.e. sup0<t<T |2(t)] < oo for all T < o0), then Z = U * z (i.e.
fo U(dx)) is well defined, a solution to (2.1) and the unique

solutzon to (2 1) whzch is bounded on finite intervals;

(iii) of | F|| = 1 then U(t) is the expected number ENy of renewals up to time

t in a pure renewal process with interarrival distribution F. More generally,

in any renewal process with interarrival distribution F, the expected number

of renewals in (t,t + al is

E(Niyo — Ny) = /O CUla—6)Gi(de) = GirUla) = UxGila) (2.8)

where G1(§) = P(B; < &). Further, the expression (2.8) cannot exceed U(a).

Lemma 2.5 If F is a measure on (0,00) with F(a) < oo for all a < oo,
then for any t < co and & < 1 there exists Cs; < 0o such that F*™(t) <
Cs10™ for all n.

Proof. Since F*™(t) does not involve the restriction of F' to (¢, 00), we may
put F(dx) = 0, > t if necessary to ensure that the Laplace transform
fo e P*F(dr) is finite for all 3 < oo and that F[ﬁ] — 0, 8 — oo.

Choose 8 with F[3] < 6 and note that

t
F*n(t) < eﬂt/ e—ﬂsF*n(dS) < eBtF[ﬁ]n. O
0

Proof of Theorem 2.4. (i) follows immediately by Lemma 2.5 (alternatively,
if |F'|| = 1, use (iii) and (1.5)). For (ii), it is now obvious that Z = U * z
is well defined and bounded on finite intervals. Defining Uy = Zév Fr
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Zny = Uy * z, we have Zn11 = z+ F % Zy and that Z = limZy is a
solution follows as N — oo. Given two solutions of the type considered,
their difference V satisfies V = F xV =--- = F*" %V so that

Vi) = / Vit—2) F(da)| < sup [V(y)|- F™(0),

0<y<t

and V(t) = 0 follows as n — oo. For (iii), it follows from (1.1) that in a
pure renewal process with interarrival distribution F

EN, = Y P(Ny>n) = > P(S, <t)
n=0 n=0
= S PN+ 4Ya <) = D OFT() = U),
n=0 n=0

and the more general (2.8) then follows by conditioning on B; = £ and
noting that a pure renewal process starts at time t 4+ £. Finally, an upper
bound for (2.8) is obtained by replacing G; with the distribution degenerate
at zero and this yields U(a). O

Example 2.6 In many examples, the form Z = U * z of the solution to
Z = z+ F % Z can be seen directly and sometimes this is even the most
natural approach. Consider as an example a shot-noise process

N —1

Wt - Z f(t_STan)
n=0

where Xy, X1,... are i.i.d. and independent of the renewal process. Then
Z(t) = EW, satisfies

Z(t) = iE[f(t_Sann)§SnSt]
n=0

= z(t —u) F*(du) = U = z(t),
>

where z(t) = Ef (¢, X1).

The shot—noise process is used to describe certain electrical tubes, where
primary impulses of sizes Xy, X1, ... are emitted at the epochs of a renewal
process. An impulse of size x then creates secondary effects which are of size
f(t,x) after time t. Similar phenomena occur in road traffic noise, where
the renewal process describes the passing of the cars, X,, is the noise level
of the nth car and f(t, ) is the actual noise at a distance of t. O

If U is absolute continuous on (0, 00), we call the density u(z) = dU/dx
the renewal density.
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Proposition 2.7 The renewal density u exists if and only if F has a den-
sity f. Then u =7 f*" or, equivalently, u is the solution of the renewal
equation u = f+ F *xu.

Proof. 1t is clear that if f exists, then so does u and is given by u = 1% f*™
that this is the same as the solution U * f of u = f 4+ F x u follows from
u(0) = f(0) = 0 (equivalently, u = f + F x u follows at once from the
renewal argument). ]

Example 2.8 The main examples where the renewal function, the renewal
density, or the distribution of A;, By, etc. can be found explicitly are the
phase—type ones given in II1.5. For an additional one, assume that F is
uniform on (0, a). Then the renewal density u(z) exists and we will show
that it is given by

lz/a] k
1 /4 _p(k—2x/a
u(z) = Ee/ E e k%. (2.9)
k=0 )

To this end, let v(z) denote the r.h.s. of (2.9), and assume w.l.o.g. that
a = 1. Then the renewal equation u = f + F * u for u means

T T
u(z) = I(x<1)+/ ulz—y)l(y<1l)dy = I(:E<1)+/ u(y) dy
0 (xz—1)t+
which implies
, _ u(z) <1

wiw) = { u(z) —u(z—1) z>1
In particular, from u(0+) = f(0+) = 1 we get u(z) = e* = v(x), v < 1.
Thus the relation u(x) = v(z), n < < n+ 1, holds for n = 0. Assuming
it shown for n — 1, we get

Lz -
! _ T — (k — x)k !
V(z) = v(z) —e k§:1e kw

= ov(@)—ve—-1) = v(@)—ulx—-1), n<zr<n+1,

which together with v(n) = u(n) and «/(z) = u(z) — u(z — 1) implies
u(z) = v(z), n <z <n+ 1. Thus u(x) = v(x) for all . O

It is clear by the same argument as in the proof of Theorem 2.4 that if the
renewal process is terminating, ||F|| < 1, then U(t) can still be interpreted
as the expected number of renewals in [0,¢]. In particular, the expected
number of renewals within finite time is

ol = Jim U(t Z||F||” = ||F|| (2.10)

n=0
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cf. also 1.2.4.
However, the renewal measure has a different important interpreta-

tion in the terminating case. Define the lifetime or mazimum by M =
sup{S,, : Sn < oo}. Then:

Proposition 2.9 In the zero—delayed case with ||F| < 1, the distribution
of M is (1 | F|)U

Proof. We give two arguments, (a) and (b). In (a), put 0 =inf{n > 0: Y, 11
= 00}. Then

M=Y+-+4Y,, Plo=n)= (1-|F|)|F|",

and conditionally upon o, we have P(Y;, < y|o) = G(y) for k < o, where
G = F/||F||. Hence

P(M <y) Z (c=n)P(Y1+ ---+Y, <y|0—n)

= Y - IFDIFI"G™w) = (1=IF]) Y F™" ()
n=0 n=0
= (1= 1FI)U ).

In (b), let Z(x) = P(M < z). Now if Y7 = oo, then M = 0 and hence
M < z, whereas if 0 < Y7 = y < oo, then for {M < z} to occur we must
have y < x and that the lifetime of the renewal process starting at y is at
most x — y. Hence

2a) = 1= |1F| + [ 2o~ ) Flaw)
0
which implies Z(z) = Ux (1—|[[F|)(z) = (1 - [|F|)U(). O

Problems

2.1 Find a renewal equation for the joint distribution of the recurrence times
(A, By).

2.2 (THE TYPE II COUNTER) As in Problem 1.1, we assume that the particles
arrive at the counter according to a Poisson process with intensity A, but use a
different model for the locking mechanism, namely that locking times of different
particles are i.i.d. with common distribution G and that each particle arriving
at the counter cancels the aftereffects (if any) of its predecessors. Show that the
probability Z(t) of the duration of the locked period to exceed ¢ satisfies the
renewal equation

Z(t) = Gt)e ™ + / " 20t — 2)G(@)e " da.

2.3 Show that Z(t) = Z(0)U(t) = 0 in the ruin problem with ¢ < Av.
2.4 Show that if the Laplace transform [ is well defined (e.g. if ||| < oc) then
U= (1-F) " and that in (2.2) Z =2/(1 — F).
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Notes Notationally, F’*" denotes the nth convolution power of F, i.e. the
probability distribution degenerate at zero for n = 0, while for n =0,1,2,...

F* ¢ /F*"t—u (du) /Ft—u F*"(du).

In particular, [|[F*"| = ||F||". Further, we have used the convention that the
convolution F'xZ of a function Z and a measure Fis a function When identifying
the measure F(dz) with the function F(t fo , this is consistent with
the usual convolution of measures; mdeed 1f Z 1tbelf correspondb to Z(dz), then
FxZ(t) = fot F«Z(dz). The proof of this is elementary as well as that of formulas
like F+G=G«*F, Fx(GxZ)=(Fx*G)x*Z used without further notice in the
text (here G is another measure).

More material on the demographic model in Example 2.2 is in Pollard (1973)
and Preston et al. (2001). We return to ruin probabilities in XIV.5-6.

3 Stationary Renewal Processes

The definition that a renewal process (or a general point process on [0, 00))
be stationary is the obvious one: if for any ¢ > 0 we shift the origin
to t, the distributions of the epochs should be left unchanged; formally,
{Nsyt — Nitoso Z {Ns},s¢- Clearly, this will hold if the distribution of
the forward recurrence time B; does not depend on t, i.e. if the Markov
process { B} is stationary. Conversely, this is also necessary since otherwise
the first epoch of {Ngy+ — N;} has a distribution depending on ¢.

The form of the stationary distribution Fy for {B;} is easily guessed by
a level crossing argument. Namely, in a stationary situation the average
number of upcrossings of level z > 0 should be the same as the average
number of downcrossings, which in turn leads to the rate of upcrossings
being equal to the rate of downcrossings. Assume that Fj exists and has a
density fo. An upcrossing of a stationary version of {B;} in [0, h] occurs if
By € (0,h] and the jump out of 0 at time By exceeds x so that the rate
is fo(0)F(z)h + o(h). For = > h, a downcrossing occurs precisely when
By € (x,x + h] so that the rate is fo(x)h + o(h). This shows that fo(z) =
fo(0)F(z) and from 1 = [ fo = fo(0)u, we then get fo(z) = F(x)/p.

A similar argument for { A;} is in principle possible but more complicated
(see Problem 3.1), and it is easier to note that

{B; <&} = {renewalin (t,t +¢]} = {Ae <&} (3.1)

so that (since Fy was found to have a density so that P(B; = £) = 0) the
stationary distributions for {A;}, {B;} must be the same.

The formal justification for the level crossing argument is provided by
the rate conservation law considered in VIL.6, but in the rest of this section,
we will give a rigorous direct treatment of the above discussion as well as
look into some further topics. We let Fy denote the measure with density



3. Stationary Renewal Processes 151

F(x)/u, assuming for the rest of the section that p < oo since otherwise
there is no hope for stationarity properties.
Considering {A4;}, {B.} jointly, we have
F(z +vy)

which leads to:

Lemma 3.1 (i) If {A:} is stationary, then so is {B;}. (ii) If A; has
distribution Fy, then so has By, and P(Ay > x, By > y) = Fo(x + y).

Proof. Part (i) follows immediately from (3.2) which shows that the dis-
tribution of By is a function of that of A;. If indeed as in (ii) A; has
distribution Fy, (3.2) yields

/f EE+9) p sy = l/fﬁ(zw)dz

]P)(At >x, By > y)

F(z) I
Y g —
= —/ F(z)dz = Folz +y);
H T+y
that the distribution of B, is Fy then follows by taking x = 0. O

The joint distribution in (i) can be described in a simple intuitive way.
Let Cy = A; + B denote (in the terminology of Example 1.1) the current
lifetime of the item at time t.

Lemma 3.2 Let Fy be the distribution with density x/p w.r.t. F, let C be
a r.v. with distribution Fy, let U be independent of C' and uniform on (0,1),
and define A=CU, B=C(1—-U). Then P(A > z,B >y) = Fo(z +y).

Proof. Since A > x, B > y is equivalent to C >z +y, U € (JU/C7 1-— y/C),
we get

P(A>z,B>y) = /Oo {1—I+y}5F(dc)

oty c lp
1 [ i 1 [ = _
= — [c—2x—y]"F(de) = — F(z)dz = Fo(z+y),
K Jo K Jaty
using integration by parts in the third step. O

Theorem 3.3 Let C' be a r.v. with distribution Fy and let U be indepen-
dent of C' and uniform on (0,1). Then the version of the Markov process
{(At, Bt,Ct)} obtained from the initial values Ag = CU, By = C(1 —U),
Cy = C is strictly stationary. Further, the point process whose set of epochs
is

{tZOSAtf#At} == {tZOBt,%Bt}

s a stationary renewal process with interarrival distribution F.
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Lemma 3.4 A Radon measure H on [0,00) satisfies U x H(dr) = dz
(Lebesgue measure) if and only if H has density F(x).

Proof. 1f H has density h(x) = F(x), then U = H has density U x h =
U-UxF =F"Y=1,ie UxH(dr) = da. If also U * Hy(dz) = du,
then U % H(a) = a = U % Hy(a). Thus the solutions of Z = H + F x Z,
Z = Hy1 + F x Z are the same, and this immediately implies H = H;. O

Proof of Theorem 3.3. In view of Lemma 3.1(i), all that needs to be shown
is that {A;} is stationary. By Lemma 3.2, Ay has distribution Fy and we
must show that P(4; < &) = Fy(§) for all ¢,£. If ¢t > £, A, < & occurs
precisely when there is a renewal in [t — &, ¢]. Since By also has distribution
Fy by Lemma 3.1(i), the intensity measure (cf. A3) of renewals is U * Fy(dx)
which by Lemma 3.4 is da/u. Thus conditioning upon the time x of the
last renewal we get

t £
P(A, <€) = /tju—x) de/p = / Fy)dy/u = Fo(©).

Ift <& Ay > € occurs when the initial item has age a at least £ — t and
survives to time ¢. Thus

P(4; > €) = /6 i%maa)

= [ Fat+naun = [ Fadn = Fulo)
3 £

—t

The fact that the stationary distribution of C} is Fi, not F, is known as
the inspection or waiting time paradox, stating that the item at time ¢ is
not typical in the sense of having distribution F'. The reason is loosely that
sampling at a fixed time favours items with long lifetimes, and therefore
one also speaks of length—biasing. The paradox is important not only for
its own sake but also as a warning for intuition in many similar situations.

Having constructed a stationary renewal process, we finally consider the
uniqueness question. In addition to the characterizations studied above, we
will also consider the intensity measure, counting the expected number of
renewals. The intensity mesure is stationary if it is translation invariant,
i.e. equal to Lebesgue measure times a constant (necessarily x~! by the
elementary renewal theorem).

Proposition 3.5 Let G be a distribution on (0,00), such that either (i) G
is stationary for {A:}, (1) G is stationary for { B} (iii) a renewal process
with delay distribution G is stationary, or (iv) a renewal process with delay
distribution G has stationary intensity measure. Then G = Fy.
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Proof. It is by now clear that (i)=-(ii)=-(iii)=-(iv) so it suffices to show that
(iv)= G = F,. But the intensity measure dz/u equals U * G(dx), so this
follows at once from Lemma 3.4. O

Corollary 3.6 A delayed renewal process is stationary if and only if the
distribution of the initial delay By is Fy.

The proof is immediately clear from the above discussion. However, note
that when replacing By by Ag one only gets “if” (“only if” fails say for the
Poisson process).

Problems

3.1 Assume that F' has a density f. Show by a level crossing argument that a
stationary density fo for {A:} must satisfy fj(z) = —fo(x)f(x)/F(x) and that
therefore fo(x) = F(x)/u.

3.2 Evaluate Fp if F' is degenerate at 1.

3.3 Evaluate Fp for the cases F' = Ey and F' = Hy; cf. 111.4.

3.4 Find the density of Fy * F*™.

3.5 Show that the current life distribution Fi is stochastically larger than F
Fi(z) > F(x).

Notes There has been some work on properties of the mapping sending F' into
F1; see Brown (2004) for a recent contribution and references.

4 The Renewal Theorem in Its Equivalent Versions

The renewal theorem is one of the most fundamental results of probability
theory, perhaps not so much because of its intrinsic interest but rather be-
cause of the applicability to, and strong implications for, a number of other
areas. It has several versions, one analytical giving asymptotic estimates
for the solutions of (proper) renewal equation, and various probabilistic
ones which all in some way state that as ¢ — oo, then a (possibly delayed)
renewal process asymptotically behaves like a stationary one if ;1 < oo and
has a behaviour like null recurrence if ;4 = oco. In the present section, we
state the various versions and prove their equivalence. The classical ana-
lytical proof of the renewal theorem is then in Section 5 and a more recent
coupling proof in VIIL.2.

From now on it becomes necessary to distinguish between F’ being lattice
(concentrated on a set of the form {§,24,...}) or nonlattice. In the lattice
case, one may rescale time so as to make F' aperiodic on N and a number
of aspects of renewal theory for that case have already been studied in 1.2
(including the Problems). We shall therefore almost entirely concentrate
on the nonlattice case and only state a few selected results for the lattice
case.
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Before being able to state all versions of the renewal theorem, we need a
definition. Suppose for a while that z in the renewal equation Z = z4+ F'x Z
is nonnegative, and for h > 0 define

zZn(x) = sup 2(y), z,(zr) = inf 2(y), « € L} = (nh, (n + 1),
yeIk yeIn

\ Ao

Figure 4.1

cf. Fig. 4.1. Then we call z directly Riemann integrable (d.R.i.) if [z, =
Jo Zn(2)d is finite for some (and then all) h, and [z, — [z, — 0 as h — 0.
For functions with compact support this concept is the same as Riemann
integrability. If z can attain also negative values, we say that z is d.R.i. if
both 2T and 2~ are so.

Proposition 4.1 Suppose z > 0. Then if z is d.R.i., z is also Lebesgue
integrable and [Zn, [z, have the common limit [z as h | 0. A necessary
condition for z being d.R.i. is

(i) z is bounded and continuous a.e. w.r.t. Lebesque measure.

Sufficient conditions are:

(ii) [Zn < oo for some h and (i) holds;

(iii) z has bounded support and (i) holds;

(iv) z < 2* with z* d.R.i. and (1) holds for z;

(v) z is nonincreasing and Lebesgue integrable.

Proof. Boundedness is necessary for [Z), < oo. Suppose that z is bounded
but not a.e. continuous. Then if we let Z(z) = lim,_.,2(y), z(zx) =
li_my_,l.z(y), we have for some € > 0 that the Lebesgue measure §, say,

of {#: Z(z) > z(x) + €} is nonzero. But except possibly for x = nh we

have
Zn(x) > Z > z > Zn  so that /Eh—/ghz/z—/§2€6,

and the necessity of (i) follows. In particular, if z is d.R.i., then by (i) Zp(z) |
z(x) a.e. and limp o Zp, is Lebesgue integrable by monotone convergence.
Hence z is so too, and [Z; — [z. Similarly, [z, — [z. The same argument
gives the sufficiency of (ii), and obviously (iii)=-(ii). If (iv) holds, then
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JZn < [z}, < o and (ii) holds. Finally by a standard argument (v)=(ii).
O

Example 4.2 We will verify that z4(t) = I(t < )F(t), zp(t) = F(t +
&) — F(t) in Example 2.1 are d.R.i. Here F, having a countable number of
jumps, is continuous a.e., and thus the assertion for z4 follows from (iii).
If 4 < oo, we may apply (iv) to z = zp, with 2*(t) = F(t) being d.R.i.
according to (v). If p = oo, let m € N satisfy £ < (m — 1)h. Then

/zh < hz ((n+1)h +¢€) — F(nh)]

< h Z ((n+m)h) — F(nh)]
N N+m
= h A}EHOO [F((n+m)h) — F(nh)] < h A}l_rpm Z F(kh)
n=0 k=N+1
which is bounded by hAm. Now use (ii). O

We can now state four different version 4.4-4.7 of the renewal theorem:

Theorem 4.3 Suppose that F is nonlattice and proper (||[F|| = 1) and let
p= [z F(dz), Fo(t) = p! fo y)dy (i.e. Fy =0 when pu = o). Then:

4.4 (BLACKWELL’S RENEWAL THEOREM) Let U = > °F*™ be the
renewal function. Then for all a,
a
Ut+a)—-Ult) - —, t— occ.
I
More generally, in any (possibly delayed) renewal process with interarrival
distribution F the expected number Vi(a) of renewals in (t,t + a] tends to

a/p ast — oo.

4.5 Let {Ai},~, be the backward recurrence time process in a (possibly
delayed) renewal process with interarrival distribution F. Then P(A; <

&) — Fy(&) for all . In particular, if p < oo then A, Z Fy.

4.6 Let {B},~, be the forward recurrence time process in a (possibly
delayed) renewal process with interarrival distribution F. Then P(B; <

&) — Fy(&) for all . In particular, if p < oo then By Z Fy.

4.7 (KEY RENEWAL THEOREM) Suppose that the function z in the
renewal equation Z = z+ F x Z is d.R.i. Then

1 o0
Z(t) = Uxz(t) — —/ z(z)dz, t— oo.
HJo
We note that in the case u < 0o, 4.4-4.6 state that the renewal process
becomes asymptotically stationary as ¢ — oco. If p = oo, 4.5 and 4.6 state

that the mass in the distributions of A; and B; drifts off to oco.
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Proof of 4.7 = 4.5. Consider first the case of a zero—delayed renewal process,
where according to Example 2.1 we have to show Z4(t) = Uxz4(t) — Fo(§).
But it was shown in Example 4.2 that z4 is d.R.i., hence by 4.7 the limit
of Z(t) exists and equals ! [24 = Fy(€). In the case of a general delay
distribution Fj, replace F' by Fj in (2.4), let t — oo and note that the
first term tends to 0 and FJ * Z4(t) to im Z4(t) = Fy(§) by dominated
convergence. o

Proof of 4.5 <= 4.6. The equivalence is an immediate consequence of the
identity {B; < £} = {Ai4¢ < £} noted in (3.1). O

Proof of 4.6 =4.4. Let h(§) =U(a — &§)I(§ < a), G1(§) = P(B: < &). Then
h is bounded and continuous a.e. w.r.t. d¢, hence a.e. w.r.t. Fp(d¢), and
since Gy — Fj in the sense of vague convergence (see Al and Remark 4.9),
(2.8) yields

Via) = (UxGi)a) = /Oooh@)c:t(dg)

= / ) Fo(d€) = U s Fo(a) = 2.
1
O

Proof of 4.4=4.7. Assume w.l.o.g. that z > 0. Let nh < z < (n+ 1)h and
define I, = I,(z) = (2 — (k + 1)h, x — kh]. Then

Z@) = /Ozz@y)U(dy)
/Oznh (x —y) U(dy) +Z/ 2z —y)U(dy).

Since z(t) — 0 as t — oo, the first term tends to 0. The second is at most

> Zn(kh)[U(z — kh) = U(z — (k+ 1)h)]

ZEh(kh) [U(z — kh) = U(z — (k+1)h)] + U(h) ni: Zn(kh)
k=0 k=M+1

since U(t + h) — U(t) < U(h) by Theorem 2.4(iii). Letting first n,z — oo
with M fixed, next M — oo and finally h — 0 yields

o0

lim Z(z) < —Zzh (kh) + U(h) Y Zn(kh),

e Hi=o k=M+1

= 1 [_ — 1 [~

lim Z(z) < —/Z}L + 0, lim Z(z) < —/ z(t) dt.

lim > is proved similarly. O
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Suitable versions of the renewal theorem also exist in the lattice case.
Mathematically, this is somewhat easier and has to a large extent already
been treated in 1.2. For example:

Proposition 4.8 Suppose that F is lattice with span 6 and let 0 < y < 4.
Then if p(y) = Do z(y+nd) converges absolutely, it holds that U xz(y-+nd)
— (3/m)p(y) a5 — o0,

Proof. The renewal measure U is supported by {0,d,24,...}, with mass
say ugs at k0. By 1.2.2, ugs — 0/p as k — oo, and hence by dominated
convergence

n

Zy+nd) = Uxz)(y+nd) = Zz(y+n57k5)uk5
k=0
n 5
= > 2(y+kSumrs — —ey).
k=0 H

O

Remark 4.9 The connection between Blackwell’s renewal theorem and
the key renewal theorem may in more abstract terms be rephrased as
follows. Consider for each ¢ the measure v, on [0,¢] obtained by time re-
version of the renewal measure restricted to [0,t], i.e. [J° f(z) vy (dz) =

fo f(t — y) U(dy). Then Blackwell’s theorem asserts that v:[0,a) — a/u
for all a, which by general results from measure theory is equivalent to
vi(da) — da/p vaguely (i.e. [ f(a)vi(da) — [ f(a)da/p whenever f has
compact support and is continuous or, more generally, bounded and a.e.
continuous). Any such f is d.R.i., and hence we may view the key renewal
theorem as an extension of Blackwell’s theorem to also cover certain f with
unbounded support, a case of major importance for applications. O

Problems

4.1 Show that the stationary distribution Fi of the current life in Section 3 is
also a limiting distribution.

4.2 Show that if F" has a d.R.i. density f so that the renewal density u exists,
then u(z) — 1/p.

4.3 Show that the z in Problem 2.2 is d.R.i. and express lim Z(t) in terms of the
Laplace transform of G.

4.4 Find examples of functions that are Lebesgue integrable but not d.R.i.

4.5 Give a simplified proof of Theorem 3.5 by invoking the renewal theorem.
4.6 Show that Blackwell’s theorem remains valid if F is allowed to have an atom
at 0. [Hint: Show first that B; converges in distribution and apply next Wald’s
identity to Sn,+1.]

4.7 Show that if z in the renewal equation is not necessarily d.R.i. but only
bounded with z(z) — 0, z — oo, then Z(z) = o(x).

4.8 Show that if z(z) ~ cx® with @ > 0 in the renewal equation, then Z(z) ~
ez ua.
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5 Proof of the Renewal Theorem

The formulations 4.5—4.6 of the renewal theorem in terms of the recurrence
time processes shows that for the lattice case the situation is essentially
settled by the analysis of Chapter I. The nonlattice case is considerably
more involved, and no really short and elementary approach is known.
We give in this section a standard analytical proof developed largely by
Feller (1971). A parallel more probabilistic proof is then given in VII.2.
Some ingredients are common, in particular the way the nonlattice property
comes in:

Lemma 5.1 Suppose that F is nonlattice on (0,00) and define U =
Yoo  F*, S =supp(U). Then S is asymptotically dense at oo in the sense
that d(z,S) = infyes |z —y| — 0, z — 0.

Proof. S is the closure of UZsuppF*" which is asymptotically dense by
A7.1 (take ¢ = supp(F) there). O

Proposition 5.2 (CHOQUET-DENY) If F is a nonlattice distribution on
(0,00) and ¢ a bounded continuous function on R satisfying ¢ = F * ¢,
then ¢ is necessarily constant.

Proof. Since

Elo(z — Susr) | Yis. ... Ya] = /Omw—sn—y)F(dy)
= (Fxp)(x—5n) = o —Sn),

the sequence {¢(x — Sy)} is a bounded martingale and hence converges a.s.
and in L. By the Hewitt—Savage 0-1 law, the limit is almost surely constant
which by Lo—theory for martingales implies that ¢(z) = p(x — S;) = ---
= p(x — Sp) -+ a.s. Thus p(z — u) = p(x) for F*"—a.a. u, which by the
continuity of ¢ shows that p(x — u) = p(z) for all u € supp(F*"). Now
let a,b be given. Then by Lemma 5.1 we can choose sequences {a,}, {b,}
with n — a,, — a, n — b, — b and a,,, b, € U¥supp(F*"). Then

w(a) = limp(n —ay) = limp(n) = limp(n —b,) = ¢(b). O

Now let A)(dy) = U(t — dy), M(dy) = dy/u, t > 0, so that the renewal
theorem is equivalent to A(¥) — X vaguely; cf. Remark 4.9. To show this, it is
sufficient to show that each sequence {s,,} with s,, — oo has a subsequence
{t,} with \t») — X, By Theorem 2.4(iii), sup,, A*»)(K) < oo for any
compact set K which by standard facts from measure theory implies that
{)\(S")} is vaguely compact. Thus A(*») — v for some subsequence {¢,,} and
some v, and we have to show v = A.

Lemma 5.3 \nt2) — y for all z € R.

Proof. With v®)(dy) = v(dy — ), it is clear that A +2) — v(®) for all .
To get v*) = v, it is sufficient to show that continuous functions z with
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compact support have the same integral, i.e. that

o(z) = / A (dy) = lim [ 2@APFI(dy) = Tim (Us2) (b +2)

n—oo n—oo

is independent of x. But Z = U * z being a solution of a renewal equation,
this implies that ¢(x) equals

o0

tnt+x
dn fattra) + [ 200 - pFan} = o+ [T pte-n
- 0 0

(using dominated convergence). Hence by the Choquet—Deny theorem, we
have only to show that ¢ is continuous which will follow if Z is uni-
formly continuous. But let z be supported by [0,7] and define k(e) =
SUP|y_y|<e [2(z) — 2(y)|. Then for |z1 — x2] <,

Z(xl) — Z(SUQ) =

[ e -nvtan - [ st - i)

0 0

< k(E@QUT +€) — 0, ¢e—0.

0O

Proof of the renewal theorem. The conclusion of Lemma 5.3 means that v
is translation invariant, i.e. v(dy) = v dy for some ~, and we have to show
~v=1/p. From

Ulty—a) —U(t, —a—h) = A*a,a+h) — ~vh

for all A > 0 it follows by the same arguments as in the proof of 4.4=4.7
that U * z(t,) — v [z whenever z is d.R.i. If 4 < oo, let z(z) = F(x).
Then U x z = 1, cf. Lemma 3.4 , and [z = p so that 1 = yu. If 4 = oo,
let 2(x) = F(z)I(z < x¢). Then similarly we get v [z < 1 which, letting
xg — 00, ylelds yp=v-c0o<landy=0=1/p. a

Notes The present proof of the renewal theorem follows Feller (1971) closely.
For alternative proofs, we mention in particular the coupling proof in VIIL.2, a
Markov chain proof due to McDonald (1975) and finally the Fourier analytic
proofs that can be found e.g. in Woodroofe (1982).

6 Second—Moment Results

We are concerned with certain refinements of renewal theory, which require
the existence of the second moment EY 2 of the interarrival distribution F,
or equivalently that 02 = VarY < oo. For simplicity, only the nonlattice
case is considered.

The first (and simplest) problem to be studied is to look for expansions of
the renewal function U(t) more detailed than the one U(¢t) ~ t/u provided
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by the elementary renewal theorem. This can be obtained by noting that

Sy, = t+ B (6.1)
and taking expectations: by Wald’s identity,
t EB
ESy, = puEN, = pU(t), U(t) = —+ —=. (6.2)
nooop
Furthermore, from By 2, Fjy one expects that
o 1 [ = EY? 2 2
EB, — /  Fy(da) = —/ oF(z)de = - T (63)
0 wJo 21 2p

To see that this is indeed the case, evaluate e.g. Z(t) = EB; by the renewal
argument and check that

2(t) = E[By; Y1 >t] = E[Y; —t; Y7 > {]

is directly Riemann integrable with integral EY? /2. Combining (6.1)—(6.3),
we have proved:
2
Proposition 6.1 U(t) = i + EYZ +o0o(1), t— oo.
B 2u?
One might expect that (assuming higher order moments) the o(1) term
could be further expanded as c¢1/t 4 ca/ t2 + - ... However, under suitable
regularity conditions the rate of decay is in fact exponentially fast; cf.
Problem VIIL.2.2.
Ignoring By in (6.1) yields the lower bound U(t) > ¢/pu. We shall next
find an upper bound somewhat related to the asymptotic expression in
Proposition 6.1:

t  EY?
Proposition 6.2 (LORDEN’S INEQUALITY) U(t) < — +

pooop
Proof. According to (6.2) we must show that EB; < EY?/yu for all ¢t. By
(2.8), U(t+s) — U(s) < U(t) so that (6.1) and (6.2) yield

EB,+EB, = plU@t)+U(s)—t—s > pU(t+s)—t—s = EByy,,
EB;, < inf{EB,+EB;_,: 0<s<t/2}
9 t/2 9 [t
< ;/ [EB; +EB;_,| ds = ;/ EB,ds. (6.4)
0 0

Now an inspection of the paths shows that

' 1 & 1
_ E 2 2
/0 Bs dS = 5 Yn — §Bt .
n=1
Thus

t 1 1 1 1
/ EB,ds = -EN,EY? - -EB? = -U(t)EY? - -EB?
0 2 2 2 2
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1 1
= 5(ﬁ +EB)EY?/p — 5EB%’. (6.5)

Letting a = EB; we have EB? > o? and combining (6.4), (6.5) yields
ta < (t+a)EY?/u—a?,

ie.

o +a(t —EY?/p) —tEY?/p < 0. (6.6)
But the Lh.s. of (6.6) is a quadratic in « with roots —t and EY?/u. Thus
—t<a<EY?/u. O

Our next objective is to establish the CLT for the number of renewals
and the corresponding expansion of the variance:

Proposition 6.3 (a) Ast — oo, N is asymptotically normal with mean

t/u and variance to?/u;
2

to
(b) VarN; = il +o(t).

Proof. The results are also valid for general delay distributions, but will for
simplicity only be proved for the zero—delayed case. Here (a) can easily be
shown by applying Anscombe’s theorem to

SNt *Nt‘LL Bt+t*Nt[,L t*Nt‘LL

Up = 1172 - 1172 ~ 1172 (6.7)

(see VL.3.2 for details). An elementary direct argument is as follows: let y
be fixed and let n = n(t) depend on t in such a way that

t/p+ (to? /)%y € (n—1,n).
Then t(1 4+ o(1)) = nu, from which we get ¢t = nu + o(n) and (by Taylor
expansion) t'/2 = (nu)'/? + o(n'/?) so that
t = nu+O(1) = (to®/u)?y = np—oyn'/? +o(n'/?).
Therefore the CLT for S,, yields

( Ne—t/p

Wﬁy) = P(N; <n) = P(S, > 1)

= P(% >—y+0(1)> — 1—®(—y) = d(y),

proving (a). The proof of (b) can be carried out in a number of ways, none
of which are entirely brief. Recalling (6.1), (6.2) and (6.7), we let

ENt*Nt Bt*]EBt
o W= Ui =

Vi = n
and have to prove EV;? — o2/u. We first note that a renewal argument
shows that Z(t) = EB? satisfies Z = 2z + F x Z where 2(t) = E[BZ; t <
Yi]. Since B; < Y7 on {t <Y1}, we have z(t) — 0 so that Problem 4.7
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yields EB? = o(t) and therefore EW? — 0. Now by Wald’s second moment
identity A10.2(b), EU? = 0?EN;/t — o2 /u. Hence by the Cauchy—Schwarz
inequality, E[U;W;] — 0 and

EV? = EU? +EW? - 2E[UW;] — o?/u+0—-0. o

Problems

6.1 Check the details in the proof of (6.3) outlined in the text.

6.2 Give an alternative proof of Proposition 6.1 by showing that Z(t) = U(¢t) —
t/u satisfies a renewal equation with z(t) = Fo(t).

6.3 Show that EN? = 2(U xU)(t) — U(t), that (U*U)(t) = t*/2u* +tEY?/2u® +
o(t), and give hereby a different derivation of the asymptotic form of VarN,.

7 Excessive and Defective Renewal Equations

Recall that the renewal equation Z = z+ F'x Z is called excessive if | F|| > 1
and defective if | F'|| < 1. We still have Z = Uz (provided Z, z are bounded
on finite intervals), but Blackwell’s renewal theorem does not apply to
determine the asymptotic behaviour of U and thereby Z. However, by a
transformation we may often reduce to the case | F|| = 1:

Theorem 7.1 Assume that Z = z + F % Z with Z,z bounded on finite
intervals and that for some real 3
F[g] = / P F(dz) = 1. (7.1)
0
Define
Z(x) = " Z(x), F(z) = 2(z), F(dz) = PF(dx).
Then Z =%+ F % Z and if Z is directly Riemann integrable (d.R.i.)

7 IS eftz(t)dt
o[y teft F(dt)

lim e’ Z(z) = lim Z(z) = : / Z(t)dt
0

Tr— 00 r—00 l‘l’

(7.2)

Proof. Clearly Z, % are bounded on finite intervals and ||F| = 1 by (7.1).
Also

Z(x) efe {z(a?) + /z Z(x—vy) F(dy)}

0

Z(x) + / PV Z(x —y) eV F(dy) = )+ (Fx Z)(a)

and the remaining statements are clear from results for the case ||F|| = 1.
O
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For a closer study of the assumption (7.1) and its implication (7.2), we
need to treat the excessive and the defective case separately.

Proposition 7.2 Consider the excessive case 1 < ||F|| < co. Then a solu-
tion B to (7.1) is necessarily strictly negative, 8 < 0. A sufficient condition
for the existence of B is 1 < ﬁ[é] < 00 for some § and then always p < co.
This holds in particular if ||F|| < oo.

Proof. Since F[#] > ||F| for 8 > 0, it is clear that (7.1) implies 8 < 0. If
§ exists, then by monotone convergence F [0] is a continuous function of
(3 with limits 0 as 8 — —oo and ﬁ[é] > 1 as 3 7 4. Hence the value 1 is
attained and the F-integrability of e’® implies that of ze”* ie. I < oo.
Finally, if ||F'|| < oo, we can just take 6 = 0. O

Example 7.3 Consider Lotka’s integral equation (Example 2.2) for the
density Z(t) of births in a population at time ¢ and assume that, as will
typically be the case, that the net reproduction rate ||F|| is > 1. The
assumption || F'|| < oo is innocent from the demographic point of view and
hence we may conclude that [ exists, is < 0 and that

L= / seP% F(ds) :/ s poA(s)ds < oo.
0 0

Also the assumption of Z being d.R.i. is innocent. In fact, inspection of
the expression for z shows this to hold if only the birth intensity A(u)
is bounded and continuous and the survival rate p, is continuous (then
2(t) is bounded and continuous, hence Z(t) = e%z(t) is d.R.i. because of
Proposition 4.1(iv)—(v) and 8 < 0). Thus under these assumptions, Z(t)
grows asymptotically exponentially, Z(t) ~ Ce™P¢, where

C = i/ / / e fo(a)ipar(a +t)dt da
K Jo

(the rate —8 > 0 is usually called the Malthusian parameter of the popula-
tion). From this the limiting behaviour of other quantities is easily obtained.
For example, for the total population size N(t) we easily obtain from (2.6)
that

t t
IN() = / =D Z(t — a)e,po da + eﬁt/ fo(a)i—apa da
0 0

(oo}
— C’/ eﬁaapoda + 0.
0
O
In the defective case, a simple conclusion can be obtained without
reference to condition (7.1):

Proposition 7.4 If in the defective case z is bounded and z(co) =
lim; o 2(t) exists, then Z(t) — z(c0)/(1 — ||F||) = Z(c0) (say).
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Proof. Using dominated convergence and (2.10) we get

z(00)

Z(t) = /OZ(t—y) U(dy) — /:OZ(OO)U(dy) I

If z(oc0) = 0, this result is rather imprecise, and also in some cases with
z(00) # 0 it is of substantial interest to estimate the rate of convergence
of Z(t) to Z(o0). To this end (7.1) comes in. However, as (7.1) already
shows, the conditions for the existence of § are rather stronger than in the
excessive case and require the existence of exponential moments. We have
the following analogue of Proposition 7.2:

Proposition 7.5 Consider the defective case |F|| < 1. Then a solution (3
to (7.1) is necessarily strictly positive, 8 > 0. A sufficient condition for the
existence of B is 1 < ﬁ[é] < o0 for some 8, and then always 1 < co. This
holds in particular if ﬁ[é] < oo for all 6 € R.

Proof. Exactly as for Proposition 7.2, except that for the last step one notes
that if F'[6] < oo for all d, then F[§] — oo as 6 — oo. O

Proposition 7.6 Suppose that in the defective case |F|| < 1 a solution
B to (7.1) satisfying 1 < oo exists. If z(co) = lims_,o 2(t) exists and
Pt (2(t) — 2(00)) is d.R.i., then

Z(t) — Z(o0) ~ e—ﬁti{/oo e [2(s) — 2(00)] ds — %} (7.3)

Bt Jo
Proof. Define Z1(t) = Z(t) — Z(0),
_ Ft) —1F]l _ F(t)
z1(t) = 2(t) — z(c0) + 2(00)177”]?|| = z(t) — 2(00)177”]?|| .
Since U « ' =U — 1, we get
_ #(c0) _
Uxzy = Uxz— T 17| = Z—Z(c0) = Z;.

Now since 3 > 0,

SUF| - F@)] = eﬁt/too F(ds) < /tooeﬁSF(ds) = 1-F(t).

The r.h.s. is nonincreasing with integral . Thus the 1.h.s. is d.R.i., hence
etz (t) is so and (7.2) yields

1 [ 4
A :/ %21 (s)ds.
H Jo

Thus (7.3) follows from

/Oooeﬁt[HFH—F(t)} dt = /OOO eﬁtdt/too F(ds)

_ [T L & = L
=/, ﬁ( 1) F(ds) 5(1 1))
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O

Example 7.7 In Proposition 7.6, take z = 1. Then if 3 exists and i < 0o,
we obtain

U - U@t) ~ ﬂiﬁe—ﬁt. (7.4)
O

Example 7.8 Consider the ruin problem (Example 2.3) and assume that,
as will typically be the case, the premium exceeds the expected claims.
Recalling that the probability Z(u) of ultimate survival with initial reserve
u satisfies Z = z + F * Z with z(u) = Z(0), F(dx) = (\/c)G(x) dx, where
A is the arrival intensity, ¢ the premium per unit time and G the claim size
distribution, this amounts to Av/c < 1 where v = [ 2 G(dx).

It remains to evaluate Z(0). First note that

N, N
ct—ZXn ~ t(c—fu) ~ tlc— )
n=1

so that ct — Zivt X, tends to infinity, hence attains a minimum m > —oo
and thus Z(u) = P(u+m > 0) — 1 as u — oo. Using Proposition 7.4 we
therefore get 1 = Z(0)/(1 — Av/c), i.e. Z(0) =1 — Av/e. Since for 5 > 0

P = 2 [ oG _ A [T _ 2 G-
F[p] = C/o e’*G(x)dz = Cﬁ/o (e 1)G(dz) = cﬁ(G[ﬂ] 1),
the assumption F[§] = 1, i < co amounts to

G = 1448 (7.5)

for some 3 > 0 satisfying G'[8] < oo; cf. Fig. 7.1. Since z(t) = z(c0)
and Z(co0) = 1, we have thus from Proposition 7.6 derived the celebrated
Cramér—Lundberg approzimation for the probability 1 — Z(u) of ultimate
ruin,

1—Xv/c
1—Z(u) ~ e Pr—=T"m 7.6
(u) pTE (7.6)
The equation (7.5) is known as the Lundberg equation. o

If | F'|| < 1but F is heavy—tailed, 8 will fail to exist. One has the following
heavy—tailed counterpart of (7.4):

Proposition 7.9 Assume ||F|| <1 and that G = F/||F| is subexponential
(cf. A5), and write F(t) = F(t,00). Then
1

Ul -U(t) ~ 1—7HF||F(t)' (7.7)
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Y

Figure 7.1
— is the m.g.f. Gla] of G, — - — - is the tangent 1+ G'[0Ja = 1 + va of G[a] at
0, and — — — is the line 1 + ca/\

Proof. Recall from the proof of Proposition 2.9 that ||U| — U(t) = P(Y7 +
-+ +Y, > t) where Y1,Ys,... are i.i.d. with distribution G and N an
independent r.v. with P(c =n) = (1 — || F||)||F||™. By a general lemma on
the tail of a random sum of subexponential r.v.’s, cf. X.9.2, we then obtain

Il F(t) F(t)

= . 0O
L=IEIE] =1

U -=U(t) ~ EoG(t) =

Notes The exponential transformations above are related to the general tech-
niques studied in Ch. XIII, and in particular we will revisit the Cramér—Lundberg
approximation in XIIL.5 (for reasons to become clear there, we rewrite the
Lundberg equation in the form A(G[8] — 1) —¢8 = 0 there; cf. Problem XII1.1.2).

In the heavy—tailed case, the typical asymptotical counterpart of Proposition
7.6 for the case z(c0) =0 is

L LG
e 2@ f

2(1) ~ (fo wWwdy e Yot it HDoccom), (1)

A Ene T TN @)
foooz(y)dy‘ . ; z(x)H
a—qene @ T

(assuming for simplicity the existence of a density f of F'). However, the precise
formulation and proof requires some care and we refer to Asmussen et al. (2003).
Heuristically, one arrives at the result by considering the distributions G, H where
G = U/||U| and H has density z/[z. Then Z = U % z = ck where k is the
density of G« H and ¢ = ||U|| [z = [2/(1 — ||F||). In the case of at least one of
G, H being subexponential, the asymptotics of k should be that of the heavier
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of the densities of G, H if one dominates and otherwise that of the sum (see
A5.1(c)). For example, in the case f/z — oo, this combined with (7.7) leads to
Z ~cu/|U|| ~ f [2/(1 = ||F||)* as in the last case in (7.8).



V1

Regenerative Processes

1 Basic Limit Theory

The classical definition of a stochastic process {X:} to be regenerative
means in intuitive terms that the process can be split into i.i.d. cycles. A
basic example is the GI/G/1 queue length process and its busy cycles, i.e.
the time intervals separated by the instants S,, with a customer entering an
empty systems; cf. Fig. 1.1. At each such instant the queue regenerates, i.e.
starts completely from scratch independently of the past. Different cycles
are independent and all governed by the same probability law. Similar
statements hold for the workload or other processes associated with the

system.
- F'_HU_IL'—U—H T
I I N
U J__
52 S3

A

L JL

Sy=0 S,

Figure 1.1

This structure with i.i.d. cycles is found in the majority of examples and
can most often safely be used as a guide for intuition, but we shall use a
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slightly wider definition. Assume that {X;} has state space F and discrete
or continuous time parameter ¢t € T, where T = N or T = [0, 00). We then
call { X}, regenerative (pure or delayed) if there exists a renewal process
(pure or delayed) {S,} = {Yo + --- + Y,,} with the following property: for
each n > 0, the post—S,, process

OS,LX = (Yn+17 Yn+27 IR {XS7L+t}t€T)

is independent of Sy, ..., S, (or, equivalently, of Yy,...,Y,,) and its dis-
tribution does not depend upon n. We call {S,} the imbedded renewal
process and refer to the S, as regeneration points. The kth cycle is
{Xi1s, }0§t<Yk+1’ a random element of the space Do(FE) of E—valued D—
functions with finite lifelengths; cf. A2 (in discrete time, consider instead
the space of finite E—valued sequences).

Concerning the definition, we note the following points:

(i) Cycles are still welldefined and all governed by the same probabil-
ity law, but some dependence between cycles may occur (for main
examples, see Section 2e and VIL.3).

(ii) The embedded renewal process is by no means unique. For example,
we may as well use {Sa,} or, in the M/G/1 case of the queueing ex-
ample, take the regeneration points as the instants where idle periods
start.

(iii) The S, need not be given as functions of { X;}. In particular, there are
some examples (e.g. VII.3) where we need to enlarge the probability
space and introduce randomization before the regenerative properties
of {X;} can be recognized. It may, however, in some cases be con-
venient to have the S,, given as stopping times for {X;}. This is no
restriction since one can just enlarge the state space to E x (0, c0) and
consider {X,;} = {(Xy, B;)} with B, the forward recurrence time for
{5, } at time ¢ (clearly, {X;} is regenerative with the same imbedded
renewal process).

To a given delayed regenerative process, there clearly corresponds a zero—
delayed one with a unique probability law (e.g. {Xs,1¢},cr). We let Po, Eg
correspond to the zero—delayed case and then write Y = Y7 for the length
of the first cycle, u = EyY.

A trivial but noteworty property is that the regenerative property is
preserved under mappings (nothing like that is true for say a Markov
process):

Proposition 1.1 If {X;}, . is regenerative and ¢ : E — F any mea-
surable mapping, then {©(X¢)},cr is regenerative with the same embedded
renewal process.

The power of the concept of regenerative processes lies in the existence of
a limiting distribution under conditions that are very mild and usually easy
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to verify. For example, in continuous time it is only required that p < oo,
that the cycle length distribution is nonlattice and that the sample paths
satisfy some conditions that are automatic in any concrete example:

Theorem 1.2 Assume that a (possibly delayed) regenerative process
{Xt}er has metric state space, right-continuous paths and nonlattice cycle
length distribution F' with finite mean p. Then the limiting distribution, say
P, of X; exists and is given by

Y
Ef(X) = %Eo /0 F(Xa)ds. (L1)

Proof. It is immediately checked that
1 Y
A= —]EO/ I(X, € A)ds
K 0

defines a probability measure on the Borel o—algebra on E, and hence by
standard facts on weak convergence it is sufficient to prove that Ef(X;)
— E.f(X:) whenever f is continuous with 0 < f < 1. Letting Z(¢t) =
Eof(Xy), 2(t) = Eo[f(Xy);t < Y], F§(z) = P(Yy < z), it follows by the
usual renewal argument that

Ef(X) — IE[f(Xt);t<YO]+/O 2t -2 Frde),  (12)

() = z(t)+/0 Z(t — x) F(dz). (1.3)

Hence letting ¢ — oo in (1.2) shows that it is sufficient to show

Z(t) — Eof(X:) = %/OOOEo[f(Xt);t<Y]dS = %/Oooz(s)ds,

i.e. according to the key renewal theorem to show that z is d.R.i. But
z is right—continuous, hence continuous a.e. by A2.1. Also z(t) < z*(¢)
= Po(Y > t) = F(t) where z* is d.R.i. by V.4.1(v). Part (iv) of V.4.1
completes the proof. O

The basic renewal argument in the proof may be given in various ways.
For example, the following representation is often useful:

Proposition 1.3 Let {Xi},.y be regenerative and {Ai},y, the backward
recurrence time process of the imbedded renewal process. Further let f :
E — R be measurable and bounded, and define g(t) = Eo[f(X:)|Y > t].
Then

Ef(X:) = Elg(A:); Yo < 1] + E[f(X¢); Yo > t]. (1.4)
In particular, in the zero—delayed case Eqf(X:) = Eog(Ay).

Proof. Conditioning upon Yy shows that it is sufficient to consider the zero—
delayed case. Define Z(t), z(t) as above and let Z1(t) = Eog(A;), 21(t) =
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Eo[g(As); Y > t]. Then Z = U * z, Z1 = U * z; and the desired conclusion
follows since

Eolg(A:); Y > 1] = g()P(Y > 1) = Eo[f(Xe); Y > 1]
implies that z; = z. O

Proposition 1.3 yields an alternative proof of the limit result of Theorem
1.2, see Problem 1.3, and we also note the following strengthening (for total
variation convergence, see A8, and recall that Fj is the distribution with

density F(x)/p):

Corollary 1.4 If A; converges to Fy in t.v., then also a t.v. limit of X
exists and is given by (1.1) for T = [0, 00), whereas for T =N

Y -1 Y
E.f(X:) = %Eozﬂxk) - iEoZﬂXk). (1.5)
k=0 k=1

Proof. We must show that E f(X;) converges to the asserted limit uniformly
in the bounded measurable f with || f|lcc < 1. But since a uniform bound
for the last term in (1.4) is P(Yy > ¢), the uniformity is immediate from
the t.v. convergence of A; and (1.4). Also for T = [0,00) (the case T = N
is entirely similar), the limit is given by

E.f(X:) = /Ooog(t)Fo(dt) = %/OOOEO[f(Xt)|Y>t}IP>0(Y>t)dt
= —]EO/ FX)I(Y >t)d z—Eo/ f(Xe)d
O

Corollary 1.5 Let {X:},.y be regenerative in discrete time with p =
EoY < o0, and let d be the period of the distribution F of the cycle length
Y. Then:

(i) In the aperiodic case d =1, a t.v. limit exists and is given by (1.5).

(ii) If d > 1, then

1d Y-1
EZEf(Xndﬂ) — —EOZka (1.6)
j=0 k=0

Proof. The process {4, } is Markov and if u < oo, d = 1, it follows from
1.2-4 that A,, — Fy weakly, hence also (since the state space is discrete) in
t.v. Thus (i) follow from Corollary 1.4, whereas (ii) is a similar application
of Proposition 1.3 and I.(4.2) (or Theorem 3.1 below). a

We return to t.v. convergence for T = [0, 00) in VIL.1-2.
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Problems

1.1 Let {A¢} be the backward recurrence time process of a renewal process with
interarrival distribution F' with p < oo and let X; = I(4; € Q). Show that
{X:} is regenerative but that X; needs not converge in distribution if say F is
concentrated on Q.

1.2 Show by an example that © < oo is not necessary for convergence in
distribution of a regenerative process.

1.3 In Proposition 1.3, show that g is continuous a.e. provided f is continuous
and the paths right—continuous. Give hereby an alternative proof of the limit
result of Theorem 1.2.

1.4 Let {Xt},.; be regenerative and satisfy the conditions for existence of a
limit distribution 7, and let f : F — oo be m—integrable. Show that Ef(X:) —
J f(z) w(dz) holds always when T = N but not always when T = [0, 00). [Hint:
Backward recurrence times, f chosen such that z(z) = f(x)F(z) is Lebesgue
integrable with lim z(x) = co.]

Notes The pioneering paper on regenerative processes is Smith (1955). A main
recent monograph treating the subject in depth and giving further history and
many references is Thorisson (2000); note, however, that the flavour is somewhat
different from the present book by emphasizing structure rather than asymptotic
theory and applications.

Of concepts related to regenerative processes, we mention in particular re-
generative phenomena (Kingman, 1972), regenerative sets (level sets of Markov
processes or, equivalently, ranges of subordinators; Fristedt, 1996), renovating
events (Borovkov, 1984) and Palm theory, which we study in more depth in
VII.6.

2 First Examples and Applications

2a. Renewal Processes

2b. Alternating Renewal Processes

2c. Reflected Brownian Motion

2d. Regenerative Simulation

2e. Functionals of Regenerative Processes

Examples and applications of regenerative processes to queues and related
models will abound in Part C, so here we shall only consider a few topics
of a somewhat different flavour.

2a Renewal Processes

Consider a renewal process with nonlattice interarrival distribution F'. If
1t < 00, the stationary limiting distributions of the recurrence times A, By

and of the current life C; = A;+ By have been found in V.3. Their particular
form comes from the basic formula (1.1) as follows. For 0 <t < Y we have
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Ay =t, By=Y —t, Cy =Y. In particular,

1 Y 1 Y
P.(A <¢&) = —IEO/ I(A; <& dt = —Eo/ It <¢&)dt
12 0 12 0
1 Y
- —Eo/ Y —t<€)dt = Pu(B, <€)
2 0
and the common value is

1 o0 1 13

—Eo/ It<&t<Y)dt = —/Po(t<Y)dt

H 0

H* Jo
1 [S—
= 5 [Foa - A

(from results of VIL3 it will also follow that the density F(x) is stationary
for {A:}, {B:} even if 4 = 00). Finally

1 Y 1 Y
PGSO = SB[ HCi<od = LB [ 1Y <o
H 0 H 0
1 1 /¢
_ leyiv<g = _/ © F(de).
H HJo
Problems

2.1 Show by similar arguments that the relative position A¢/C; of the current
item has a limiting uniform distribution; cf. V.3.3.

2b  Alternating Renewal Processes

A point process on [0,00) with first epoch at Y and interarrival times
Y1,Ys, ... is called an alternating renewal process if all Yy, Y7, ... are inde-
pendent with distributions (say) G of Yo, Y2, ... and G; of Y1, Y3, . ... Such
processes arise, for example, in reliability theory where Yo _1 could be the
lifetime of the kth item and Ys; the time needed to replace it. Here one
might ask, for example, for the probability p(t) that the system is operat-
ing at time ¢, for the distribution of the remaining lifetime of the current
item and so on. These quantities are easily obtained by observing that the
system regenerates at every second renewal. For example, for p(t) we can
define X; € {0,1} by

Y, — 0 ifYo+ - +Yor_1 <t<Yy+- -+ Yy for some k
L 1 Yo+ -+ Yo, <t <Yy+---+ Yorq1 for some k

Then p(t) = P(X; = 1) and the Yy + -+ 4+ Yo, are regeneration points
for {X;}. The cycle length distribution is the distribution F' = Go * G1 of
Y1 + Y3, and if F is nonlattice with p = EYy + EY; < oo and E refers to
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the case Yy = 0, we get

Yit¥s 1 EY;
lim p(t) = —E I(X;=1)dt = -EY] = ————.

A et = o O/o (&e=1) p ' T EY, FEY
Further characteristics of the system are easily computed in just the same
manner; see Problem 2.2.

Problems

2.2 Consider the system conditioned to be operating (X; = 1)- Show that the
past life, the residual life and the total life of the current item all have the same
limit distribution as in a renewal process with interarrival distribution G;.

2c¢  Reflected Brownian Motion

Let {X:} be reflected Brownian motion with drift g < 0 and variance 1
and starting from Xy = 0. In order to view the process as regenerative,
one would try to take the cycles as the excursions away from 0, leading
to Y = inf {¢: X; = 0}. However, the sample path structure of Brownian
motion implies that the Y defined in this way is 0 and therefore useless
(nevertheless, it makes sense to study the concept of a stationary excursion;
for two different viewpoints, see Pitman, 1986, and Salminen and Norros,
2001).
Instead one may, e.g., take Y = inf {t > 7(1) : X; = 0| Xo = 0} where
(1) =inf{t>0: X; =1 ‘ Xo =0} (“up to 1 and back to 0”). We have
e +2u—1 1 e 2 —1
n = EQT(1)+EQ(Y—T(1)) = % _ ; — T’
where the expression for Eq7(1) is shown in IX.3.8 and the one for Eq(Y —
7(1)) is just Wald’s identity.

2d  Regenerative Simulation

As explained in III.1, many practical situations call for numerical values
of a parameter of the form § = E.f(X;). For example, {X;} could be a
queue length process so that f(x) = = would correspond to 6 being the
mean queue length in the steady state, f(x) = I(x > N) to 6 being the
probability of queue length at least N in steady state and so on (similar
remarks apply to waiting—time processes in discrete time). Now Theorem
1.2 states that 6 is indeed welldefined, but to use formula (1.1) to express 6
in terms of the interarrival and service time distributions may be difficult
or impossible. Hence an alternative method could be required, and here we
shall look at simulation.

The standard simulation (Monte Carlo) technique for estimating 6 would
be to design a simulation experiment giving as outcome a response variable
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R having the P.—distribution of f(X;). One then would perform N replica-
tions giving i.i.d. variables Ry, ..., Ry distributed as R, estimate ¢ by the
empirical mean § = Ry = (R +---+ Rn)/N and give the uncertainty on
0 say in the form of asymptotic 95% confidence intervals 8 = 1.96s /VN,
where .
82 = m Z(Rn — RN)2
n=1

is the empirical variance. This method is not feasible here since we may
well simulate the queue starting from any given set of initial conditions
but usually not in the unknown steady state. A partial solution would be
to simulate the queue in [0,7] starting from, say, an empty queue and
choose T so large that hopefully R = f(Xr) would have a distribution
close to the required steady—state distribution. However, with T' large each
replication of the experiment becomes timeconsuming and one is faced with
the uncertainty inherent in the choice of T'.

Instead we focus on the basic formula (1.1) and estimate the unknown
uw=E)Y,v=E fo f(X:) dt by simulation of a regenerative cycle. That
is, the simulation experiment consists in running one cycle and observ-

ing a two-dimensional response (column) vector R = (R(1) R(?))T given

by R(1) =Y, R(2 fo (X:)dt. We then create i.i.d. replications
Ri,...,Ry and estlmate w,v and 6 = v/p by

1 & 1 & .
i=—Y Ril), 7= ) Ru(2), 0=
Nn:l Nn:l

By the LLN, 7i and 7 are strongly consistent for u,v (4 %% p, 7 %% v as

=%

N — o0) and hence 8 is so for 6. Confidence intervals can also be obtained
assuming i.i.d. cycles. To this end, let

> = VaroR = E[RR']-ER[ER]"
VaroR(1) Covo(R(1), R(2))
Covo(R(1), R(2)) VaroR(2) ’
Then (i )T = Ry is two-dimensional asymptotically normal with mean
(i ¥)T and covariance matrix X /N. Letting ¢(z,y) = y/z, it thus follows

by a standard transformation result that 6§ = ¢(fi,7) is asymptotically
normal with mean ¢(u, ) = 6 and variance 02 /N, where

= [V¢|"2Ve with Vo = (giégi) - ( _i///xe )

(the gradient) evaluated at © = p,y = v. Now the empirical covariance
matrix S with elements

s = s 0 (Ral)) = Rn(@) (Ral) - Bv(), 125 =1.2,

n=1
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is strongly consistent for 3 and (—2/5? 1/i)7 so for Ag. Hence

A2 ~

s* = 3—4811 + =522 — 2%512
i i i

is strongly consistent for o2 and 6+ 1.96s/v/N is an asymptotic 95%
confidence interval for 6.

Problems

2.3 The M/M/1 queue length process {X;} with § = 70, § = 100 was simulated
in 11 busy cycles and the values

R(1) | 0.1494 0.0320 0.0124 0.0114 0.0212 0.0271
R(2) | 0.5023 0.0104 0.0036 0.0019 0.0046 0.0169
R(1) | 0.0142 0.0145 0.0243 0.0122 0.1175
R(2) | 0.0103 0.0003 0.0094 0.0001 0.2332

of the cycle length R(1) =Y and R(2) = fOY X dt were recorded, giving
11 11

. 0.4363 i=1 . . —0.0398 0.1038
;1 Ba(i) = { 0.7930 i=2" ( Zl B (D) (5) ) - ( 0.1038 0.3073 )
Check whether the deviation of the corresponding estimate for EcX; = p/(1 — p)

is within the statistical uncertainty.
2.4 Show that the bias Ef — 6 is of order 1/N.

Notes For regenerative simulation, see e.g. Rubinstein and Melamed (1998).

2e  Functionals of Regenerative Processes

In a variety of contexts, one is interested in more general functionals of
the paths of a regenerative process {X;}, . than just the value of a single
X;. For example, for T = N, it would be of interest to say something not
only about X, but also about the dependence between consecutive values
(Xn, Xn+1). Other examples could be maxp—o, . N Xn+k, :HL X, ds and
so on. For such cases, the classical independent cycle property does not
carry over to the functionals. For instance, for the (X, X,,+1) example
(Xy,Xy41) and (Xy_1, Xy) belong to distinct cycles but may clearly be
dependent. However, the slightly weaker definition that we have given of
a regenerative process also includes such cases since we have required the
post—S,, process to be independent only of S,,, not of the whole pre-S,
process.

A convenient formalism for expressing this is “lifting of the regenerative
process to function space.” Let {X;} be regenerative (not necessarily with
i.i.d. cycles) with imbedded renewal process { S, }. If T = [0, 00), we assume
in addition that the state space F is Polish and that {X,;} has paths in

E = D([0,),E). For T = N we let E = EV. It is then an immediate
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consequence of the regenerativity of {X;} that the E—valued process {6; X }
defined by 0; X = { Xy} is again regenerative with the same imbedded
renewal process {5y, }.

Theorem 2.1 If{X,} satisfies the condition for existence of a limit of X,
then also ;X has a limit X(¢) = {Xt(e)}teT (in total variation for T = N
and weakly for T = [0, 00)) given by

Y
Eep(X(©)) = %EO/O (0, X)dt = Eq [%@(GUYX)] (2.1)

( Oyfl if T = N) for any nonnegative or bounded ¢ : E — R where U
is uniform on (0,1) and independent of the regenerative process. Further,

{Xt(e)}te’lf is strictly stationary.

Proof. For T = [0, 00) it is easily checked that the paths of {6, X} are right—
continuous (they are not in D([0, c0), E), however, since limgys 65z will fail
to exist in this space if x is a D—function with a jump at ¢). Hence the
existence of a limit and the first expression for Eo(X (©) in (2.1) follows
immediately; that this is the same as the second follows since

1 Y
Eo[ch (QUyX)] = Eo/ @(0qu)Y du Eo/ (p(otX) dt.
0 0
Stationarity follows follows from
0,X© = 0, (Hm 9tX<e>) — lim 0,0,X(©
t—o0 t—o0

= lim 0y X = lim 6, X = X,

t—o0

O

In view of Theorem 2.1, X (¢) represents a strictly stationary version of
the given regenerative process. Note the pecu)liarity of the pro)cess X (¢) that

it is deterministic given its initial value Xée : for any ¢, Xt(e is a function
of X(ge). Note also that for T = [0,00) we obtain convergence of ¢, X in
function space without as usual having to invoke tightness. Finally note
that the final expression in (2.1) gives a similar description of a stationary
regenerative process as the one for a renewal process given in V.3.3: the
stationary version is obtained from a zero—delayed version by first length—
biasing (using the length of the first cycle Y as likelihood ratio) and next

shifting ¢ = 0 to a uniformly chosen point in the cycle.

3 Time-Average Properties

We shall state and prove the results only in continuous time, the
modifications in discrete time being obvious.
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A real-valued process {Z;} is called cumulative if Zy = 0 and there exists
a renewal process {S,} such that for any n {Zs, 1+ — Zs, },~( is indepen-
dent of So, ..., S, and {Z}, g , and the distribution is independent of n.

An obvious example is Z; = fot f(X)ds where {X;} is regenerative with
i.i.d. cycles, but there are others (with possible jumps) like the Markov
additive processes studied in XI.2.

The basic tool in the study is to write

Zy = U() + Uy + -+ Un,—1 + Ay (3.1)

where Uo(t) = Zt/\SO; Un = ZSW, — an_l, At = Zt — ZSNt—l' Here Uo(f,) =
Zg, eventually and becomes negligible in the limit ¢ — oo, Uy +---+Un,—1
is a random sum of i.1.d. summands and can be handled by standard tools,
and the only problem turns out to be to bound A;. To this end, define V =
maxo<i<y |Z¢|,

Vn = Sn_IfISatX<Sn ‘Zt - ZSW,—1‘ = Sn_rlngat)isn |At| . (32)

Then Vi, Vs, ... are i.i.d. with V,, Z V. We will assume throughout that
V < o0 a.s. and that p = E¢Y < oo (as usual, Y is the generic cycle and
Eg refers to the case Sop = 0; we then write U = Uy).

We start by a LLN which contains as a special case results stated in 1.4
and I1.4.

Theorem 3.1 Suppose p = EgY < o0, Eo|U| < oo and let Z = EoU/p.
Then Z;/t 5 Z if and only if EgV < oco.

Note that in the regenerative example Z; = fot f(Xs)ds, we may write the
limit EU; /p as E. f(X¢).

Proof. By the standard LLN and the elementary renewal theorem,

_ N —1 1
Ui + : Uni1 tt EoU ~ —EoU = % as.
I

Also obviously Up(t)/t ¥ 0 a.s. and hence the asserted convergence of
Z¢/t holds if and only if A; — 0. But ¢t ~ nu when n, ¢ are connected by
S,_1 <t < S, and hence by (3.1), A; — 01is equivalent to V;,/n %3 0 which
in turn (Borel-Cantelli!) is well known to hold if and only if EqV < co. O

Note that in some applications, it is more convenient to identify the form
of the limiting distribution by means of the LLN 3.1 than to use the formula
(1.1). In particular, this may be the case when a discrete-time process is
imbedded in a continuous—time one, and one wishes to relate the limiting
distributions (an example is PASTA; see VIL.6).

We next prove a CLT analogue:

Theorem 3.2 Assume VarqU < oo, VargY < oo. Then the limiting dis-
tribution of (Z; —tZ)/\/t ewists and is normal with mean zero and variance
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o2/ p, where
o = Varo(U —zY) = VargU +72VaryY — 2z Covy(U,Y).
Proof. We again use (3.1) where clearly Uy (t)/v/t £0. Also A/VE Z0is

clear as above from V,,/\/n Zo (moments of V' are not needed for this).
Thus it remains to prove that

%(Ul—F""FUNt—l — %) (3.3)

has the desired limit distribution. But letting
Tn) = Ui+ +Up,—Y1 4+ +Y,)Z,

we may write (3.3) as
r(Ne—1) 1
i "7

Now clearly T'(n)/+/n is asymptotically normal with mean zero and vari-

+ Y1+ +Yn,_1— 1)z (3.4)

ance o2. Since (N; — 1)/t L p~ 1, it thus follows by Anscombe’s theorem
(Chung, 1974, p. 216) that the first term of (3.4) has the desired limit dis-
tribution, and it remains only to check that the second term vanishes in
the limit. But

t—Yi— =Yy = t—Sn,_1+Yy = A+ Y.
Since {A;} is always tight when p < oo (in fact convergent in distribution
in the nonlattice case), we thus always have A;/v/t £ 0 and since clearly
Yo/ V't ER 0, the proof is complete. O

Notes Beyond the (simpler!) regenerative setting, the traditional approach to
the CLT in the presence of dependence is to assume stationarity and some mixing
condition. The limiting variance constant for the time-average of {X:}, ., then
comes out as

2/ Cov(Xo, X¢)dt, VarXo + 2 Cov(Xo, X,) (3.5)
0 n=1
for T = [0,00), resp. T = N (assuming, of course, that (3.5) is finite). See e.g.
Durrett (1991), pp. 381, 384. It should be noted that the evaluation of the co-
variances in (3.5) is most often cumbersome also in the regenerative setting. For
further expressions for variance constants, see 1.7, I1.4d and XI.2.8.

A sharp version of the CLT for regenerative processes is in Glynn and Whitt
(1993).

4  Rare Events and Extreme Values

We consider a regenerative process {X;}, . with independent cycles and
finite cycle mean p. The aim is to obtain information on the first time
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certain rare events occur. For a typical example, assume that the state
space is F = [0,00) and that the rare event is exceedance of level x where
x is large. The hitting time of the rare event is then

T(x) = inf{t>0: X; >uz}. (4.1)
Letting X = maxo<¢<7T X¢, we have

P(r(z) >T) = P(X7 < z). (4.2)
Therefore, once a limit theorem for 7(z) as & — oo has been established,
this can be translated into the classical goal of extreme value theory, viz.
a limit theorem for X1 as T — oc.

The key feature of the regenerative setting is that the discussion of issues
like these can be reduced to the study of the behaviour within a regenerative
cycle. Generalizing the set—up somewhat, let {A(z)} -, be a family of cycle
events, that is, measurable sets in Do(FE) indexed by a parameter z > 0
and having the property that A(z) | §), x — oo; note that this implies

a(z) = PO({Xt}ogtdf € A(z)) — 0, z— .
Let further
M(I’) = inf {TL = 0, 1, e {Xt+Y0+---+Y”,1 }O§t<Yn € A(Z’)}
be the index of the first cycle in which A(z) occurs and
wx) =Yoo+ Y1+ +Yaray—1, @) =Yo+ Y1+ + Y-

Then, in intuitive terms, the rare event occurs for the first time some-
where between w(z) and w(x). We will see that both are approximately
exponentially distributed with mean p(x) where
u
z) = pEoM(z) = ——
a) = iEM (@) =
(the last identity follows since M (x) is geometric w.r.t. Py on {1,2,...}
with success parameter a(x), i.e. Po(M(z) =n) = (1 — a(x))" ta(x), n =
1,2,...). Consider first the means:

Proposition 4.1 For all x, Eqw(x) = p(xz). Further, for a delayed process
with Yy < 00, a(x)Ew(z) and a(x)Ew(x) both converge to p as © — oo.

Proof. The first statement follows immediately from Wald’s identity. Since

by monotone convergence, the second statement is then also clear in the
zero—delayed case. In the delayed case, just appeal to the bounds

Ew(x) > P({Xi}hocicy, € A(@))Eow(r) ~ Eow(z),

Next consider convergence in distribution:
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Proof. Tt is straightforward from a(z) — 0 that a(z)M (z)
Pla(z)M(z) > y) = P(M(z) > [y/a@)]) = (1—a(@)?/ " = v

It then follows from (Yy + Y 4 -+ +Y,,)/n %3 p as. that

Yo+Yi+- -+ Yaia— .

a(@)w(z) = alz)M(z) ——— e M@ 2y,
The last statement follows from (4.3) and implies then the stated
asymptotics of w(z). -

In practice, one is seldom given a family of rare events {A(z)}, -, but
rather a single cycle event A such that a = P(A) is small. The implication
of the above results is then to use uV/a as an approximation for the first
occurence time of A, and p/a as an approximation for the mean. In specific
cases, the evaluation of a may well be nontrivial.

Example 4.3 Let {X;} be the M/M/1 queue length process, 3 the arrival
intensity and § the service intensity. Assume p = 3/6 < 1 and that we want
the asymptotics of the time 7(z) = inf {n > 0: X; = x} of the first visit
to x. We then take the start of cycles as the instances of returns to 0
and let A(z) = {X; = « for some t < Y'}. To evaluate a(x) = Py(A(x)) for
x =2,3,..., we note that a(z) is the probability that {S;}, the difference
between two independent Poisson processes with rates (3, §, hits = before 0
when started from Sy = 1. The Wald martingale for {S;} (see II1.8.8) is

Sf, St

E[S[So=0] — exp{t[i(z~ 1)+ -1}

Taking z = p~!, the denominator becomes 1. Optional stopping at time
o=1inf{t: Sy =0or z|Sy =1} yields

1
P Eip~% = Eip~% = p Pi(Sy =)+ p "P1(S, = 0)
= Pi(S,=a){p " -1} +1,
1 —p pa;—l .
ole) = i, —a) = ST

Since w(x) < 7(x) < w(x), it follows that a(x)7(z) is asymptotically expo-
nential with mean 1/8(1 — p) (the mean busy cycle), and that a(z)ET(z)
— 1/B8(1 = p). 0

Example 4.4 Assume that {X,,} is a positive recurrent Markov chain with
state space {0,1,2,...} and po, > 0 for all x = 1,2,.... Assume we want
the asymptotics of the time 7(0,2) =inf {n > 0: X,,_; =0,X,, = x} of the
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first jump from 0 to z. We then take the start of cycles as the instances of
visits to 0 and let A(z) = {X,—1 =0,X,, =z for somen =0,...,Y —1}.
However, the choice of Y implies that A(x) = {Xo = 0, X; = z} and hence
a(x) = Po(A(z)) = por whereas p = EoY = 1/mg, where (momy ...)
is the stationary distribution. Since w(z) < 7(0,z) < @(x), it follows
that po,7(0,x) is asymptotically exponential with mean 1/my, and that
oz ET(0,2) — 1/mo. m

Example 4.5 Assume that {X;} is an ergodic birth-death process on
{0,1,2,...} with birth rates 5, and death rates J,, and that we want
the asymptotics of the time 7(z) = inf {t > 0: X; = x} of the first visit
to 0. We then take the start of cycles as the instances of return to
0 (then u = 1/mpfBp) and let A(x) = {X; =z for some t < Y}. Since
w(z) < 7(x) < W(x), it follows that E7(z) ~ p/a(x) and that 7(z)/Er(x)
is asymptotically standard exponential.

To compute a(z), we let {Y,,} denote the imbedded Markov chain stopped
at the time o when 0 or z is hit (then a(z) = P1(Y, = z)) and put {Y;}
on its natural scale . That is, ¢(0),...,(x) are such that {ap(Yn)} is a
martingale. With A,, = ¢p(n) — ¢(n — 1) this means

5n Bn
0= En(p(yl)_go(n) = _ﬂ +5 An"‘ﬂ +5

Taking ¢(0) = 0, ¢(1) = Ag = 1, it follows that A1 = (8,/6n)A, and
o1 01+ 0p1
n) = 14+A1+ - +A0, = 14— 4 —— T
90( ) ! ﬁl ﬁl T ﬁn—l
Finally 1 = ¢(1) = E1¢(Y,) = a(z)e(x) so that a(z) = 1/p(x). For
example, for M /M /oo with 3, = 83, 6, = nd, n = (/9,
poo_ lena2pte 4@yt (@ -yt
a(r) Be=n Be=n

Apy1, n=1,2,...,2—1.

Er(xz) ~

O

The approximations above apply to time intervals of order T'(z) =
a(z)™!. On a shorter time scale, we have the following result (stated for
simplicity only for the zero-delayed case and for A(z) = {7(z) <Y}):

Theorem 4.6 Let a(t;z) = Py (7(x) <t <Y) and assume that T'(z) € T
varies with x in such a way that

lim a(z)T'(z) = 0, lim

r—00 T—00 a(aj)

for all e > 0. Then Po(7(z) < T(x)) ~ a(z)T(z)/p.

=1 (4.4)

Proof. Let U be the renewal measure of the regeneration points and

U(A;x) = ZPO(YO+"'+Yk€A7 (@) > Yo+ + V).
k=0
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If m(x) denotes the expected number of cycles before T'(z) (including the
one straddling T'(z)) where A(z) occurs, then m(z) = a(z)U (T'(z)) is of
order a(x)T(x)/u so that

: P(r(z) < T(x)) : m(x)
limsup ———— < limsup ———~— 1.
w—oo  a(@)T(2)/p v—oo a(@)T(2) /1
Conversely, if x is so large that a(eT'(z);z) > (1 — €)a(z), then

T(z)
Pr@) <T@) = [ alT(@) - tia)U(dta)

(1-T(x)
> / a(T(x) — t;z)U(dt; x)
0

Y

(1=e)T(z)
/0 a(eT (z);2)U(dt;z) > (1—e€)a(z)U((1—e)T(z);z)
(1 = ea(x)(1 = a(2))U((1 - e)T(x)),
and U(z) ~ z/pand 1 — a(z) — 1 yields

Pr(e) <T() .
o erwme = =0

Let € | 0. O

%

—e)?.

We now turn to the study of extreme values. Recall that in the real-
valued case, X7 = maxo<i<7 X, and let § denote the maximum over

cycle k, ie. § = supg<i<y, Xt, Sk = Supg, ,<i<s, Xts K = 1,2,....
Thus, the & are independent and &;,&s, ... have the common tail a(x)
= Py (max;<y X¢ > ).

Proposition 4.7 Assume that E is a real interval and define

Glz)=1—-a(z) = IP’O(rtrg;Xt < :c), Fr(z) =P(Xrt < 2).

Then Tlim |Fr — GT/1|| = 0 where || - || is the uniform norm. Here in
— 00

the delayed case with G having finite support, one needs in addition the
condition

]P’(&)>krr11ax gk) 0. (4.5)

=1,...,n

Proof. The function z(1—27), z € [0, 1], attains it maximum ~/(14~)'+1/7
at z = (1+ ’y)_l/"y, and is therefore bounded by ~. Hence for all 7', x and ¢

1GT(2) - GTUT)(2)] < e (4.6)
Define k% = |T(1 +6)/u], and let N; = inf{n: S, >t}. Then

Fr(z) > P(Xsy, <z) > IP’(NT < k7, o, & < fv)
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> IP’( max & <x) — P(Np > kf) — IF’(§0 >  max fk)

- 1<k<k} k=1,....k}

Here the the two last terms on the r.h.s. tend to zero and are indepen-
dent of x, while the first term is G+ (x), which according to (4.6) can be
approximated by GT/#(z) uniformly in 2. A similar but easier upper bound

Pr(z) < P(Np < ky) +P<1<rr;i>;_ € < x)
SRR

completes the proof. m]

The classical goal of extreme value theory is to find constants s, rr such
that s7 (X7 — 77) has a limit T, say, in distribution. It is well known in
the i.i.d. case that (up to trivial scalings and translations) such a I' must
either be a Gumbel (type I) r.v. T with c.d.f. P(Tg <) =e™* ", 2 € R,
a Fréchet (type II) r.v. T'p with c.d.f. P(Tp < 2) =e™® ", 2 > 0, or a
Weibull (type III) r.v. The type III case can occur only in the case of a
bounded support and will not be discussed in detail here. Proposition 4.7
immediately yields that these limits are also the only possible ones in the
case of regenerative processes:

Corollary 4.8 Assume that E is a real interval unbounded to the right and
that ST(YT —ry) 2, T for some r.v. I'. Then T' has one of the extremal
types Gumbel, Fréchet or Weibull.

The two following types of asymptotics occur in a large number of queue-
ing models (Proposition 4.9 covering light—tailed service times, cf. XIIL.5,
and Proposition 4.10 heavy—tailed service times, cf. X.9). The results fol-
lows immediately by translating standard i.i.d. results via Proposition 4.7,
but we give self-contained proofs.

Proposition 4.9 Assume that E is a real interval unbounded to the right
and that a(x) = Po(7(z) <Y) ~ coe™ " as © — oo continuously for some
co > 0 and some v > 0. Then

v X1 —logT —log(co/n) % Ta, T — oo,
where I'q is Gumbel.

Proof. Using (4.2), we get

P(yX7r —logT —log(co/p) < )
= P(7([z +logT +log(co/m)l/v) > T)
~ P(uV/a([x +logT +log(co/w)l/v) > T)
~ ]P’(V > Tcoexp{ x — logT —log(co/ 1) }/u)
(

x

= PV >e®) =e° = PIg<a).
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Proposition 4.10 Assume that E is a real interval unbounded to the right
or that E contains a set of the form {no,no+1,...}, and that a(z) ~
L(z)/x*, x — oo, where a > 0 and L(x) is slowly varying. Then

where b(x) is determined by L(b(z))/b(x)® ~ 1/x and T'p is Fréchet.

Proof. Using first the definition of a slowly varying function (see A5) and
next the definition of b(-), we get

a(zb(T/p))T N L(zb(T/p))T N L(b(T/w)T o1
[ zb(T /) zob(T/p)*p  x
Hence (4.2) yields
P(X7/b(T/p) < x)
= P(r(zb(T/n) > ) PV > [a(zb(T/p))T]/ 1)
~ P(V>2?) = "= P(I'p <a).

Problems

4.1 Assume that a(x) ~ coefc”“ﬁ7 T — 00, for some ¢, ¢1 and some 8 < 1. Show
that there exist constants st,rr such that s7(X7 — r7) has a Gumbel limit.
4.2 Assume that E contains a set of the form {no,no + 1,...} and that a(n) ~
coe” "™, n — oo, for some co > 0 and some v > 0. Show that

P(vXt —logT — log(co/p) < x) ~ exp {—a(logT +z)e™ "}
for all z € R, where « is the periodic function

a(y) = exp{y+log(co/p) — vy +log(co/m)]/7]} -

Notes The results of this section are standard; see the author’s survey paper,
Asmussen (1998b), for references to earlier literature. Standard treatments of
extreme value theory are Leadbetter et al. (1983) and (emphasizing the heavy—
tailed case) Embrechts et al. (1997). A notable recent paper on the regenerative
case is Glasserman and Kou (1995a).

Note that only certain specific asymptotic forms of 1 — G(z) = a(z) allow us
to find a normalization of the form s7(Xr — rr) such that a limit exists. One
important exception is many light-tailed discrete distributions; see e.g. Problem
4.2 and further Andersson (1970). However, once the asymptotic form of a(x) is
known, then according to Proposition 4.7 the asymptotic properties of Fr are
completely known as well, only in a possibly different form (cf. again Problem
4.2).
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Further Topics in Renewal Theory and
Regenerative Processes

1 Spread—Out Distributions

By a component of a distribution F' on R we understand a nonnegative
measure G with the property 0 # G < F. We say that F is spread out if
F*™ has a component G that is absolutely continuous (i.e. has a density ¢
w.r.t. Lebesgue measure) for some n.

In applied contexts, situations where F' is nonlattice and spread out (or
even has a density) are virtually the same. Strengthening the nonlattice
assumption of renewal theory and regenerative processes to F' being spread
out does not therefore appear terribly restrictive, and the theory then gains
some simplifications and strengthenings, rather in the spirit of the discrete—

time case. The basic tool is Stone’s decomposition of the renewal measure
U=y F™

Theorem 1.1 If the interarrival distribution F of a renewal process is
spread out, then we can write U = Uy + Us, where Uy, Us are nonnegative
measures on [0,00), Uz is bounded (||Uz| < o0) and Uy has a bounded
continuous density uq(z) = dUy(x)/dx satisfying ui(z) — 1/p as x — 0.

The proof is based on smoothness properties of the convolution. Most of
these are easy to check and are used without further reference. However,
we shall prove:

Lemma 1.2 If F is spread out, then F*™ has a uniform component on
(a,a+ b) for some m, a,b > 0.
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Proof. We can assume that g is bounded with compact support. Choose
continuous bounded functions gr € Ly with |lg — gklli = [ 19 — gx| — 0.
Then gi*g(x f gk (z—y)g(y) dy is continuous by dominated convergence.
Furthermore 192 = gk * glloo < |l9llocllg — grlli — 0, where || - || is the
supremum norm. Thus ¢*? is continuous as the uniform limit of continuous
functions; hence there exists a,b,§ > 0 such that ¢*?(z) > 6 for z €
(a,a+b). Take m = 2n. O

Proof of Theorem 1.1. In Lemma 1.2, let G be the uniform component and
g(x) =I(a <z < a+b)||G|/b its density.
Assume first that m =1 and let H = F — G, Uy = Y_;° H*". Then

n—1
= Gx ZF*(n—k‘—l) *H*k- + I{»«n7
k=0

U = G*ZH*k* Z Fr=k=1) L U, = GxUsy* U + Us.
n=k+1

Since |H| =1—|G|| <1, we have ||Uz|| < oo, and we must show that

=G * U2 x U has the desired properties. Now G % U has density U *

fo U(dy) which is bounded and continuous by dominated

convergence (g(()) = 0 is needed for this since otherwise a discontinuity

at x arises when U has an atom at x). Also U x g(0) = 0, and hence by

the same argument Uy = Us * (G x U) has the bounded continuous density
= Uy % (U x g). We then get

Uxg(z) = @U(xfafb,xfa] — M, (1.1)
w
v 1
u@ = [ Urge-pvaan ~ o - 5 a2
0
using dominated convergence in the first step of (1.2) and | Uz = (1 —

|H|)™! =||G||~! in the last.

If m > 1, define U®) = F*k « Zgo F*»™m_ Then from above, U©) =
Ul(o) +U2(0) with ||U2(0) | < ooand Ul(o) having a bounded continuous density
ugo) with ugo)(x) — 1/ES,, = (mp)~!. This is readily seen to imply a
similar decomposition of U®) = F** « U(©) and since U = Zgn_l U®),
U, = 6"_1 Ul(k) and Up = Z)n_l UQ(k) have the desired properties. O

We proceed to give some main consequences of Stone’s decomposition.
The first is a version of the key renewal theorem U  z(z) — p~! [z, where
the strengthened assumption on F' permits a weakening of the conditions
on z, in particular to avoid reference to direct Riemann integrability.

Corollary 1.3 Let z be bounded and Lebesgue integrable with z(z) — 0,
x — 00. Then U x z(x) — p~' [;° 2(y) dy provided F is spread out.
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Proof. By dominated convergence,

Z(x) = U=xz(x) = Ur*z(x)+Us*z(x)
- / (e —y)dy + / 2(z — ) Ua(dy)
0 0

— / Z(y);flder/ 0- Uz(dy).
0 0
0O

Corollary 1.4 Consider a regenerative process {Xi},~, with the cycle
length distribution F being spread out with finite mean p. Suppose as the
only path regularity condition that Xi(w) is measurable jointly in (t,w).
Then, no matter the initial conditions, the limiting distribution P, of X;
exists in the sense of total variation convergence and is given by

E, (X)) = %/OOOEO[f(XS);Ym]ds.

Proof. It is easily seen that it is sufficient to consider the zero—delayed case.
Define

Z(t) = Po(X; € A), 2(t) = Py(X; € A,Y > ).

Then z(t) is Lebesgue measurable, and, being bounded by Po(Y > t), also
integrable with limit 0 at co. Asin VI.L1, Z = 2z + F x« Z = U * z. Here

Uy * z(t) < /OIP’O(Y>x—y)U2(dy),

|U1 * Z(t) — Pe(Xt S A)| =

/OtZ(y)ul(ty)dy - %/OOOZ(Z/) dy‘

1 [ ! 1
< o[ R spdy s [ Ry > plat -y - 5 ]dy
BJy 0 K
and both these bounds are uniform in A and tend to zero as t — oo (using
dominated convergence). This proves t.v. convergence. O

A somewhat easier proof can be obtained using coupling; see the next
section.

In many cases, it is also necessary for total variation convergence that F’
is spread out. For example (recall that dFy/dz = F(z)/p):

Corollary 1.5 Let {B;} be the forward recurrence time process of a re-
newal process with interarrival distribution F with finite mean u, and define
Gi(z) = P(By < x). Then Gy — Fy in t.v. for any distribution of the initial
delay if and only if I is spread out.

Proof. Sufficiency follows from Corollary 1.4. Suppose F' is not spread out so
that for each n, F*™ is concentrated on a Lebesgue null set IV,,, and consider
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the zero—delayed case. On {S,, <t < S, 41}, we havet+B; = S, 41 € Npt1.
Hence G is concentrated on the null set {y: y—¢t € NgUN; U---} and
the absolute continuity of Fy yields |G — Fpl|| = 1. a

Finally we mention that instead of spread—out distributions one fre-
quently works with distributions that are strongly nonlattice, i.e. satisfy
Cramér’s condition (C) EISHOO‘F[SH < 1, where F is the characteristic
function of F'. We have:

Proposition 1.6 F is spread out = F is strongly nonlattice = F is
nonlattice.

Proof. If F is itself absolutely continuous, then F|[s] — 0, |s| — oo, ac-
cording to the Riemann—Lebesgue lemma. Thus if F** > e¢G with G an
absolutely continuous probability measure, we have

Tim |F ‘ = lim |F\*”[s]‘1/n = lim ‘F\*”[s]—eé[s]‘l/n < (1—6)1/”
|s|—o0 |s|—o0 |s|—o0
and (C) holds. Finally, if F is lattice, say concentrated on {0, +6, £24, .. .},
then F[s] =1 for s = 2kn/d and (C) cannot hold. 0

In fact some results in renewal theory and regenerative processes re-
quire distributions that are only strongly nonlattice rather than spread
out. However, the disadvantage of (C) is that the probabilistic significance
is not clear and thus one has to rely on analytical methods.

Notes The theory was initiated by Stone (1966). An example where F' is
singular but F*2 not is given in Feller (1971, p. 146). It can be shown in contin-
uation of Proposition 1.6 that discrete distributions cannot satisfy (C). See e.g.
Bhattacharya and Rao (1976, p. 207).

2 The Coupling Method

2a. The Coupling Inequality

2b. The Classical Coupling of Markov Chains

2c. Coupling Proof of the Renewal Theorem

2d. Spread—Out Distributions and Exponential Rates

In the literature, the term coupling is used both in a broad and in a
narrow sense. The broad sense is as follows: a coupling of two probability
distributions P',P” on (Q',.%), resp. (2”,.#"), is defined as a probability
distribution P on (Q,.%) = (' x 9", %' ®.%") having marginals P’ and P,
ie.

P(A' x Q) = P/(A), P(Q x A") =P (A").

We shall use language such as “a couphng of X', X" where X', X" are
r.v.’s, to denote a pair (X’ X”) of r.v.’s defined on a common probablhty
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space (a priori, X', X" are not necessarily so) such that x < X', X" Z xn,
For ease of notation, we omit the tilde, and broad sense coupling thus just
means that the r.v.’s have been redefined on a common probability space
without changing the marginal distributions.

A trivial case of a (broad sense) coupling is P = P’ ® P”; in terms of
r.v.’s this just means that we take X', X" independent with the prescribed
distributions. However, the interesting examples involve dependence. One
example is real-valued r.v.’s X', X" such that X’ <, X" (stochastical
ordering; see A4), where a classical result, stated in A4, on a.s. realization
of stochastic order can be paraphrased as the existence of a broad sense
coupling such that X’ <;, X" a.s.

The set—up in the narrow (and more traditional) sense is that of two
stochastic processes { X{},cr, { X} };cr, in discrete or continuous time and
with the same state space E, and an associated random time 7" € T (the
coupling time) such that

X;=X, forallt>T (2.1)

(we shall encounter weakening of also this relation in connection with e-
coupling, requiring only that the processes are close rather than equal
after T'). A priori the two processes may be defined on different proba-
bility spaces, but the first step in the construction is to make them defined
on the same (2,.%,P) (without changing the distributions).

2a  The Coupling Inequality

We start by an inequality related to coupling in the broad sense (|| - || is
the total variation distance; cf. A8):

Proposition 2.1 Let X', X" r.v.’s taking values in the same space E and
defined on a common probability space. Then

IP(X" e )—P(X" €| < P(X"#X"). (2.2)
Proof. Write
P(X' €d) = PX' eA X =X")+P(X' € A, X #X"),
P(X" €A = PX"eAX =X")+P(X" e A, X #X")

= PX' e A X =X")+P(X" € A, X" #X").
Subtracting, we get
|P(X' € A) —P(X" € A)|
= [P(X' €A X' #X")-P(X" € A, X #X")| < P(X'#X").
Taking supremum over A, the result follows. a

Corollary 2.2 Let {X{},cq, {X{'},cr be stochastic processes defined on a
common probability space, let 0, be the shift, i.e. (6, X")s = X{ ., and let
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T < 00 be a random time such that (2.1) holds. Then

|P(0: X" €-)—P(O,X" € )] < P(T>1). (2.3)
Proof. Replace X', X" by 6,X’, 6; X" in Proposition 2.1 and note that
PO, X' # 0, X") < P(T > t). O

The inequality (2.3) is commonly referred to as the coupling inequality. Tts
main applications are:

1. To show convergence in distribution of X; as ¢ — co. In a Markovian
setting, one takes { X/} stationary, i.e. started by letting X, have the
stationary distribution 7 and {X/'} the given initial distribution v.
If a coupling with T' < oo can be constructed, one has P(T' > t) — 0
and

P, (X, € )—m()]| < [BOX € )—PO.X" € )|| < BT > t) — 0.

(2.4)
We will say in the following that the Markov chain (or process) ad-
mits coupling if a coupling with T" < oo exists for any pair of initial
distributions v/, v”, i.e. if there exist stochastic processes { X/}, {X//}
and a random time 7" < oo defined on a common a probability space
(Q, #,P), such that {X]}, {X,)/} are Markov chains with transition
probabilities (p;;)i jer and initial distributions v/, resp. "/, and (2.1)
holds for some random time 7' < oo. If in addition a stationary dis-
tribution 7 exists, (2.4) shows that X, Z 7 no matter the initial
conditions.

2. To obtain estimates of the rate of convergence. One then shows that
T can be chosen with Ep(T') < oo for some ¢ increasing to oo (often,
o(t) = t? or et). Then

1 1
P(X;e)—n()| < BT >t) < ——Ep(T) = o(—)
| | -0 =0

[it should be noted as a limitation of the method that typically the

convergence rates obtained in this way are not the best possible].

2b  The Classical Coupling of Discrete Markov Chains

Let {X,},_o; . be a Markov chain on a discrete state space £ with
transition probabilities (pi;)i jcr-

Proposition 2.3 A positive recurrent and aperiodic Markov chain on a
discrete state space admits coupling.

Proof. This is one of the relatively few examples where independent cou-
pling works. Let Q = EN x EN (with .Z the obvious o—field) and let P be
such that the coordinate processes {X}}, {X//} (say) are Markov chains



192 VII. Further Topics in Renewal Theory and Regenerative Processes

with transition probabilities (p;;); jer and initial distributions v/, resp. v".
Obviously, {(X,’N )?;l' )} is Markov on E x E with n-step transition proba-
bilities q;; ., = pi;p},- For given i, j, k. £, it follows from 1.1.4 that pjj > 0,
P, > 0 for all sufficiently large n and hence ¢;’ ;, > 0. Thus {(x}, X)) )} is
irreducible. Further, if 7 is the stationary distribution for {Xn}, then T® 7
is stationary for { (X7, )?;L')} These facts imply that {(X/,, 5(;;)} is positive
recurrent and aperiodic. By recurrence, T;; = inf{n : (X!, X") = (i,4)}
is finite for all 4, j, and we define T' either as Tj; for some fixed ¢ or as
min {T;; : i € E}. Then T is a stopping time with the property X7 = X/..
Now just define

"o )?7/{ TLST
Xn = { X, n>T

Then by the strong Markov property, {X/'} has the desired marginal
distribution. So has {X/ } by construction, and clearly (2.1) holds. O

2c  Coupling Proof of the Renewal Theorem

We say that two processes { X[}, {X}'} with continuous time parameter are
e—coupled if there exist (a.s. finite) random times T”, T" such that |T' —T"|
< € and

GT/X/ = GTNX". (25)

A Markov process admits e—coupling if for any € and any two initial dis-
tributions v/, v there exists e—coupled versions {X;}, {X/'} with initial
distributions v/, resp. v”’. Note that the existence of an e—coupling can be
rephrased as the existence of random times T, > 0, S, such that [S¢| < €
and

X/ =X{,s5., t>T.. (2.6)

The role of the concept is to provide convergence in distribution in some
situations where t.v. convergence does not necessarily hold:

Proposition 2.4 Consider a continuous—time Markov process {X:} hav-
ing a stationary distribution ™ and right—continuous paths. If the process

admits e—coupling, then X; o for any initial distribution.

Proof. Let A\ be an arbitrary initial distribution. We must show that
Exf(X:) — 7w(f) for any continuous f : E — [0, 1].

Let v/ = m, v/ = X\ and assume that (2.6) holds for a given € € (0,1).
Then for t > T,

(XD - f(XD] < M = sup (X)) - F(X])].

t—e<s<t+e
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Hence

Since Ef(X]) = n(f), EM] = EM] by stationarity, it follows that
limsup|m(f) — Exf(X¢)| < EMj. (2.7)
t—o0

|Ef(X)) —Ef(X/)| < EM,+P(T. > t).

However, by stationarity {X;} has probability 0 to have a jump at t = 1
(cf. A2.3) and since f is continuous, we therefore have M{ | 0 as € | 0.
Thus the desired conclusion follows by letting € | 0 in (2.7). 0

Now consider a renewal process in the notation of Ch. V with u < oo
and recall that the distribution Fy with density F(z)/p is stationary for
the forward recurrence time process {B;}. We let {B;}, {B;} be indepen-
dent versions defined on a common probability space, such that {Bj} is

stationary and {B;} has some arbitrary delay distribution.

Lemma 2.5 For all large enough A, there exists a sequence 7, T oo of
finite stopping times such that B, < A, B}, < A for all k.

Proof. Choose A with Fy(A) > 1/2. By the LLN VL3.1 for cumulative
processes (note that the proof only uses the elementary renewal theorem
and not the renewal theorem itself!), we have

17 . I

—/ I(B; < A)dt 3 Fy(A), —/ I(B, < A)dt %3 Fy(A)

T Jo T Jo
which in view of Fy(A) > 1/2is only possible if the set {t : B, < A, B; < A}
is unbounded w.p. 1. O

Lemma 2.6 Assume that F is nonlattice. Then given A and € > 0, it is
possible to choose a such that & = infa<y<qyo4 h(x) > 0, where I(x) =
[ —€ex+¢, h(z)=P(Y14+---+Y, €I(z) for some n).

Proof. Define I'(x) [z — €/2,x + €/2], W(z) = P(Y1 +---+Y, €
I'(z) for some n). By V.5.1, we can choose a such that I’(z) contains a
point of the support of the renewal measure Zgo F*™ for each x > a —€/2
and hence h'(z) > 0. Choose m,x1,..., %, such that the I'(x;) cover
[a,a + 2A] and let § = minj—y, ., A/ (z;). O

Proof of the renewal theorem V.4.6. In the notation of Lemmas 2.5, 2.6, we
have

Br, +[a,a+2A] D [a+A,a+24], B, +[a,a+24] D [a+A,a+24], (2.8)

Therefore § is a (pessimistic!) lower bound for the probability that {B;}
has a renewal in |1, + a + A, 7 + a + 2A]. Given that this occurs, let
be the position of the first such renewal. The probability that {Bj;} has
a renewal in I(z) is then at least . In other words, the probability of
{B:}, {Bj} to have renewals at most € apart in |7y + a + A, 7, + a + 24]
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is at least 62. W.Lo.g., we may assume Tpy1 — 7x > a + 24 so that the
adaptedness assumption of the geometric trials lemma A6.1 are satisfied.
Thus, {B;} will eventually have a renewal at most ¢ apart from a renewal of
{B;}. Replacing the following interarrival times for {B,} by those of {B;}
and denoting the resulting process by {Bj;} provides an e—coupling, and

By EA Yy then follows by Proposition 2.4. O

2d  Spread—Out Distributions and Exponential Rates

It is easy to adapt the above proof of the renewal theorem for the nonlattice
case to give also say t.v. convergence of the recurrence times processes { A},
{B:} when F is spread out; cf. Corollary 1.5. In fact (with the convention
that a renewal process admits coupling if {B;} does s0):

Theorem 2.7 A nonlattice renewal process with . < oo admits coupling
if and only if F is spread out.

The necessity follows from Corollary 1.5 since the coupling inequality
applied to {B;} shows that the existence of a coupling implies t.v. con-
vergence. For sufficiency, it is easy to either adapt the above proof of the
renewal theorem for the nonlattice case to give t.v. convergence or apply
Corollary 1.5; cf. Proposition 3.13 of the next section. We shall use a third
variant that will also provide exponential rates with a small additional
effort.

Lemma 2.8 For a zero—delayed spread—out renewal process, there exists
A, b such that the distributions of the By witht > A have a common uniform
component on (0,b). That is, for some § € (0,1) and all t > A,

v—u

Plu< By <b) > 0o b O<u<v<b (2.9)

Proof. By Lemma 1.2, there exist m, 0 < ¢ < d, n > 0 such that F*™(v) —
F(u) >nv—u)for0<ec<u<v<d Letb=(d—c)/2,a=(c+d)/2.
When ¢ < z < a, 0 <u < wv<b, we then have (u+ z,v+ z) C (¢,d), and
hence

t—c
Plu< By <b) > / F'(t4+u—y,t+v—y|U(dy)
t—a

_ /aF*m(u+z,v+z]U(t—dz) > (u—)U(t—a,t - o),

By Blackwell’s renewal theorem, U(t — a,t —¢) > (a — ¢)/2pu > 0 for all
large t. O

Proof of ‘if” in Theorem 2.7. We construct a zero—delayed and a stationary
renewal process, {S,} and {S/,}, on a common probability space in steps
k=0,1,2,.... After step k, the renewal processes have been constructed
in a certain random interval [0, ], as have the overshoots By, , By, . To get
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started, let to = 0, By, = 0 and choose B;  according to Fy. Given step k
has been completed, let

Ly = max [Btk,sz] , they1 = tp+ Li+ A,
S = Lk-—i-A—Btk, S;c = Lk“‘A—Bék
81
S e . o o ° —o —>
— S1—
2 oo . é . —o —
FLo+— A — L, —+— A — FLoy1t >
t1 t2
Figure 2.1

with A from Lemma 2.8; cf. Fig. 2.1. Then s, s}, > A, and by Lemma 2.8

we can choose Uy, Vi, Ry, Rj, such that P(U, = 1) =1—-P(U, = 0) = 4,

that Vj, is uniform on (0,b) and that
Btk+1 = UV + (1 — Uk)Rk, B,

trkt1

= U,V + (1 — UUR;€

have the overshoot distributions corresponding to s, resp. s}, (Uk, Vi, Ry, R},
are taken independent of all preceding Uy, Vi, Ry, R)). The renewals for
{Sn} in [tk4+1 — Sk,tr+1] are then just taken according to the conditional
distribution of the renewal process given that its overshoot at time sj has
the value of the constructed By, ,, and similarly for {S] }. The procedure
is stopped at step o = inf {k: Uy = 1}. Then the two renewal processes
have a common renewal at time T' = t, + L,4+1, and defining {S//} as the
renewal process with the same renewals as {S,,} before T' and with the
same renewals as {S],} after provides the desired coupling. For the proof
of Lemma 2.9 below, note that P(c =n) =d6(1 —J)". O

We now turn to the rate results and first note:

Lemma 2.9 If fooo e’ F(dx) < oo for some n > 0, then also Ee? < oo
for some € > 0.

Proof. Since z(t) = E[e"Pt; t < Y] < e "Ee"”Y is d.R.i., the usual renewal
argument yields convergence of Z(t) = Ee"P¢ to a finite limit. In particular,
Z(t) < 1 < oo for all t. Now

B[00 | By, B,] < B[P + %) | B, B

E[en(MBsk) + en(A+B;k>} < ¢
where ¢ = 2c1e™. Similarly ¢, = Ee”(A+10) < oo, and letting T, = > ¢ (A+
Ly,), it follows easily by induction that Ee"’» < cyc™. Now for some (large)
p and some ¢ (close to 1) with 1/p+1/q = 1, it holds that ¢'/P(1—§)/7 < 1
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With € = n/p, Holder’s inequality then yields

00
EeeT < EeeTa_H _ § E[eeTn"'l;U:n}
n=1
00

oo
< Z Ee"T”“ ( 1/‘1 < Z n+1)/p )n/q < oo
n=1

where ¢3 = cé/pél/q. |

Theorem 2.10 Assume fooo e F(dx) < oo for some n > 0. Then for
some € > 0:

i) [|[Po(B; € -) — Fy|| = O(e™"), ¢f. Corollary 1.5.

(ii) In Stone’s decomposition, Uslx,00) = O(e™%), uy(x) = p~ ' +
O( 761)‘

(iii) If z is measurable with z(x) = O(e™%) for some & > ¢, then

1 (o)
Uxz(t) = —/ z(x)dz + O(e™).

K Jo
Proof. (i) is clear from (2.4) and Lemma 2.9. The proof of (ii) proceeds
by reinspecting the derivation of Stone’s decomposition. In the notation
there, H < F implies [e7 H(dz) < oo and hence [e“ H(dz) < 1 for
some possibly smaller ¢ > 0. This implies that [e“ Us(dz) < oo and
hence that Usfz,00) = O(e™“*). Using (i), the representation V.(2.8) of
U(x—a—b,x—a] and V.3.4, we have U(x —a — b,z —a] = 1/p1+ O(e™ ")
and hence (cf. (1.1), (1.2))

ui(z) = /OIU*Q(x—y)Uz(dy) = /Oz[llGll/quO(e—f(”—y)

~—

| Un(dy)
- IIGIIIIUzll/u—O(Uz[w,OO))+e‘“/0 " 0(e) Un(dy) =
Finally in (iii),
U a(a) = / 2(a — ) Ualdy) + / 2@ - y)u(y) dy
e—e;c ’ eey ¢ =z l e—e(w—y)
| o v + [ s o) fay

I
= O(e—“)+/ @dy—/ @dgﬁe—“/ O(e~=9%) dy
o M z M 0

= O(e*EI)Jr/ iy)dy.
0 K
O

Corollary 2.11 If, in addition to the conditions of Corollary 1.4, a regen-
erative process has fooo e’ F(dx) < oo and, in the delayed case, Ee™° < oo
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for some n > O then the tv convergence is exponentially fast. That is,
|P(X; €-) — €)|| = O(e=) for some € > 0.

Proof. If z4(t) = Po(Xy € At <Y), then z4(t) < Po(Y > t) = O(e™ ),
and a check of the above proof shows that

Po(X, € A) = Usza(t) = O(e~)+ /O b Z“;y) dy = O(e™“H)+P.(X; € A)

uniformly in A. The delayed case is easily reduced to the zero—delayed one
by conditioning upon Yj. m]

Problems

2.1 The purpose is to give a coupling proof of X, Z o for an irreducible
aperiodic null recurrent Markov chain. Let P be the transition matrix and v
the stationary measure. Consider independent versions {X,}, {X, } with initial
distributions X, X’. Show that {Z,} = {(Xx, X,,)} is irreducible and aperiodic.
Define now T = inf{n: X,, = X;, =i} for some fixed state i. Show that {Z,}
is recurrent if and only P(T < oo) for any choice of i, A, X’. If {Z,} is transient,
let A = A’ and show hereby Py (X, = i) < P(Z, = (4,9))"/? — 0. If {Z,} is
recurrent, let B C E be finite with ¢ € B, and define \; = v; /v(B) for j € B and
0 otherwise. Show that

Tim EX) = Tim / ! =1 < lim =
I Px(Xn =7) = TPy (X, =1) < Tim =75 = 2o

and hereby that Py (X, =1i) — 0.
2.2 Show that U(t) = t/u + EY?/2u® + O(e™*") provided that F' is spread out
and [° e’ F(dz) < oo for some § > 0.

Notes The idea of a coupling goes back to Doeblin in a 1938 paper, but to-
day’s interest in the subject was largely initiated by Pitman (1974). Two main
monographs are Lindvall (1992) and Thorisson (2000).

Further interesting aspects not discussed here include the concept of a maximal
coupling, the relations to the tail and invariant o—fields and a shift-coupling. In
the broad sense, a maximal coupling is one for which P(X’ # X") achieves the
minimal value ||[P(X’ € -) — P(X” € -)||. In the narrow sense, a maximal coupling
time achieves the exact rate of convergence. A shift—coupling is defined as an
e—coupling without the requirement |T" — T"”| < e. A main theorem states that
the existence of a shift-coupling is equivalent to P(X' € F) = P(X” € F) for
all F in the invariant o—field (there are similar characterizations of other sorts of
couplings; see Thorisson, 2000).

For the history of the coupling proof of the renewal theorem, see Thorisson
(2000) pp. 480-481. The present proof is basically a variant of Lindvall’s (1977)
argument.

For more on exponential convergence rates as in Theorem 2.10, see Lund et al.
(1996) and references therein.



198 VII. Further Topics in Renewal Theory and Regenerative Processes

3  Markov Processes: Regeneration and Harris
Recurrence

From the point of view of regenerative processes, the Markov case is a
rather special one. Without doubt, a major force of the concept of a re-
generative process is precisely that neither the Markov property nor other
restrictions need to be put on the evolution in between regeneration points.
Conversely, from the point of view of Markov processes on a general state
space F, regeneration appears at first sight as a severe restriction. There is
no apparent choice of regeneration points since e.g. the renewal processes
of entrances to a fixed state z, so important in the discrete case, will only
be nonterminating in quite special cases.

Nevertheless, the connection between Markov processes and regenerative
processes has turned out to be of basic importance, and in fact ergodic
theory for Markov processes in a simple and satisfying form is hardly known
beyond the set—up to be developed below.

We consider as in 1.8 a Markov process {X;},.qp on E with T = N or
T =[0,00) and let % = o(Xs: s <t). If T = [0,00), it is assumed that
E is Polish, & the Borel o—algebra, that {X;} has D—paths and the strong
Markov property holds. Write P(z, A) = P,(X; € A).

Letting 7(R) = inf{t > 1: X; € R}, we call a set R € & recurrent if
Py(T(R) < o0) = 1 for all z € E (if T = [0,00), we need in addition
to assume that 7(R) is measurable and that X,z € R). By the strong
Markov property, this is equivalent to {t : X; € R} being unbounded with
probability 1, irrespective of initial conditions. We call R a regeneration set
if R is recurrent and for some r > 0 the P"(z,-), © € R, contain a common
component, i.e. for some € € (0,1) and some probability measure A on E,

P"(xz,B) > eX(B), z € R, (3.1)

for all B € & For example, this holds for a one—point set R = {z} if
and only if x is a recurrent state since then we may just take an arbitrary
r > 0,e=1/2 and A(B) = P"(z, B). The following example is typical
of applications and shows that regeneration sets exist in far more general
situations:

Example 3.1 Assume that the transition functions contain components
with smooth densities, i.e. for some p, r and f” we have

P'(2,B) > /B I (@) uldy),

Eo

{x cE: /Efr(ac,y) p(dy) > 0} # 0 (3.2)

where f"(x,y) is jointly continuous in x, y in a suitable topology on E. Then
a regeneration set exists, provided that for some zg € Ej every neighbour-
hood of x is recurrent. Indeed, choose yg € supp(u) with 6 = f"(zo,yo) > 0
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and let R, S be neighbourhoods of z, resp. yo, with f"(z,y) > /2, x € R,

y € S. Then if A(B) = u(BS)/u(S), we have for x € R that
PeB) = [ ey > uss) = Xm0

BS

We call a Markov chain {X,,} with a regeneration set Harris recurrent or
just a Harris chain (the traditional equivalent definition looks somewhat
different; see the end of the section; in continuous time the terminology
is less well established). We shall justify the term “regeneration set” by
showing that it is possible to construct {X,,} simultaneously with a renewal
process Sg, S1, . . . w.r.t. which the Markov chain becomes regenerative. The
idea is to randomize by w.p. € letting a regeneration occur r time units after
a visit to R and then restart according to A. Choose an initial value Xy = x
and just take the usual version of the process up to the time 7(R) where R
is hit. Then realize X, (g)4, by w.p. € letting the distribution be A and a
renewal epoch occur at 7(R) +r, and w.p. 1 — € letting the distribution be

1
1—¢€

[P (Xr(rys ) — eX()] -

After that, realize the whole segment {X5+T(R)}O<s<'r’ by choosing it
according to the conditional distribution of {X,}, ., , given that the
boundary values Xo, X, are the constructed X gy, X;4r(g). Now repeat
the procedure with the new initial value X, ;(g) and so on. That we get a
Markov process with the given transition probabilities is intuitively obvious
and easily verified. Also the distribution of X; = Xg, at a renewal epoch
t = S, is A for all n and independent of Si,...,S,. Hence the post—S,
process evolves in the same way for all n and is independent of S1,...,.S,.
Thus we indeed have a regenerative process in the general sense of VI.1
where we do not require independent cycles. In fact, X, r) needs not
be independent of X, gy if 0 < s < r, and hence the last r — 1 values
in a cycle need not be independent of the next cycle. At least, the con-
struction ensures that cycles are one-dependent (cycles n+1,n+2,... are
independent of cycles 1,...,n —1).

We denote by Py the zero—delayed case where X is chosen according to
A, by Y the length of the first cycle of the Py—process.

The regeneration points obviously behave rather like stopping times, but
are not so in the strict sense since in addition to F = o(Xy; t € T) they
also depend on the 0-1 variables determining the randomizations. However,
they fall into the framework of so—called randomized stopping times. We
shall not go into a discussion of this subject but mention only that in the
Markov chain case one of the possible definitions of 7 being a randomized
stopping time is

Eo[9(Xn, Xnt1,...); 7 >n] = E;[Ex,g(Xo,X1,...); 7> n],(3.3)
E,[9(Xs;s>t); 7>t = Eu[Ex,9(Xs;8>0);7>t] (3.4)
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for T =N, resp. T = [0, 00). This relation will be needed below so we shall
give a proof. Let T = N (the continuous case is entirely similar) and let 7
be any of Sy, S1,.... By the Markov property,

E;cg(Xn; Xn+17 .. ) = ExEXng(XO; )(17 .. )

and therefore it is sufficient to prove (3.3) with 7 > n replaced by 7 < n.
But conditionally upon 7, it holds on {7 < n} that the Markov process is
restarted according to A at time 7. Thus on {7 < n}

Ez[g(Xann+1;)|T7Xn] = EX”g(XO;le"')

and (3.3) follows easily.
A measure v on (E, &) is called stationary if v > 0, v # 0, v is o—finite
and vP® = v for all s € T.

Theorem 3.2 For a Markov process with a regeneration set, a stationary
measure v can be defined by

V(f) = ]Ez\i:f(Xn)7 T =N, V(f) = E/\/O f(Xt)dt7 TZ[O,OO).

Proof. 1t is clear that ¥ > 0 and v # 0. Also, a geometrical trial ar-
gument easily shows that if E, ,, = {z € E: P,(7(R) <n) > 1/m} then
V(Epm) < 0o. Since E = Uy mEp m, v is ofinite. To show vP*® = v, let
T = [0,00) (the discrete time case differs only in notation). Let f be fixed
and define g(z) = E, f(X;). Then

P (f) = [Eft)vdn) = [g@nds) = v
= E,\/ g(X)I(Y > t)dt = / Ex[Ex, f(X.); Y > t)] dt
0 0
But according to (3.4) with 7 =Y, this is the same as

- E, /sy+sf(Xu)du - IEA{/SY—l—/YYJrsf(Xu)du}

[+ [ o} = B [ s = v,

0

using the regeneration at Y in the third step. Since this holds for all f, the
proof is complete. O

Corollary 3.3 Let v be as in Theorem 3.2 and T = N. Then A € & is
recurrent if and only if v(A) > 0, or equivalently if and only if Px(X,, €
A) > 0 for some n.
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Proof. Starting from Xy = x, we eventually end up with a regeneration, and
thus A is recurrent if and only if Py (X,, € A i.0.) = 1. Since cycles 1, 3,5, . ..
are i.i.d. and 2,4,6,... are so too, this is in turn equivalent to Py (X, €
A for some n < Y) > 0 which again holds if and only if the expected
number v(A) of visits to A before Y is > 0. The last characterization now
follows easily by a renewal argument. o

To investigate whether the stationary measure is unique, we first look at
the case T = N. Let F' be recurrent, { X"} the Markov chain restricted to
F, cf. 1.3, and let v¥" denote the restriction of v to F (i.e. v (A) = v(AF)).
Then:

Proposition 3.4 If v is stationary for {X,} and 0 < v(F) < oo, then v’
is stationary for {Xf}

Proof. We may assume that v (F) = v(F) = 1. Letting P, denote the
measure defined for finite segments by

P,,(XO S Ao,. ..,Xn S An) = /IP;C(XQ S AQ,. ..,Xn S An) V(dl‘),

it is easily seen that P, can be handled by the same formal rules as if v was a
proper probability (e.g. we have by stationarity that P, (X € A) = v(A)).
Let A C F and define ¢, (A) = ]P’,,(Xo gF,. ... X, 1¢FX,¢€ A). Then

Cn(A) = P,/(XlgF,...,XngF,X7L+1EA)
= Cn+1(A)+]P)V(X0€F,X1 gF,...,XngF,XnJrlGA),
WA) = P, (X1 €A) = Py(Xo€F X1 €A)+ci(A)

= Y P(Xo€FEX1¢F,.... X1 ¢ F, X € A) + ca(A).
k=1

Letting n — oo yields
en(A) — v(A)—P,(Xo € F, X, (r) € A) = v(A) —P,r(X{ € A).

But for A = F the r.h.s. is just 1 — 1 = 0. Thus ¢,(A) < cp(F) — 0, and
v(A) = P,r (X € A) and stationarity follows. O

Theorem 3.5 For a (discrete—time) Harris chain, the stationary measure
s unique up to a multiplicative constant.

Proof. Existence was shown in in Theorem 3.2. For uniqueness, suppose first
that E\Y = v(E) < oo and let ¥ be a different stationary measure with
V(E) < 0o. Then 7 = v/v(E), # = U/U(FE) are stationary distributions and
by VI.1.5(ii) we have that

1 1 Y1

y ;P%(Xndﬂ- €A — WEA Y I(Xn€A) = n(A),

n=0
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where d is the period of Y. But by stationarity of 7, the Lh.s. is just 7(A)
for all n. Hence m = 7 so that v, v are proportional.

In the general case where not necessarily v(E) < oo, V(E) < oo, we
first assume r = 1 in (3.1). Proportionality follows if we can show that
v(A)/v(F) =v(A)/v(F) whenever A C F and v(F),v(F) € (0,00). Here F
is recurrent according to Corollary 3.3 since v(F') > 0 and we can consider
the chain {Xf } for which v, F" are both stationary by Proposition 3.4.
Thus if we can prove that {X,If } has a regeneration set, we have from
above that v = ¥ and the desired conclusion follows. To this end,
choose m, k, 6 such that

RF = {zcF: IPx(X,,LeR,iI(XneF)zk> > 5}
n=1

has positive v—measure. Then R¥" is recurrent for {X,}, hence for {Xf }
and for 2 € RY we have P, (X}, | € A) > 0 Px(X-(p) € A).

For a general r, consider a discrete time renewal process {5}, indepen-
dent of {X,,} and having interarrival distribution {f;} with finite mean
and support on all of N. Then the probability of a renewal at n is bounded
away from 0, and it is easy to see by a geometric trial argument that
R is recurrent for the Markov chain {X} = Xg.. Further, f* > 0 and
P(X; e A| X5 =x) > efAA). Thus a condition of type (3.1) holds with
r* = 1 so that from above the stationary measure of {X} is unique up to a
constant. But the transition kernel is P* = ZSO frP™, and since vP™ = v,
vP™ = v, the measures v,V are both stationary for P*, hence differ only
by a constant. O

For T = N, we call the chain aperiodic if the Py—distribution of Y is
aperiodic (it follows from Proposition 3.10 below that this property does
not depend on the choice of R, \,€). For T = [0, 00), terminology such as
“nonlattice cycles” or “spread—out cycles” refers to the Py—distribution of
Y in a similar manner. We call {X,} positive recurrent if E\Y = ||v]| < o0
and null recurrent if ||v|| = oo (an aperiodic positively recurrent Harris
chain is simply called Harris ergodic). With © = v/||v||, the basic limit
theorems for regenerative processes then give:

Theorem 3.6 For a Harris ergodic chain, the P,—distribution of X,, con-
verges to w in total variation. In particular, P™(x, A) — w(A) for all A € &.
For a continuous time positive recurrent Markov process with non-lattice
cycles, the P, —distribution of X; converges weakly to .

Theorem 3.6 is the main ergodic theorem for Harris chains, and we
proceed to miscellaneous complements and extensions. First, since the
LLN holds for identically distributed one-dependent variables Cy,Co, ...
(consider {Cs,, } and {Ca,,11} separately!), the same proof as in VI.3 yields:
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Proposition 3.7 In the positive recurrent discrete time case, the time—
averages Zév f(Xn)/N converge to w(f) for any bounded measurable f.

Similarly, fo (X3)dt/T — 7 (f) in the positive recurrent continuous time
case.

Proposition 3.8 Suppose that a continuous-time Markov process { X},
either (a) has spread—out cycles or (b) that (3.1) holds for all r in an open
interval. Then:

(i) Bvery discrete skeleton {Xns}, oy 45 a Harris chain.

(ii) The stationary measure v is unique up to a constant.

(i) In the positive recurrent case ||v| < oo, the P,—distribution of X
converges to m = v/||v|| in total variation.

(iv) In the null recurrent case, Pp(X; € F) — 0 for any set F € & with
v(F) < oo.

Proof. In case (b), we can impose an additional randomization by letting
the regenerations occur at times after visits to R that are not fixed at r
but uniformly distributed on say (a,b). Then it is immediately clear that
the cycle length distribution is absolutely continuous, and we may proceed
exactly as in the following argument for case (a). First (iii) follows by
Corollary 1.4. For (i), we first show that R is recurrent for {X,s}. Letting
B; be the forward recurrence time of the imbedded renewal process, it
follows from {d} being recurrent for {B;} that [0, d] is recurrent for {B,s}.
Also when cycles are spread out, it is easy to see by a renewal argument
that g(t) = PA(X: € R) > € > 0 for ¢ in an interval of length > 24,
therefore for t € [(m — 1)d,md] with m suitably chosen. Hence, if 4 =
0(Xs,Bs: s <t),

D P(Xmimys € R|%ns) > Zg(mé — Bus)I(Bps < )
n=0

ZGZ n5<(5:OO

and R being recurrent for {X,,;} follows by the conditional Borel-Cantelli
lemma. That R is a regeneration set for {X,,s} is then easily proved: if
mod > r, then for x € R we get from (3.1) that

P00 (2, A) > €Pr(Xpmys—r € A).

This proves (i), and (ii) is a consequence of (i) and Theorem 3.5. For (iv),
check that z(t) = Py(X; € F,Y > t) satisfies the assumptions of Corollary
1.3. Hence P\ (X € F') = U * 2(t) converges to [z/u=v(F)/u=0. That
P.(X: € F) — 0 then follows by conditioning upon Y. a.

Clearly, the proof of (iv) applies to the case T = N as well, and thus:

Corollary 3.9 In the discrete—time null recurrent case, P, (X, € F) — 0
whenever v(F) < oo.
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Turning to the periodicity problem, we have the following result
concerning the existence of cyclic classes.

Proposition 3.10 For T = N, there exists a d =1,2,... and a partition-
ing E = E1U---U Ey such that P(x,E;y1) = 1 for all x € E;\N, where
N is a v—null set (here we identify E4y; with E; and so on). Furthermore,
such a partitioning is unique in the sense that if a different_one is given
in terms of d, B, ..., Eq, N, then d is a multiple of d, d = cd, and after a
cyclic permutation of the E; one can achieve E; = Uy~ lE]Jrkd up to v—null
sets. Finally d can be characterized as the Pyx—period of Y for some [and
therefore any| choice of R, A € in (3.1).

Proof. We start from one representation (3.1) and define d to be the Py—
period of Y,

F, = {zckE: P==i(z R) > 0 for some n=0,1,2,.. 3.

Since R is recurrent, £ = FyU--- U Fy_1. The F; need not be disjoint
but, however, v(F;F;) = 0 for ¢ # j. In fact, otherwise there is a m with
P\(Xn € FiF;) > 0, implying that for some ni,ny both m + nid — ¢ and
m + nad — j are in the support of Y, which is impossible.

A similar argument shows that Px(Xn4+i € F;) = 1 for all n,i. Not-
ing that if v(A) = 0, then Py(X,, € A) = 0 for all n, it follows that if
we define By = Fy, E; = F; — Ey — -+ — E;_1 then FE is the disjoint
union of the F; and P\(X,a4; € E;) = 1 for all n,i. To show that E; ; =
{r € E; : P(z,E;) >0} is a v—null set for j # i + 1, note similarly that
otherwise Px(X,, € E;;) > 0 for some m. Here m must be of the form
nd + ¢ and then Py (X,q4i41 € E;) > 0, which is only possible if j =i+ 1.

Now let E‘o, . ,E i, be a different set of cyclic classes, fix j and choose
i with V(EZ-E']-) > 0. Let 9 be a probability measure that is equivalent to
the restriction of v to EIEJ Then it is easy to see that if A C E;, v(A) > 0,
then Py (Xnq € A) > 0 for all sufficiently large n. Letting first A = EiE]—,
it follows that for some n both nd and (n + 1)d are multiples of d. Hence
d = cd. Next with A = E,-\Ej, Py(X,q € A) > 0 would imply that nd
is not a multiple of d, which is impossible. Hence v(E; \E;) = 0. That is,
if v(E; \E ) > 0, then E; C E up to a v-null set. Choose the numbering
such that Eg C Eo. Then E; C E;, i =0,...,c— 1, E. C Eo, Ec1 C Ei,

o By CEy,...,and E; = US'E, follows |

jtkd

Now let ¢ be a nontrivial o—finite measure on (E, &). We call {X,,} ¢
recurrent if any F' € & with ¢(F') > 0 is recurrent, and yp—irreducible if to
any x € F and F € &with ¢(F) > 0 we can find n with P,(X,, € F) >0
(obviously, ¢-recurrence implies ¢—irreducibility). Then:
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Theorem 3.11 (OREY’S C—SET THEOREM) Let {X,} be @—irreducible
and p(F) > 0. Then we can find C C F, r and € > 0 such that ¢(C) > 0
and P (X, € A) > ep(AC) for all x € C.

The proof is a highly technical application of differentiation results for set
functions and will not be given here (see the Notes for textbook references).
However, the result permits us to characterize Harris chains (as defined here
by existence of regeneration sets) in the following more traditional way:

Corollary 3.12 A Markov chain is a Harris chain if and only if for some
@ it is p-recurrent. In that case, any set F with v(F) > 0 contains a
regeneration set.

Proof. If a regeneration set exists, the construction of the imbedded renewal
process immediately shows that {X,,} is A-recurrent. Suppose, conversely,
that {X,,} is ¢-recurrent, in particular ¢-irreducible, and let ¢(F) > 0.
Choosing C' as in the C—set theorem, we see that C is a regeneration set.
Thus the stationary measure v exists, the chain is v—recurrent (Corollary
3.3) and we may repeat the argument to see that any F with v(F) > 0
contains a regeneration set. O

We remark that in practical cases the existence of regeneration sets seems
far more easy to check than p-recurrence. For example, for F = R, the
obvious choice of ¢ is frequently Lebesgue measure (possibly restricted to
some interval) and it may be fairly easy to check that every interval is
recurrent. But one needs to show recurrence of every Borel set of positive
Lebesgue measure, and since such a set A can have a very complicated
structure (e.g. A need not have interior points), this is a considerable task.

Finally:

Proposition 3.13 A Markov chain {X,,} with a stationary distribution
admits coupling (cf. Section 2) if and only if it is Harris ergodic. In that
case, for any set F with w(F) > 0 and any two initial distributions p, p'
it is possible to construct coupled versions {X,}, {X,,} with the property
Xp =X} € F, where T is the coupling epoch.

Proof. Suppose first that {X,,} is Harris ergodic, let u, p’, F' be given and
choose a regeneration set R C F as in Corollary 3.12. We construct {X,},
{X,} by first realizing coupled versions of the imbedded renewal process
(this is possible according to the discussion of coupling of ergodic Markov
chains on a discrete state space given in Section 2b). Let T' be the epoch
of the first common renewal. Then we may choose X = X/. distributed
according to A (so that in particular X7 = X} € R C F') and independent
of the renewal process up to T, and construct the remaining X,, n # T,
according to their conditional distribution given X7 in such a way that
X=X, n>T.

Suppose, conversely, that {X,,} admits coupling so that we have total
variation convergence to m. Let A C E, m(A) = 2¢ > 0 and define 7 =
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inf {n > 1: X,, € A}. For any 1, we may find m(¢) such that Py (X, €
A) > € and hence Py (7 < m(¢)) > €. For a fixed z € E, we now succes-
sively define integers n(1l) < n(2) < --- by n(1) = m(d,) and n(k+ 1) =
n(k) + m(yx), where ¢ is the conditional P,—distribution of X, given
7 > n(k). Then P,(1 > n(k)) < (1 — €)* so that P,(7 < o) = 1 and
m—recurrence follows. Null recurrence is excluded by the existence of a sta-
tionary distribution, and periodicity by total variation convergence as is
easily seen from Proposition 3.10. a

Problems

3.1 The Ornstein—Uhlenbeck process with parameter & > 0 may be described
as a Markov process with state space R and the P,—distribution of X; being
normal with mean e~%'z and variance (1 — e~2¢%)/2¢. Show that (a) the normal
distribution 7 with mean zero and variance 1/2¢ is stationary: (b) any discrete
skeleton {Xps},, oy is Harris recurrent [Hint: Test functions]; (c) X; converges in
total variation to .

3.2 Show that if (3.1) holds for +1 (with the same R, A!) as well as r, then the
chain is aperiodic.

Notes The theory was initiated largely by Harris in the 1950s (though Doeblin
had some early results) and further main work done by Orey and others in the
1960s. The role of regenerative processes and minorization conditions such as
(3.1) was realized independently by Nummelin and Athreya and Ney around
1978. A main textbook treatment is Meyn and Tweedie (1993). See also Orey
(1971), Nummelin (1984) and Revuz (1984).

A nontrivial queueing application is given in XII.2. Among many further
examples, we mention in particular Sigman (1988) and Dai (1995a).

4 Markov Renewal Theory

By a Markov renewal process we understand a point process where the
interarrival times Ty, Th,... are not necessarily i.i.d. but governed by a
Markov chain {J,} with (finite or countable) state space E. This Markov
dependence of the T, may be formulated in various equivalent ways.
One formulation is that 7T;, is sampled according to the current val-
ues of Jy, Jpt1. With 52 = o(Jo, J1,...) this means that Ty, T1,... are
conditionally independent given .7 with

P(Tn <t | f% = P(Tn <t ’ Jn7 Jn-l—l) = Gij (t) (41)

on {J, =14, Jp11 = j} for a suitable family (Gy;) jer of distributions on
(0, 00). Equivalently, one may think of J,, 41,7}, being sampled simultane-
ously according to the current value of J,,. That is, {(Jn+1,Tn)} is a Markov
chain on F x (0, c0) with the transition function depending only on the first
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coordinate. In particular, letting @ = (¢;;) denote the transition matrix of
{Jn} and Fj; = ¢;;G;;, we have

Fij(t) = P(Jppr =4, Tn <ty =1i) = Pi(J1=4To <t) (4.2)

where P;, E; refer to the case Jy = i. The matrix F' whose elements are the
measures Fj; is called the semi—Markov kernel, and we define the associated
semi-Markov process {Wy},~q by Wy = Jo for t < To, Wy = Jy for Ty <t <
Ty and so on. Obviously, the semi-Markov process and the Markov renewal
process are in one—to—one correspondence (at least subject to regularity
conditions like g;; = 0, To + T1 + - - - = 00), and we shall not keep a formal
distinction between them.

We note that the process reduces to a renewal process if E consists of
one point, to a Markov chain with state space E if all G;; are degenerate
at 1 and to a continuous—time Markov process with state space F if all
G;; are exponential with intensities depending only on 7, 51-]- (t) = e~ MOt
Thus, the Markov renewal process may be said to extend the continuous—
time Markov jump process in the same way as the renewal process extends
the Poisson process. We take these remarks as sufficient motivation for
developing the theory and give just one practical example.

Example 4.1 Suppose in the traffic theory example V.1.2 that two types
of vehicles are possible, e.g. cars and trucks. Then clearly the distribution
of the distance between two vehicles depends in an essential way on their
types. One could also model clumping by letting the type of a vehicle be
its number in a clump. Suppose that a clump consists of n cars w.p. g,
(g1 + g2+ --- = 1) and that the sizes of the clumps are independent. Then
the Markov chain goes from state n to state 1 w.p. ¢n/(qn +gn+1+---) and
to state n+ 1 otherwise, and one could take all G,1 = Hy, all Gy, (4.1) = Ha
(with H; stochastically larger than Hs). a

The following observation is the key to Markov renewal theory:

Proposition 4.2 The instants t of returns to i (Wy =i, Wi_ # i) form a
renewal process that is nonterminating if {J,} is recurrent. In that case,
the mean interarrival time is p/v; where v is the stationary measure for

{Jn} and n = Zi,jEE Vifij with Hij = foootﬂj (dt)

Proof. The first statement is obvious and letting 7 = inf {n > 1: J, = i},
it is seen that if Jy = 4, then Ty + - - -+ T~ _1 is the first interarrival interval
of the renewal process. Hence, letting m(i, j) = [;°t Gi;(dt) (so that j;; =
gi;m(i, 7)), the mean interarrival time is

Ei(To+-+Tr1) = Eiy Ei[Tu7>n|]

n=0

= E; ZI(T > n)m(Jn, Jn+1)

n=0
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= 3 mGKE Y I(Jn =G, Jur1 = k7 > 1)
JkEE n=0

= Z m(jak)qjkEiZI(Jn:jaT>n) = Z Mjkl/_]: = ﬁ
j.kEE n=0 j kEE Vi Vi

O

In a standard manner, one can now prove that if {J,} is irreducible
recurrent, then the interarrival distributions corresponding to Proposition
4.2 are either nonlattice for all ¢, or all lattice with the same span. We call
the Markov renewal process (or equivalently the semi-Markov kernel F')
nonlattice in the first case and lattice in the second.

For two kernels F', G we define H = G x F as the kernel with elements

H;j(t) = ZGik*ij(t) = Z/Otij(t—u)Gik(du)

keE keE

and the convolution powers F** the obvious way (with Fi’;.o (t) = 6;5I(t >
0)). Using (4.2) and induction, one can immediately check that the
interpretation in terms of Markov renewal processes is

FF@) = Pi(Je=54,To+ -+ Th1 < t). (4.3)
Define finally the Markov renewal kernel U as U = Y ;" F™. We then

have the following generalization of Blackwell’s theorem:

Theorem 4.3 Consider a Markov renewal process with semi-Markov ker-
nel F' and Jo = Wy =i. Then U;;(t) is the expected number of returns to
j before t,

oo
Uy(t) = Y Bi(Jn=5.To+ -+ Toor <) (4.4)
n=0
In particular, U;;(t) < oo and in the nonlattice case it holds in the notation
of Proposition 4.2 that U;;(t + a) — U;;(t) — av;/p, t — oo.

Proof. Here (4.4) is clear from (4.3), and the rest of the theorem is an
immediate consequence of Proposition 4.2 and one-dimensional renewal
theory. O

The Markov renewal equation (or multivariate renewal equation, system
of coupled renewal equations, etc.) has the form

t
Zi(t) = z(t) + Z/ Z;(t —u) Fy;(du), i€ E, (4.5)

jee”0
where the Z; are unknown functions on [0,00), the z; known functions

on [0,00) and the F;; known bounded measures on [0, c0). Equation (4.5)
can be rewritten in matrix form as Z = z + F x Z, with the convolution
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defined in the manner consistent with (4.5), and in a similar manner as in
one dimension we have:

Proposition 4.4 Suppose that F is a semi-Markov kernel (ie. Q =
(|[Fi;]l) a transition matrix) and that {J,,} is irreducible recurrent. Then if
zi > 0 and the z; are bounded on finite intervals uniformly in i, it holds that
Z = U x z is the unique solution to (4.5) with the Z; uniformly bounded on
finite intervals.

Proof. Since U = F** + F« U, F* « z = z, it is clear that Z = U * z is
well defined and solves (4.5). Given two solutions of the type considered,
their difference D = (D;) satisfies D = F+ D = --- = F** % D so that
with Df = |D;| we get |[D*| < F** x D* and Ky < oo where Ky =
sup;e g i< Dj (t). To prove that D =0, let 0 <t < T and assume w.l.o.g.
that K7 = 1. Then D* < F** 1 on [0,T] and hence by (4.4),

Di(t) < NOFF(t) = Pi(To+ -+ Ty <),
jEE
We claim that To + 71 + - -+ = 00 a.s. so that indeed D;(t) = 0 follows as
k — o0. To see this, note simply that the T}, with J,, =i, J,+1 = j are i.i.d.
given ¢ and not degenerate at 0, and that P(J,, = i, J,11 = ji0.) =1
for some 4, j by recurrence. O

Using Theorem 4.3, one can now deduce exactly as in one dimension that
if z; is directly Riemann integrable (d.R.i.), then
vj

From this one expects the generalization

1 o0
Zi(t) = Y Uyrz(t) — =Y v / zj(z) da. (4.7)
icE Wiee o
of the key renewal theorem. However, if E is infinite one cannot deduce
(4.7) from (4.6) without imposing some further conditions. We shall not go
into this but will be satisfied by noting;:

Corollary 4.5 Suppose in addition to the assumptions of Proposition 4.4
that F is nonlattice, that E is finite or, more generally, that z; = 0 except
for a finite number of i, and that the z; are d.R.i. Then (4.7) holds.

We shall also derive an analogue of the asymptotic estimates of V.7 for
the case where the rows of @ not necessarily have sum 1:

Theorem 4.6 Consider the Markov renewal equation (4.5) with E =
{1,...,p} and Q = (||F”||) irreducible. Suppose that for some real 3 the
matriz A = (a;;) where a;; = [, €”* Fij(du) has spectral radius 1 and
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choose v, h withvA=v, Ah=h,v; >0, h; >0,i=1,...,p. Then

E;(du) = %eB"Fw(du)
0

defines a semi-Markov kernel F with Q = (HEJH) irreducible recurrent.
Let further Zy(t) = eP Z;(t ()/hi, Zi(t) = e 2i(t)/h;. Then Z =z + F x Z
implies that Z = Z+F«Z. Hence sz is nonlattice and the z; d.R.i., then

1< o
hm Z = —Z / x) dx,

where U is stationary for Q, hence

p 00
h; Z v; /0 P2 (x) d

Jim e Z,(t) = = (48)

Zykh/ xe? ¥ F;( da:)
k,j=1

Proof. That Q = (hjai;j/h;) is a transition matrix is immediate and has in
fact already been noted in 1.6 where it was also found that v; = v;h; (the
existence of v, h, v is ensured by 1.6.5). The rest of the proof is trivial
manipulation. O

For conditions for § to exist, see Problem 4.3.

Example 4.7 Consider the Lotka—Sharpe population model from V.2.2,
but assume now that each woman has one of p types. The type can change
during life and could, for example, be one of p social groups, one of p
geographical regions in which the woman lives, or the parity of the woman,
i.e. the number of children already born (then group p comprises all women
having p — 1 or more children). In such situations, it is highly relevant to
assume that the birth rates and survival rates depend on types, say type
i women aged a give birth to type j daughters at rate A;;(a) and can be
found ¢ time units later in group j in an average proportion of ;p(i,7).
Then if Z;(t) is the rate of birth of type i girls at time ¢, f(gj) (a) the density
of type 7 women aged a in the initial population, we get exactly as forp = 1

Zi(t) = Z / — 8)spo(J, k) Aki(s) ds,
J,k=1
where

p oo
Z/ f(]) )tPa(J, k) Axi(a + ) da.

7,k=1 0
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This is of the form (4.5) with

dF;;(x P )
% =) w0, k) Aki (),
k=1
and the program of Theorem 4.6 may be carried through to obtain
asymptotic estimates of the form Z;(t) ~ e Ptc;. O
Problems

4.1 Suppose that the Markov chain Jo, J1,... imbedded in a Markov renewal
process is transient and define the lifetime as L = To 4+ 11 + - - -. Explain that,
in contrast to the recurrent case, it is possible that L < co a.s. Define Z;(t) =
P;(L < t). Show that Z = U * Z and that the solution of the Markov renewal
equation needs not be unique in the transient case.

4.2 Consider a Markov renewal equation of the form

Z1(t) = Zl(t)+F11 *Zl(t)+F12 *Zg(t)
Zo (t) E) (t) + Foo x Zo (t)
where 0 < [|[Fi1]] < 1, ||F11]| + ||Fi2|| = ||F22]] = 1. Show that the solution is

unique and find its limiting behaviour.

4.3 Consider the set—up of Theorem 4.6 and suppose that @ is irreducible with
1 < spr(Q) < co. Show that § always exists. [Hint: Let A = Ag be as in Theorem
4.6, p(B) = spr(Ag), p(B,A) = det(B — AI). Show that dp/0\ evaluated at
B = Ag, A = p(0) is nonzero and thereby, using the implicit function theorem,
that p(B) is continuous in 8. Show finally p(8) — 0, § — —o0.]

Notes See the next section.

5 Semi-Regenerative Processes

The concept of semi-regenerativity generalizes regenerative processes by
allowing the regeneration points to be of several types, indexed by i € E
where F is finite or countable. Thus instead of an imbedded renewal process
we have an imbedded Markov renewal process specified say by {(Jn, 1)}, -
Each time state i is entered, the semi-regenerative process { X;} is restarted
subject to the i¢th set of initial conditions and independent of the Markov
renewal process up to that time.

More formally, let T = N or T = [0,00) and let (P;);cg be a govern-
ing set of probabilities for {X;}, ;. We then call {X;} semi-regenerative if
we can find a Markov renewal process (possibly defined on an enlarged
probability space), such that for any n the conditional distribution of
{Xt+T0+"'+Tﬂ*1}tE']I‘ given Ty, ..., Th_1, Jo,...,Jn_1, Jn = © is the same
as the P;—distribution of {X;} itself. Thus if E consists of one point, the
concept reduces to regenerative processes. Even in the general case, we
have:
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Proposition 5.1 Any semi—regenerative process with {J,,} recurrent is re-
generative, with the instants of returns of the Markov renewal process to
1 € E as an imbedded renewal process.

This is an immediate consequence of the definitions. From the point of
view of proving the existence of limiting distributions, semi-regenerative
processes are therefore not a much more powerful tool than regenerative
processes. Rather, the formulas derived for the limits may be somewhat
more convenient than the expression (EC)™'E foc f(Xy)dt for regenerative
processes, and at least serve the purpose of doing some reduction once and
for all:

Proposition 5.2 Consider a semi-regenerative process with {J,} irre-
ducible recurrent, say with stationary measure v. Define C = Ty and
suppose that p = 3, ;E;C is finite. Then:

(i) if T = [0,00), the imbedded Markov renewal process is nonlattice and
{X:} has metric state space and right—continuous paths, then the limiting
distribution exists and is given by

1 C
B SO = B[ (5.1)

JEE
(ii)) if T = N and the imbedded Markov renewal process is aperiodic on N,
then the limiting distribution exists and is given by (5.1) with fOC replaced

by S5

Proof. First check that the expression given for p is the same as in Proposi-
tion 4.2. Hence if ;4 < 0o, we may appeal to Proposition 5.1 and use VI.1.3
to get the existence of the limit as well as the expression

& Lo
E.f(X)) = E-—%Ei/o FOX)dt = ;E/O XA (52)

where C = To + -+ Tro1, 7 = inf{n>1:J,=1}. Now the
semi-regenerative property implies

Tot+Ts
/ FOX)dt

To++Tk—1

c
E; ﬂ)a~"7Tk1;J();"'7Jk] = E; [ f(Xpdt

0

on {Ji = j}. Hence (5.2) can be written as

T—1 C C 7—1
V; Vi .
;EiZEJn/ f(Xp)dt = ;ZEJ/ FX)dt B Y I, =),
n=0 0 0

jeE n=0

and since the last factor is just v;/v;, (5.1) follows. The proof of (ii) is
entirely similar. O

Corollary 5.3 Let {X,,} be an irreducible recurrent Markov chain with
discrete state space E and let X,f be the value of X,, at the kth visit to
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FCE, 7(F)=inf{n>1: X, € F}. Then a measure v is stationary for
{X,} if and only if (v;)icr is stationary for {Xf} and

T(F)—1
= Y B Z I(X (5.3)
keF
Proof. Let i € F be fixed and define 7 = inf{n>1: X,, =4}, v; =
E; 2771 I(X,, = j). Then according to 1.3.9 (cf. also Proposition 3.4),

it only remains to show that (5.3) holds. But letting J,, = X', C = 7(F),
7 = inf {n >1: XF = z}, the expectation in the deﬁnltlon of v; may

then be evaluated exactly as in the proof of Proposition 5.2 and we get

-1 c-1
vi = Y By, I(Xf:k)]EkZ I(X, =
keF n=0 —
keF keF

O

Notes A classical source for Markov renewal theory and semi-regenerative pro-
cesses (in the case of a discrete E) is Cinlar (1975). As argued in the text, the
extension from renewal theory and regenerative processes does not present in-
trinsically new mathematical difficulties in the discrete case, but nevertheless
the versatility of the set—up makes it highly useful and popular in applications.
A broad spectrum of topics in the area can be found in the volume edited by
Janssen and Limnios (1999).

Markov renewal theory on a general state space E has received considerable
attention. See Alsmeyer (1997) for a recent contribution and references.

6 Palm Theory, Rate Conservation and PASTA

Assume that a stochastic process {X;} has a stationary distribution 7 and
that we sample it at a sequence of random time points {7} }. Then the
stationary distribution of the X7, (if it exists) is typically not 7 but some
other distribution v. What can be said about the relation between 7 and
v? In particular, in which situations is indeed m = v7

The prototype of this sort of question is the comparison of the stationary
current life distribution in a renewal process and the interarrival distribu-
tion. Here the waiting time paradox means that sampling at an arbitrary
point of time favours long interarrival intervals. The precise formulas for
this biasing effect are given in V.3, and we will see that closely analogous
results hold more generally.

Example 6.1 As a further motivating example, consider a Markov—modu-
lated Poisson process generated by an ergodic Markov process {J;} with a
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finite state space E and intensities 3;, i € E. Then arrivals occur as in a
Poisson process with intensity §; when J; = i. Write 7 for the stationarity
distribution for {J;} and v for the stationarity distribution of the Markov
chain {Jp, } where {T}} is the sequence of arrival epochs. To compute v, we
use a time—average argument. The fact that the average time spent in state
1 up to time T is approximately ;T implies that the number of arrivals up
to time T occuring while J; = ¢ is approximately

T
ﬁz/ I(J; Zi) dt ~ Tg;m;.
0

Summing over i, it follows that the total number of arrivals is approximately
T ;cp Bimi. Identifying the fraction of the arrivals occuring in state i with
v;, we finally get

Bimi
Vi = ———71—. (6.1)
> ier BT
Again, we have an instance of biasing: sampling at arrival times favours
states ¢ with a large ;. |

Palm theory is a general framework in which to carry out these types
of calculations (and much more general ones!). The traditional setting is
marked point processes, but to adhere more with the mainstream of this
book, we choose a formally different but mathematically equivalent one in-
volving a pair of a stochastic process and an associated sequence of random
time points.

The object that we sample “at an arbitrary point of time” or at the
event times is a stochastic process 2 = {X;}; most often we assume that
Z has doubly infinite time, ¢ € (—00,00) (in the stationary case, this can
always be obtained by a standard construction). The shifted process 0.2
is defined by (052): = Xi+s. The event times at which we sample are

e < T o <T 1 <0< Ty <TH <+~

and the sequence {1y}, _ 1 1o is denoted J. The shift 657 is defined
by (0s:7)r = TN+ — s where Ny = max {{ : T; < t} (note that (67,.7), =
Tjyr — Tj;). Write further N(a,b] = N(b) — N(a), a <b.

We write 2 = (£,.9), 0.2 = (0:Z,059) and call Z time-stationary
w.r.t. some probability measure P if the P—distribution of 6.2 does not
depend on s. Similarly, 2 is event—stationary w.r.t. some Py if the Py—
distribution of 67, Z does not depend on k (we will adopt the convention
that also Po(Tp = 0) = 1 is required).

If Zis time-stationary, we define the intensity A as the rate of events
occuring per unit time,

A= %IEN(t,t+h] = %E#{i: T; € (t,t+h]};
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we shall assume in the following that A < co. The interpretation is similar
as for a Poisson process (except for certain independence properties!):

Proposition 6.2 In the time-stationary case, A does not depend on t and
h, and one has A > 0, P(Ty = 0) = 0 and

P(lo<h) . PWNp2>1)
o h =m—y =X (62)
< : >
i SRy BV N 2 2] (6.3)
R10 h h10 h

Proof. For the first statement, define p(h) = EN(¢,t + h]. By stationarity,
@(h) does not depend on ¢ and is additive, p(h1 + ha) = w(h1) + ©(ha).
Since ¢ is increasing, this implies ¢(h) = he(1) and the independence of
A on h. That A > 0 follows by choosing h with P(0 < Ty < h) > 0 (then
EN(0, k] > 0), and P(Tp = 0) = 0 follows since the probability of an arrival
at t does not depend on ¢ and therefore must be 0 (cf. also A2.3). The proof
of (6.2), (6.3) is given below. O

Theorem 6.3 Assume that = (X2, 9) is time—stationary w.r.t. P. Define
a new probability measure by

1
P F) = —E 1 F). 4
o(ZeF) = - ;M (0, Z€ F) (6:4)

Then Py does not depend on the choice of t and h > 0. Furthermore, Z is
event-stationary w.r.t. Py and and EoTy = A~ L.

Proof. That Py is a probability measure follows easily by checking that the
r.h.s. of (6.4) has the relevant properties (e.g. o—additivity) as a function of
F', and the independence of ¢, h follows as in the proof of Proposition 6.2.
Taking F' = {Tp = 0} and using (01, 9o = T; — T; = 0 yields Py(Tp = 0)
=1.

Now consider event—stationarity. Taking ¢ = 0 in (6.4) yields

Py(0r, Z€ F)
1 Nh
Po(Z €05 F) = 5 EZI(GTiQPG 07 F)

Np Np+1
1
= EEZ[(GTM&WEF = z; (07, Z € F)
1 1
< = — )
< o (1 +]EZI (07, Z € F)) o+ Po(Z€F)

Letting h — oo yields Po(0n, Z € F) < Po(Z € F). The proof of > is
similar (or follows by replacing F' by F°).
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Finally, if To(1) = inf {T}, : T} > 1}, then Tp(1) Z 1 4+ T, and hence
Ny
AE(Ty = B> (Tia—Ti) = E[To(1)—To; To < 1] = E[Tp(1)—Tp] = 1.
=1
O

The probability measure Py in Theorem 6.3 is called the Palm distri-
bution associated with P. The traditional interpretation of Py is as the
conditional P—distribution given an event at 0, i.e. Ty = 0. In fact, it follows
from (6.2), (6.3) that

Po(Ze F) = hmEE > I, ZeF)
: 0<T; <h

1
ltn 5= EI(07, 2 € F,Ty <h) = limP(0g, 2 F| Ty < h),

which (at least from the intuitive/heuristical point of view) can be identified
with P(Z°e F|T, = 0).
The following result is called the Palm inversion formula and shows how

to retrieve P in terms of Py. Basically, the formula is just the same as the
one defining the stationary distribution of a regenerative process.

Theorem 6.4 Assume that & = (Z,9) is event-stationary w.r.t. Pg.
Define a new probability measure P’ by

1
kE Ty

Then P’ does not depend on k = 1,2,..., and & is time-stationary w.r.t.
P, If Py is the Palm distribution of a time-stationary P, then P’ = P.

P(FeF) =

Eq / "l reFar (6.5)

Proof. That P’ is a probability measure follows just as before. Let
T
W= W(2) = / 1(6: 7 F)di
0

Recalling Py(To = 0) = 1, we have

Trt1

W0, 2) = 10, Z€ F)dt
T
Pp—a.s., which in conjunction with event—stationarity implies the desired
independence of k.
For time-stationarity, we must prove that 2 and 6,2 have the same
P’—distribution. But

1 T
IP”(HSE'ZG F) = kjEOTl Eo/ I(HS_HE'ZE F) dt

1 Tk+é
= ——FE I1(0 F)dt
kEoT1 o/s (0, Z€F)
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1 T S
= (s+Ey [ I F)dt) = P(Ze F).
T (s—|— 0/0 0. %€ )dt) o P2

Letting k — oo yields P'(0,.2 € F) < P(Z € F), and the proof of > is
similar.

Finally, assume that Py is the Palm distribution of P and let Tp(1) be as
in the proof of Theorem 6.3. Then

P(ZeF) = —~E ) /THlI(fo F)d
S = - L € t
EoT1 A 0<Tr<1 Ty

To(1) 1
- E/ [0, %e F)dt = ]E/ [0, %c F)dt = P(Z€ F),
To 0

where the two last steps both use the time—stationarity of P. O

Proof of (6.2), (6.3). By the Palm inversion formula with k = 1,

T
]P)(O<T0§h) = /\Eo/ I(0<T17t§h)dt
0

T
- )\EO/ 100 < v < h)dv = AEo(Ty Ah).
0

But (71 A h)/h is dominated by 1 and has limit 1 as h | 0 so that the
expectation has limit 1, establishing the claimed asymptotics for P(0 <
To < h) in (6.2). Similarly,

T
P(N(0,h)=1) = )JEO/ I0<Ty—t<hT,>t+h)dt
0

T
- )\IEO/ I(T —To+h <v<h)dv
0

= A [Ty Ah—TiA(Ty =Tz +h)]" = A+ o(h),

where the last identity follows by the same dominated convergence ar-
gument (note that (T — T + k)T equals 0 for h small enough since
Ty < T5). Combining these estimates with the definition of X\ yields
E[Np; N, > 2] = o(h), and the rest of the proof is then easy. i

We now turn to some first applications. The first result is to intensity—
driven point processes (part (ii) will be used in XI.5; for Cox processes, see
A3):

Proposition 6.5 Consider a Cox process with time—stationary intensity
function {B(t)} with A = EG(t) < oo, and write B(t) = fot B(s)ds. Then:
(i) the Palm distribution of B(0) is given by Eo f(8(0)) = E[B(t) f(8(t))]/A:
(ii) EoB~(a) = a/X for all a.

Proof. Part (i) is straightforward from P(N (0

,h] =1,5(0) € A) =P(B(0) €
A)B(0)h 4 o(h) (use the a.s. continuity of 5(-)

1
at 0, cf. A2.3). For (ii), we
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use the representation T, = B~(T}) in terms of an independent Poisson
process { N}, cf. A3. Since T}, is Erlang(k) with unit rate, this gives E¢T), =
fooo a*=1/(k—1)!e *EqB~!(a) da. Multiplying by (1 —s)*~! and summing
over k=1,2,... gives

> = > k 1
/ e EoB (a)da = Y (1-s)" BTk = Y (1—-s)'T = —;,
0 k=1 k=1 A A
and EqB~1(a) = a/\ follows by Laplace transform inversion. O

We next give a formal version of the rate conservation law, which was
used at the intuitive level in V.3 to derive the stationary excess distribution
Fy of a renewal process and will be further applied to the GI/G/1 queue
in X.3-4.

Theorem 6.6 Let 2= (2,9) be time—stationary, such that X is real-
valued and a jump of X of size Uy occur at time Ty, [formally, Uy = 0
is not excluded], and that {X;} is right differentiable and continuous on
(Tk, Ti+1) with sample path derivative Yy at t. Then NEqUy + EYy = 0
provided all expectations are finite.

Proof. Just note that

1
0 =EX,-Xo] =E| > Ui+/ Y,dt| = MEoUp+EY,. O
i1 0<T;<1 0

We finally consider PASTA (Poisson Arrivals See Time Averages), which
in the language of Palm theory means that the time— and event—stationary
distributions coincide for systems driven by a Poisson input process {N¢}.
By “driven by Poisson input” we mean that for any ¢ the processes

{Ns = Ni}ys, and {(Xs, Ny)} (6.6)

s<t
are independent. In particular, X;_ is independent of the event A; of a
Poisson epoch at t. However, typically X; and A; are dependent: e.g. in
classical examples such as queueing models with Poisson arrival of cus-
tomers or shot—noise processes, an arrival at ¢t typically triggers a jump of

{X¢}

Theorem 6.7 Assume that & is time—stationary w.r.t. P, that T is a
Poisson process with rate X\ and that there is independence in (6.6). Then
P()(X()f S F) = P(X() € F)

Proof. Taking h = 1 in the definition of Py and noting that an event in
[t,t 4+ dt) occurs w.p. Adt, we get

1 1 1
Po(Xo_ € F) = X/ P(X, € F| A dt = / P(X, € F)dt
0 0
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1
= / P(X, € F)dt = P(Xy € F),
0

noting that by right—continuity and stationarity X;_ = X; P-a.s. for any
fixed ¢ (cf. A2.3). O

Problems

6.1 Let 2= (%, J) be time-stationary on R and ® : R x (D x R%) be a bounded
measurable functional. Show Campbell’s formula

oo

E Y (T, 0n,2) = )\/ Eo®(s, Z)ds.

k=—o0

[Hint: Consider first the case where ®(s, &) =1(t < s <t + h)U(2)]

6.2 An event F is called time—shift invariant for Zif {6, 2°€ F'} does not depend
on t, and event-shift invariant if {0, 2°€ F'} does not depend on k. Show that
these two concepts are the same. [Hint: To see that event—shift invariance implies
time-shift invariance, let T < t < Tiy1 and use {6,; € F} = {01,0:.Z € F}]
The set of events that are invariant in this sense is denoted by .#, the invariant
o—field, and a stationary process is ergodic if P(Z°€ I) =0 or 1 for I € 4.

6.3 For a time-stationary process, define a new one Z* by Z* = 0y % where U

is uniform on (0,7’ and independent. Show that 2~ Z % no matter T. Let next
% = 6v % where V is uniform on {Tv,...,Tx} and independent. Show using
Birkhoff’s ergodic theorem that £ has a limit P§ in distribution as K — oo, and
that P = Py in the ergodic case but not in general.

6.4 Let z(t) be the periodic extension of the function z(t) = ¢ for 0 < ¢t < 1,
=1—(t—1)/2for 1 <t <3, and Xy = z(t+U) where U is uniform on (0, 3). Let
{Tx} be the epochs of crossing of level 1/2. Compute Po(Xy = a), a = 1,—1/2.
Now define P¥ () = lim o P(-| Xo € (1/2 — ¢,1/2 + ¢€)) and show that P¥ # Py.

Notes Franken et al. (1982) is a classical reference for Palm theory. More recent
expositions are in Daley and Vere-Jones (1988), Sigman (1995), Serfozo (1999),
Rolski et al. (1999), Thorisson (2000) and Baccelli and Brémaud (2002).

Problem 6.3 shows that the evaluation of Py as a limiting time average per-
formed in Example 6.1 is only valid in the ergodic case. Sigman (1995) gives a
careful study using Pj as the fundamental object, including an “empirical Palm
inversion formula” showing how to retrieve P in terms of Pg.

In Problem 6.4, ]P# is constructed from a conditioning based upon a vertical
window (in the z—direction) rather than the horizontal one (in the t—direction)
used in Palm theory. This is common in Gaussian processes (where also more so-
phisticated windows have been proposed); see e.g. the treatment of Rice’s formula
in Leadbetter et al. (1983) [Rice’s formula gives the distribution of the sample
path derivative X’ at a level crossing under suitable sample path differentiability
assumptions].

The rate conservation law is due largely to Miyazawa and surveyed in his (1994)
paper; see also Sigman (1995). The literature on PASTA and its generalizations
is extensive. See e.g. Wolff (1989) for the basic theory and Melamed and Yao
(1995) for generalizations and similar results.



VIII
Random Walks

1 Basic Definitions

We consider a random walk S, = X7 +---+ X,, (So = 0) where the X,, are
i.i.d. with common distribution F'. The case where F' has support contained
in a half-line (—00,0] or [0,00) is to a large extent covered by renewal
theory, and so we assume that supp(F') contains points of both positive and
negative sign (in particular, F' is nondegenerate). In statements concerning
the mean EX, it is understood that this is welldefined, i.e. that EX* and
EX~ are not both infinite (thus we may have EX = +o00 or EX = —0).
Also, in expressions such as P(S, € A) or Ee'*r with 7 a stopping time
it is understood that the integration is carried out on {7 < co} only (in
contrast, Zg_l may well be an infinite sum).

The relevance of random walks for queueing theory should already be
clear from the discussion of Lindley processes in II1.6. A main point was
found there to be the study of the distribution of the maximum, but a
number of further quantities are important, both as technical tools and
because of other queueing interpretations (e.g. the so—called ladder epochs
and ladder heights, a terminology arising from path decompositions to be
discussed in Section 2, will be found in Ch. X to be closely related to busy
periods and busy cycles). For the sake of easy reference, we start by a list
of the functionals to play an important role in the following. For graphical
illustrations, see Fig. 1.1 (path (b) has M = 0 and 7 = 00).



Bw)

Sz

5

T+

B(e0)

=)

1. Basic Definitions 221
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Figure 1.1

the partial mazimum maxo<p<n Sk of the first n partial sums.

the (total) mazimum supy<j, ., Sk (Which may be infinite). Clearly,
M, T M asn — oc.

75 inf{n >1: S5, >0}, the first (strict) ascending ladder
epoch or the entrance time to (0,00). The distribution of 7, may
be defective, i.e. P(14 = 00) = P(S,, <0 for all n > 1) > 0.

the first (strict) ascending ladder height (defined on {74 < oo} only).
the (strict) ascending ladder height distribution Gy (x) = P(S;, <
x). Here G is concentrated on (0,00) and may be defective, i.e.
IG4] = P(ry < @) < 1.

=7" =inf{n >1: S, <0} the first (weak) descending ladder epoch
or the entrance time to (—oo, 0].

the first (weak) descending ladder height (defined on {r_ < oo}
only).

the (weak) descending ladder height distribution G_(x) = P(S;_ <
x). Here G_ is concentrated on (—o0,0] and may be defective, i.e.
IG_|| = P(7—- < o0) < 1.

the time inf {n > 1: S,, > u} of first passage to level u > 0 or the
entrance time to (u,00). The distribution of 7(u) may be defective.
Clearly, 7(0) = 7.

the overshoot S;(,) — u. Clearly, B(0) is the ascending ladder
height S, .

a r.v. having the limiting distribution (if it exists) of B(u).

It is seen that there is a slight asymmetry between positive and negative
values, cf. the strict inequality S,, > 0 in the definition of 7 and the
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weak inequality S, < 0 in the definition of 7_; this corresponds to different
treatments of values n > 0 with S, = 0 (if F' has a density, this event has
probability zero and the difference vanishes). Weak ascending and strict
descending ladder epochs can be defined the obvious way by

¥ =inf{n>1:5,>0}, 7% =inf{n>1:5,<0}.

The corresponding ladder heights are STI’ Srs= with distributions say GY,
G® . These quantities may be needed in arguments involving sign changes,
say if we want to study the minimum info<p<oo Si rather than the maxi-
mum M. Fortunately, a separate treatment can almost always be avoided
by reference to the following result:

Proposition 1.1 Define ( =P(S; =0) =P(r— #72). Then ( <1 and
C=P(Srv =0) =P(ry # 1Y), and if oo is the distribution degenerate at
zero, then

GY =+ (1-0OGs, G =Cho+(1-0G. (1)
The proof is based upon a trivial but important observation:

Lemma 1.2 Letn be fized and define S} = Sp,—Sn—r = Xn—k+1+ -+ Xn,
k=0,...,n. Then {S;}t Z{Si}n.

Proof of Proposition 1.1. For any n, we get by Lemma 1.2 that

P(Sp = 0,7 =n) = P(S;=0,5 <0.k=1,....n—1,5] =0)
IP(SO:O,SnfSn,k<0,k:1,...,n71,5n:0)
= P(Sy=0,5>0¢=1,....n—1,5,=0) = P(S,_ =0,7— =n)

=n-— an = W = ollows summation over n. e relation
(ﬂ k) d (¢ P(S v O) foll by i Th lati
(1.1) is obvious, and finally 1 — ¢ > P(X; < 0) > 0. |

We shall also need:

Lemma 1.3 G is lattice with span d if and only if F is so, and in par-
ticular nonlattice if and only if F is so. The same statement holds with G+
replaced by any of GY, G_, G5_.

Proof. Tt has to be shown that G4 is concentrated on {0, +d, +2d,...} if
and only if F'is so. The “if” part is obvious, and for the converse we may
assume d = 1. That is, we have to show that if G is concentrated on N,
then F' is concentrated on Z. Obviously, supp(F)N(0,00) C supp(G4) C N
so we have to show that X,I(X; < 0) € Z. But this follows since a path
with X7 < 0, X > 0, k = 2,..., 7 has positive probability and satisfies
n = S;, = X1 +m for some n,m € N. The last assertion of the lemma
follows by symmetry arguments and (1.1). O
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Problems

1.1 Show that 74 Z To+T)+--+Ty_1 where Ty, Ty, ... are independent, T} is
distributed as 7 given S-,—_‘;‘_’ > 0, Th, T3, ... are distributed as 7} given Sﬂ =0
and o is independent of the Ty with P(c =n) = ¢"'(1-¢),n=1,2,....

Notes Random walks are of course one of the classical areas of probability the-
ory and give rise to a broad spectrum of problems, of which the present treatment
only covers a rather narrow range.

2 Ladder Processes and Classification

By iterating the definitions of 7, 7_, we can define whole sequences
{r+(n)}, {r—(n)} of ladder epochs by 74 (1) = 74, 7—(1) = 7— and

T(n+1) = inf{k>7(n): S >S5 )},
_(n+1) = inf{k>7_(n): Sk <S5, m}-

The points in the plane of the form (T+ (n), ST+(n)) are called the ascend-
ing ladder points. Similarly, the (T_ (n),SL(n)) are the descending ladder
points, {ST+(,L)} is the ascending ladder height process and so on; see Fig.

a ascending ladder points

v descending ladder points

Figure 2.1

The importance of these concepts is due to the fact that the segments
of the random walk between (say) ascending ladder points are just i.i.d.
replicates. For example, the ascending ladder epoch process {71 (n)} is a
discrete—time renewal process with governing probabilities f,, = P(r} = n),
thus terminating if and only if |G| < 1. Similarly, the ascending ladder

height process {ST +(n)} is a renewal process governed by G, hence proper
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if and only if ||G1|| = 1. Further, its forward recurrence time process is
easily seen to coincide with the overshoot process {B(u)},~, of the random
walk. Hence the renewal theorem V.4.6 and Lemma 1.3 yield the following
result (the lattice version is obvious and omitted):

Theorem 2.1 The overshoot B(u) is proper if and only if the ascending
ladder height process is nonterminating, i.e. |G| = 1. In that case, it

holds as uw — oo that B(u) 2 if ES; = oo, whereas if S, < oo

and F is nonlattice, then B(u) 2 B(c0) with B(co) having density (1 —
G+ (x))/ES.

Also, it is clear that the maximum M equals the lifetime sup{S, ) :
T+(n ) < oo} of the ascending ladder height process. Hence if we let
Uy = 280 G7" denote the corresponding renewal measure, V.2.9 yields
the elementary but important:

Theorem 2.2 The maximum M is finite if and only if |G| < 1. In
that case, the distribution of M is the normalized ascending ladder height
renewal measure Uy /|| Us|| = (1 — ||G+])Ux.

The renewal measure U, is of basic importance in the following, and
we proceed to give yet a third interpretation as the pre—7_ occupation
measure:

Theorem 2.3 (a)

P(S, > Sk, k = —1,SneA) P(Sy >0,k=1,...,n,8, € A);
(b) U(4) = ]EZT‘_l I(Sn € A), ( )=EY ) [(Sn € 4);

(c) Er = [U4]l = (1= 1G+1) " = U = (@=lG-)

Proof. Here (a) is an immediate consequence of Lemma 1.2, the first part
of (b) is obtained by summing over n and using {S; >0,k =1,...,n}
= {7_ > n}, and the first part of (c) follows by letting A = [0,00) (or R)
n (b). The second parts of (b), (c) follow in a similar way by replacing >
by < in (a). O

We next classify the random walk into several types. The first result is
as follows:

Theorem 2.4 For any random walk with F' not degenerate at 0, one of
the following possibilities occur:

(i) (OSCILLATING CASE) G4 and G_ are both proper, ||G4| = ||G=|| =1
and lim S,, = 400, lim S,, = —oc0 a.s. Furthermore Er, = Er_ = oo;

(ii) (DRIFT TO +00) Gy is proper and G_ defective, and S,, — +o0 a.s.
Furthermore Ery = (1 — ||GL||)_1 < 005

(iii) (DRIFT TO —o0) Gy is defective and G_ proper, and S, — —c0 a.s.
Furthermore Er_ = (1 — ||G+||)71 < 0.
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A sufficient condition for (i) is EX = 0, for (ii) EX > 0 and for (iii)
EX < 0.

Necessary and sufficient (though rather intractable) conditions covering
also the case EXT = EX~ = oo are given in Corollary 4.4. Note that if
say —oo < EX < 0, then Wald’s identity applies and yields

1—|Gy|l = 1/Er. = EX/ES,._ . (2.1)

Proof. Since lim S, is exchangeable, we have by the Hewitt-Savage 0-1
law that lim S,, = a for some constant a € [~oc,00]. If |a| < oo, then
lim (S,, — X1) = a would imply a + X, Z a, which is impossible. Similarly,
IP’(|h_m Sn| = oo) = 1, and hence indeed only the possibilites (i’) lim S,, =
00, lim S, = —o0, (ii") Sy, — oo, (iil’) S,, — —oo occur.

Since S, > 0 and obviously lim S,, = MST+(,L), we see that lim S,, = oo
if and only if the ascending ladder height renewal process is nonterminating,
i.e. if and only if || G4 || = 1. Similarly, lim S,, = —oo if and only if |G% || = 1,
i.e. if and only if |G_| = 1 (Proposition 1.1). Noting that the expressions
for E7_, E7 are just Proposition 2.3(c), it is then seen that indeed (i) <=
(i), (i) < (ii"), (iii) <= (iii’).

By the LLN S,,/n 2 EX, it follows that S, > 0 eventually if EX > 0,
and hence EX > 0 =(ii); similarly EX < 0 =(iii). To see that (i) holds if
EX = 0, suppose that we are, for example, in case (iii). Then Er_ < oo and
Wald’s identity yields ES, = 0 which is impossible since P(S,_ < 0) > 0.

O
Now define U = Y~ ° F*™ so that for any Borel set A C R
UA) = Y P(S,€A) = ED I(S, € A) (2.2)
n=0 n=0

is the expected number of visits of the random walk to A (which may
of course be infinite). Sometimes the term “the renewal measure of the
random walk” is used, but “occupation measure” seems more appropriate.

Lemma 2.5 If F is nonlattice, then supp(U) = R. If F is aperiodic on Z,
then supp(U) = Z.

Proof. Suppose first that F' is nonlattice. Let z € R be fixed and for a
given € > 0, choose T such that d(y,supp(Us)) < € for all y > T (this is
possible in view of Lemma 1.3 and V.5.1). Choose next z < z — T with
z € supp(F**) for some k and u € supp(Uy) with |u — (z — 2)| < e. Then
z + w is clearly in supp(U) so that d(x,supp(U)) < € which letting € | 0
proves that = € supp(U). The lattice case is similar. O

Now if F' is lattice, say aperiodic on Z, we may view {S,,} as a Markov
chain on Z, and irreducibility follows from Lemma 2.5. Hence by 1.1.2 we
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have recurrence if > °P(S, = 0) = co and transience otherwise. Also in
the nonlattice case a similar dichotomy holds:

Theorem 2.6 For any nonlattice random walk, one of the following two
possibilities occur:

(i) (TRANSIENT CASE) for any bounded interval J, we have U(J) < oo
and P(S,, € J i.0.) =0. That is, |Sp| — o0 a.s.;

(ii) (RECURRENT CASE)  for any nondegenerate interval J, we have
U(J) =00 and P(S,, € J i.0.) = 1.

Proof. We shall show that (i') U(—e¢, €) < oo for some € > 0, (ii’) U(—e¢, €) =
oo for all € > 0 imply the conclusions of (i), resp. (ii). Define

I = (x—¢/2,x+¢/2), 7 = inf{n:S,el}.

In case (i’), we have on {7 < oo} that (S, — €,S; + €) covers I. Thus
the strong Markov property (see 1.8.2) and the spatial homogeneity of the
random walk implies that U(I) < U(—¢, €) < oo. But then for any bounded
interval J we have U(J) < oo, since J can be covered by a finite number of
intervals of length e. Also, by the Borel-Cantelli lemma only a finite number
of the events A,, = {S,, € J} can occur since Y ,P(A,,) = U(J) < co. Thus
(i) holds.

In case (ii’), it suffices to show that U(I) = oo and P(S,, € [ i.0.) =1
(since z, € are arbitrary). By Lemma 2.5 we have P(7 < 0o) > 0. Define

q(6) = P(|Sn| <6 for some n > 1),
pe(6) = P(|Sn| <6 at least k times) .

Applying the strong Markov property at the time of the kth visit to (=4, )
shows that pry1(6) < pr(6)g(26) which in conjunction with > pr(d) =
U(—46,0) = oo yields ¢(20) = 1. But from ¢(d) = 1 for all § > 0 and the
strong Markov property applied to 7 one easily gets

P(Sn € I for at least two n ‘ T< oo) = 1.

Repeating the argument, we get P(S,, € I i.0.|7 < o00) = 1, i.e. P(S,, €
Iio.) = P(tr < o0) > 0. Since {S, € I i.0.} is an exchangeable event,
the Hewitt—Savage 0-1 law implies P(S,, € I i.0.) = 1 and therefore also
U(I) = oo. The lattice case is entirely similar. ]
Corollary 2.7 The random walk is transient if EX # 0 and recurrent if
EX =0 or, more generally, if the weak LLN S, /n .0 holds.

Proof. That EX # 0 implies transience is obvious since then S, eventually
has the same sign as EX. Recalling the interpretation of U, we have

mz_ Ulk,k+1] > U[-m,m)],

k=—m

Ulk,k+1] < U[-1,1]P(S, € [k, k + 1] for some n) < U[-1,1].
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Hence letting R,, = |S,|/n, we have for each K and m that

1 1 Km
n=1
1 Km
> — Y P(R,<K™1).
- anZI (B < )

But R, — 0 implies Y)Y P(R,, < ¢)/N — 1 for all € > 0. Hence letting
m — oo yields U[—1,1] > K/2. Thus indeed U[—1,1] = oo and recurrence
follows. =

Problems

2.1 Explain in the case EX < 0 how the expression (1 — ||G4||)Us for the distri-
bution of M is connected to Theorem 2.3(b),(c) and the basic formula VI.(1.1)
for the limits of regenerative processes.

2.2 Let YO(I)7 YO(2 be initial delays for a discrete—time renewal process with
infinite mean, i.e. p =Y 7°nfn = o00. Let ¢ = f1 + -+ + fv with N chosen such
that at least two terms are nonzero, and define

gn = fu/c, n <N, hn,=fo/(1—c¢c), n>N.

Consider independent sequences {US"}, {US}, {Vi}, {Ba} of i.id. r.v.’s such
that the US"” are governed by {gn}, the Vi, by {hn} and P(B, = 1) = 1 —P(B,, =
0) = ¢, and define

n

Y = BUY + (11— B)Va, S = > v
k=0

Show that {S,(LD}, {ST(LQ)} are renewal processes governed by {f.}, and that o =
inf{n : SV = Sy(f)} is a.s. finite [this construction is known as the Ornstein
coupling].
2.3 Show that if EX > 0, then Er(u)/u ~ u/EX as u — oco. [Hint: The
elementary renewal theorem applied to the ascending ladder height renewal
process.]

Notes The systematic use of ladder processes is largely due to Feller (1971).

3 Wiener—Hopf Factorization

The expressions given in Theorems 2.1 and 2.2 for the distributions of
B(oo) and M indicate that it is of major importance to compute G and,
for symmetry reasons, G_. This problem certainly does not appear to be
easy, and in fact the known ways (presented in the next section) to represent
G4, G_ in terms of F' without imposing additional conditions on F' seem
too complicated to be of much use. However, in some situations it is easy or
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at least possible to compute one of G4, G_ (we study some main examples
in Section 5, but for a simple example take F' concentrated on Z with
EX >0, P(X > 2) = 0; then obviously G is the one—point distribution at
1). The set of formulas in the following main result then allows calculation
of the other ladder height distribution and thereby the distributions of M,
B(c0), etc.:

Theorem 3.1 (a) F =G4+ +G_ — Gy xG_.
G.(A) AC(0,)

(b) U-xF(A) = { U_(A) Ag(;oo,()).

In terms of ch.f.’s (or m.g.f.’s, when defined), we may rewrite (a) as

1-F =(1-G)(1-G-) = 1-G1)(1-GY). (3.1)
This formula (and some generalizations like Problem 4.2) is known in the
literature as the Wiener—Hopf factorization identity, and we shall refer to
(a) in the same way. We see that, knowing G_, we can solve (3.1) for G.
Alternatively, G4 can be computed by (b), and this is frequently more
appealing.

Proof. Consider EY ;" I(S,, € A), A C R. By splitting into the contribu-
tions fromn = 0,...,7 —1 and n = 74, the sum becomes R, (A)+ G4 (A)
where Ry (A) = EZng_l I(S, € A). Splitting instead into the contribu-
tions from {n =0} and {n =1,..., 74}, we get do(A) + (R4 * F')(A) where
0p is the distribution degenerate at 0 (for a formal proof, see 1.3.3), and so,
using that Ry = U_ by Theorem 2.3(b), we obtain

U.+Gy = 6o+ U_+F. (3.2)

Since U_ xG_ = Y 7° G*" = U_ — 4, convolving (3.2) with G_ to the left
yields

U_—-6+G_xGy = G_+U_xF—-F
, and subtracting this identity from (3.2) produces (a). For (b), evaluate

(3.2) at A and note that U_(A) = 6o(A) = 0 when A C (0,00), G4+ (4) =
0p(A) =0 when A C (—00,0). O

If ¢ > 0, then obviously some asymmetry is inherent in Theorem 3.1,
and variants of the formulas may be required. For example:
Corollary 3.2 (a) F =GY +G* —GY *G*°..
(b) Us + F(A) = G_(A), A C (—00,0].

Proof. Sign reversion immediately yields (a). Convolving Theorem 3.1(a)
with U, yields

U+*F = UJF*(S()‘FUJF*G,*(UJr*(S())*G, = U++G77(S().

Since Uy — dg = Y_7° G*™ is concentrated on (0, 00), it follows that (U *
F)(4) = G_(A), 4 C (~o0,0]. 0
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Notes For an alternative proof of Theorem 3.1(a), see Kennedy (1994). The
original work of Wiener and Hopf is analytic in flavour and deals with solution
of integral equations of the form

x
2(@) = #(0)+ [ 2@ )udy), o0 (33)
— 00

where p is a measure. Note the > 0 in (3.3) so that the equation is not just
a renewal (convolution) equation on the whole line. Also, the Lindley equation
in II1.6 corresponds to z = 0. Asmussen (1998c) gives references to the math-
ematical literature and studies existence, uniqueness and asymptotic properties
of solutions to (3.3) by probabilistic methods in the special case where z,Z > 0
and F' is a probability measure.

We return to Wiener-Hopf factorization in the setting of Markov additive
processes in XI.2f. Another important further direction is Lévy processes {St},~-
We do not treat this case but refer to Bingham (1976), Bertoin (1996) and Sato
(1999); the flavour is somewhat different because say 7 = inf {¢ > 0: S; > 0} is
zero for an abundance of interesting special cases, and so there are no nontrivial
analogues of G4, G_.

Problems

3.1 By Theorem 2.3, one can rewrite (3.1) as (1 —Z?')_l = U, R where R is the
pre—74 occupation measure. Give the probabilistic interpretation of this formula
when EX # 0 and thereby an alternative short proof of (3.1).

3.2 Find the distribution of inf {S1, Sa2,...}. [Hint: The forms on (—oo,0] and
(0, 00) are very different.]

3.3 Show that P(M > ), E[r(z); 7(z) < o0, E[e®™™); 7(z) < oo] and P(B(z) <
y) all satisfy Wiener—Hopf integral equations of the form (3.3).

3.4 Let U = > ;° F*" be as in (2.2). Show that U(z,z+a] is bounded by ¢1+c2a
and has limit a/EX as © — oo when EX > 0 and F is nonlattice.

4 The Spitzer—Baxter Identities

The theory to be presented is a classical cornerstone of probability theory
as a whole and an instructive example of both the merits and the deficits
of transform methods. To illustrate the scope and flavour, we state two of
the main results:

Theorem 4.1 For |r| <1l andteR

1-E[r+e®+] = exp{ > %E[e“s"; S > 0}} (4.1)

n=1

[recall that in expressions like the lh.s. of (4.1), the integration is
understood to be carried out on {7 < oo} only].
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Theorem 4.2 (SPITZER'S IDENTITY) For|r| <1 andteR

> > +

npAitM,  _ T mitSy
E r"Ee = exp{ E - Ee } (4.2)
n=0 n=1

and, provided M < co a.s.,

o0

itM l itS
Ee = exp{z - (Ee 1) } (4.3)

n=1

It is seen that in a certain sense a complete solution of the random walk
problems has been provided: by uniqueness theorems for transforms, the
distributions of (71,S;,), M,, M are in principle determined by (4.1)-
(4.3), and the solutions are also explicit in the sense that knowing F', we
can in prlnmple also evaluate the distribution F*", thereby expressions
such as Eei*S» and finally by summation the desired transforms However,
the weaknesses of the approach should also be apparent. As an example,

one needs only to think of the M/M/1 waiting time W, where W Z M
with F' doubly exponential (cf. II1.6), and it was found in II1.9 that W is
exponential. The simplicity of this result should be compared with the effort
required to compute first the F*" and next (4.3), and it is strongly indicated
that for even only slightly more general GI/G/1 queues the computational
difficulties are formidable.

Proof of Theorem 4.1. We let r be fixed throughout and define

Bn(t) = E[eits"; T+ =n], () =Ele . 1) > n]

B = D rma(t) = E[rretSe], Zr Tt
n=1

With F the characteristic function of F , we then have

Bu(t) + n(t) = E[e™; 7 >n] = Fltly._1(t),

and since 7o = 1, it follows by multiplying by 7" and summing that 5+~ =
r(1 +v)F. Equivalently, 1 —rF = (1 — )/(1 + ), and taking logarithms
and expanding we get

0 o~ ﬁn > ,yn
Z;;F” Z Zl —1)" — (4.4)

if r is so small, say |r| < 7o, that |8(¢)] < 1 and |y(¢)| < 1 for all ¢. Ob-
viously, § and  are the characteristic functions of bounded measures @, v
supported by (0, 00), resp. (—oc,0]. Thus also ¢ = Y7° ¢*"/n is supported

by (0 oo) and ¢ = Y °(—1 1)"4*" /n by (—00,0], and we may rewrite (4.4)
as — 1 where H = Y [°r"F*"/n. By the uniqueness theorem, it
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therefore follows that H and ¢ coincide on (0, 00). Taking transforms yields

(e’ P . R [e%) Bn (t)
_E itS, . _ — - _ _
D E[ 8, > 0] = B(t) = > — log(1 — B(t))
n=1 n=1
which is the same as (4.1). The truth of (4.1) for ro < |r| < 1 follows by
an analytic continuation argument. a

By just the same argument:

Corollary 4.3 The formula (4.1) remains valid if the pair of qualifiers
(74, Sn > 0) is replaced by any of (7Y, S, >0), (17—, S, <0), (72,5, <0).

Corollary 4.4 1 — Er'™t = exp{

n=1

%]P’(Sn > 0)}, | < 1.

Furthermore

1 =1
e T [ Zﬁmsnm)} (45)

and the assertions (i) S, 3 —oo, (ii) M < oo, (iii) |G4| < 1 and (iv)
S UP(S, > 0)/n < oo are equivalent.

Proof. The first statement follows just by letting ¢ = 0 in (4.1). The first
identity in (4.5) has been shown in Theorem 2.4, and the second follows

from |G| = lim,1; Er™+. Finally the last statement follows from Theorem
2.4 and (4.5). |
Proof of (4.2). Define

Ani = {Sk=My; Se<M,, £=0,....k—1}, k<n,

Un(t) = E[e™; A, = E[e™; M, =0].
Then

. n .
E[e‘tM" exp{iu(Sn — My,)}] = Z E[elts’“ exp {iu(Sn — Sk)}; Ank)
k=0

n
Z Yk (WE[%; Ag i ].
k=0
Letting v = 0 we obtain

ZrnEeitM" _ Zrn"/)n(o) X ZTkE[eitSk; Ak,k} = A ~A2(t)

n=0 n=0 k=0
(say). Here
Ay = > r"P(M, =0) = > r"P(ry >n) = (1 —Er™+)
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= eXp{Z % (1-P(S, > 0))} (using Corollary 4.4),

n=1

Ay (t) = i E [rTJr (")eitSH—(")] — i (E [r‘r+ eitST+} )n
n=0 n=0

) -1 © )
— (1 — E[r@e‘tsﬂr}) = exp{z %E[elts’l; S, > 0}}

n=1

and the proof is completed by observing that
P(S, < 0) +E[e?S": S, > 0] = Ee'Sn. O

Proof of (4.3). If M < oo, then (iv) of Corollary 4.4 permits us to let r 7 1
and use dominated convergence in (4.1) to get

~ . 1.
1-Git] = 1 -Ee™S+ = exp{— > EE[e‘tS"; Sy, > 0]} (4.6)

n=1

and since the characteristic function of M is (1 — éJr[O])/(l yen [t]) by
Theorem 2.2, (4.3) follows easily. O

In the further development of the theory, one discovers that a certain
care is needed to give rigorous proofs of expected results. For example,
one might ask whether (4.6) also holds when |G| = 1, whether, say, the
Laplace transform is obtained by replacing it by § < 0 and whether the
expressions for the moments which come out by formal differentiation are
correct. We shall not go into these points, but give a direct proof of a result
of the last type:

"1 — 1
Proposition 4.5 EM, = > ZESS, EM = > ZES)
k=1 k=1
Proof. Letting F,, = {S,, > 0}, G,, = {M,, > 0,S,, <0} we have with K =
max {S —S1: k=1,...,n} that
EM, = E[M,; M, >0] = E[M,; F,]+E[M,; G,]

By symmetry arguments, the two first terms are E[S,; F,,]/n = ES;'/n
and E[M,,_1; F,], respectively, whereas the last is

E[Mn—l; Gn] = E[Mn—l; Mn—l > 07571 < O] = E[Mn—l; Sn < O]

Hence EM,, = ES, /n+EM,,_1, and the desired expression for EM,, follows
by iteration. For EM, let n T co and use monotone convergence. O

Note that even simple conditions for EM to be finite are not at all
apparent from Proposition 4.5. We return to the problem in X.2.
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Problems

4.1 Show that (4.6) also holds if [|G_|| < 1. [Hint: Find first 1 — G_ and use
Wiener-Hopf factorization.]

4.2 Let g+(r,t) denote the expression (4.1) and g—(r,t) the same thing with 7
replaced by 7—. Show that 1 — rﬁ[t] =g+(r,t)g—(r,t).

Notes The results of this section were found by Baxter and Spitzer around
1960. Good references are Feller (1971, Chs. XII and XVIII), Chung (1974),
Spitzer (1976), Woodroofe (1982) and Siegmund (1985). For a more recent study
in the area, see Griibel (1988).

5 Explicit Examples. M/G/1, GI/M/1, GI/PH/1

5a. Lattice Distributions

5b. Skip—Free Distributions. M/G/1 and GI/M/1
5c. Distributions with a Rational Laplace Transform
5d. Phase-Type Distributions. GI/PH/1

We consider a random walk with ¢ = EX < 0, as is the typical case in
queueing theory (the case p > 0 is essentially symmetric, whereas some
modifications may be required when p = 0). We shall in some cases be
satisfied by evaluating either G or G_, since it is then obvious how to
proceed for, say, the distribution of M.

The following simple observation is often the key:

Lemma 5.1 Let F*) denote the distribution of the overshoot X | X > z

over z, F” )( )= F(z + 2)/F(2). Then G is a (defective) mizture of the
F® 2>0.If X =U—T with U, T > 0 independent with distributions A,
resp. B, then G is a (defective) mizture of the B*).

Proof. Conditioning upon Xj, ..., X,,_1 gives for z > 0 that

P(S;, >z) = ZIE”(ST+ > X, Ty =n)
n=1
= ZE[F(:cf Sp—1); T4+ >n —1]
n=1

= ZE[ Sh— 1)F( 3"71)(30); T+>n—1}.
Hence G4 = [;° F*) v(dz) where

ZIE ); T4 >n—1, Sn,1€A}, A C (0,00).
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For the last statement, just note that F(*) must be a mixture of the B®¥),
y > z. O

ba Lattice Distributions

We consider first the lattice case where w.l.o.g. we may assume F' to be
aperiodic on Z with point probabilities fi = P(X = k). Then also G, G_
are concentrated on Z, and we write g4 i, g— ; for the point probabilities.
In order for explicit results to come out, we will assume F' to have bounded
support in one direction, but one can in fact generalize to a discrete phase—
type form in one direction along the lines of Sections 5c, 5d.

We first present a classical argument based on transforms, in this context
the generating functions F[s] = Es*, G [s], G_[s]. Here F[s] is always
defined for |s| = 1 but may have larger domain, whereas G [s] is always
defined for s in the closed unit disc A = {s € C: |s| <1} and G_[s] for
sTle A

The essence of the argument is to recognize the form of either G4 or
G_ by a probabilistic argument (cf. Lemma 5.1) and identifying some key
constants via the relation between the roots of the equations ﬁ[s] =1,
(A77+ [s] =1, G_ [s] = 1 provided by the Wiener—Hopf factorization identity
(3.1) stating that 1 — l?'[s] =(1- Gy [sh(1— G_ [s]). Here we shall say that
the equation ¢(s) = 0 (where ¢ : D — C is a continuous function on a
complex domain D C C) has the roots ay,...,a, in D1 C D if ¢(s) =
(z—a1) (2 —ap)Y(z) with ai,...,a, € Dy and ¢ continuous and non-
zero on D;. Note that some «; may coincide, corresponding to multiple
roots.

Theorem 5.2 Assume that f. > 0, fry1 = frio = -+ = 0 for some

r = 1,2,.... Then the equation F[s] = 1 has exactly r roots aq,...,a,
€ C\A outside the unit circle, and these determine G4 by means of

1-G.ils] = <1ail)<1a%) (5.1)

Proof. Clearly, G4 is concentrated on {1,...,r} with g4, > f, > 0. Thus

G [s] is a polynomial of degree r with G4 [0] = 0 so that we may write
1— G [s] in the form (5.1). Further, for o € A we have |Gy [a]| < P(ry <
00) < 1, so that taking s = ay, in (5.1) shows that oy & A.
The factorization identity (3.1) now takes the form
1-Fls] = (1-G_[s]) [](1—s/aw).

k=1

Since G_ is concentrated on {0, —1,—-2,...}, 1 — G_ [s] is finite, continuous
and nonzero in C\A. This shows the assertion concerning the roots of
Fls] =1. 0
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Theorem 5.3 Assume that f_,. >0, f_._1 = f__o="---=0 for some
r=1,2,.... Then the equation F[s] =1 has exactly r roots ay,...,a, € A
in the unit disc, one of which is 1 and the rest are inside the unit circle,
say ar =1, a1,..., 01 € int(A). These roots determine G_ by means of
- -1 r+1 - 1 _
1_G_[5]:()7](7"(1__)(1_%)...(1_0"“ 1). (5.2)
Q1O S S S
Proof. Clearly, G_ is concentrated on {0, —1,...,—r} with g_ _, = f_, >
0 (note that S; = —r can only occur if X; = —r). Thus G_[s] is a

polynomial of degree r in 1/s with coefficient f_, to s~ so that we may
write 1 — G_[s] in the form (5.2); that one ay is 1 follows since G_ has
mass G _ [1] = 1, and that not more than one is has absolute value 1 follows
by aperiodicity. The rest of the proof is similar to that of Theorem 5.2. O

We next present a martingale approach, going back to Wald, which
gives the point probabilities of G4, G_ using matrix inversion rather than
transform inversion.

Theorem 5.4 In the set—up of Theorem 5.2,

2 —1

g+1 o of ... o 1
= : ; A (5.3)
Gt r a. a2 ... al 1

Proof. From F[ay] = 1 it follows (cf. IT1.8.8-8.9) that {af"} is a (complex—
valued) martingale. Letting g4 ;. = P(Sr, = j, 74 < n), optional stopping
at 7 A n yields

T
S, Srinn Sn. j
1 = o = Eo, = E[ak ;T4 >n} + E g+ jin-
j=1

However, since S,, < 0 on {74 > n}, it follows from |ay| > 1, S, *3 —occ
and dominated convergence that the first term converges to zero and since
G+ 1 9+,j, we get 1 =57 ad g1 ;. The solution of the r linear equations
obtained by letting k vary is indeed as asserted. O

5b  Skip—Free Distributions. M/G/1 and GI/M/1

A particular simple and important case is the skip—free one. We say that
{Sn} is upward skip—free or right—continuous if r = 1 in the setting of The-
orem 5.2, and downward skip—free or left—continuous if ¥ = 1 in Theorem
5.3.

Corollary 5.5 In the upward skip—free lattice case:
(a) G4+ is concentrated at 1. The point mass 6 = |G| can be evaluated as
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the unique solution < 1 of

= 1
1 = F[1/0] = —f1+f0+9f71+92f72+~~; (5.4)
(b) The distribution of M is geometric with parameter 0, P(M = n) =
(1-0)0", n=0,1,...;
(c) G— is given by the point probabilities g, = >." 0" Ffi, n =

0,—1,-2,...

Proof. Part (a) follows immediately either from Theorem 5.2 (use |G| =
G4[1] = 1/ay) or from Theorem 5.4 (use gy 1 = 1/aj). Then U, =
>0 G has point mass 0" at n, from which (b) follows by Theorem 2.2
and (c) by G_ = (U; * F)‘(—oo,o]’ cf. Corollary 3.2(b), which yields

9—n i 0 fe = z”: 0" Ff, n=0,-1,-2,.... ]
£=0 k=—o0

Corollary 5.6 In the downward skip—free lattice case:

(a) G_ is concentrated at {—1,0} with point probabilities g— _1 = f_1,
g-o0=1—f1.

(b) G4 is given by the point probabilities g4+, = ro/f-1, n = 1,2,..,
where 1y, = fn + fog1 + -5 furthermore |G| = 1+ p/f-1.

(¢) The point probabilities v, = IP’(M =n) are given by vy = —u/f-1,

T'n
Up = —V —|— 1+ —Vp—1, n>1.
n f 1 0 ffl f 1 n—1
Proof. That g_ , =0 for n = —2, =3, ... is clear by left—continuity, which
also implies that S, = —1 can only occur if X; = —1. This shows (a).

Noting that the expected number of visits of {S _(n)} toany k =0, —1,

is geometric, we then obtain U_({k}) = > 7"n(1 — f_1)" ' fo1 = 1/f-1,
The first part of (b) then follows from G = (U_ F)|(0,oo)’ cf. Theorem
3.1(b), and the second from (2.1) and ES,_ = —f_;. For (¢), it is now clear
that vy = 1 — ||G4+|| = —p/f-1, and the recursion formula for vy, vs,...
follows since by Theorem 2.2 {v,,} is proportional to the renewal sequence
governed by the {g4 ,}, cf. I.(2.1). O

An important example to which Corollary 5.5 applies is the number of
customers in GI/M/1 just before arrivals, cf. 111.6.2, and similarly Corol-
lary 5.6 provides a road to the distribution of the number of customers in
M/G/1 just after departures, cf. Problem IIL.6.3.

For continuous distributions, there may at a first sight appear to be no
natural analogue of the concept of skip—freeness. However, if one thinks
more specifically in terms of queues, the netput process of the M/G/1
workload process (a compound Poisson process with drift) has properties
similar to a downward skip—free lattice random walk, and obviously its
ladder height distribution is the same as that of the random walk driving the
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Lindley process describing the waiting times. This motivates that one gets a
simple solution in this context (the random walk setting can be generalized
as in Problem 5.1 at the cost of somewhat more lengthy computations).
Recall that By is the stationary recurrence time distribution from renewal
theory, i.e. the distribution with density bo(x) = B(x)/up.

Theorem 5.7 Consider the M/G/1 queue with arrival intensity 3, service
time distribution B and p = Bup < 1. Then:

(a) Consider a random walk with X,, = U, —T,, where Uy, is the nth service
time and T, the nth interarrival time. Then G4 is absolutely continuous
with density g4 (x) = BB(x) = pbo(x).

(b) In the steady state, the actual waiting time W and the workload V
have a common distribution given by

PW <z) = P(V<az) = (1-p) ) p"Bi"(x). (5.5)
n=0

2 2

Equivalently, W \% Yi+---+Yn where N,Y1,Ys, ... are independent
such that N is geometric with P(N = n) = (1 — p)p"™ and Y1,Ya,... are

1.9.d. with common distribution Bgy. In particular, writing ,u(Bk) =EU¥, the
two first moments are

(2)

B i PEB
BW = BV = SR (5.6)
®) 2 (2)?
EW? = EV2 Ple Call): (5.7)

31-pup  2(1-p)*

Proof. Sign reversion in Lemma 5.1 shows that G_ is exponential with

intensity 3, so that the descending ladder height renewal process is Poisson

on (—o0,0) (and as always has an epoch at 0). Therefore U_(dx) = do+Gdx.
The form of X,, shows that F' has a density f(z) for x > 0 and that

f@) = / " B0 B(ay),

F@) = [ (-e07) Blay) = Ble) - @)/

Hence by Theorem 3.1(b), g4 (z) is given by

o0

U-xflx) = fle)+ | fla+z)0dz

0

fz) + BF(z) = BB(x)

for > 0, showing (a). That W ZVisa consequence of PASTA, see VIL.6
(cf. also I11.9.2), and (5.5) then follows from (a) and Theorem 2.2. Since

the mean of By is ,ug)/QuB, (5.5) then gives

EW = (1-p)Y_ p"npy /205,

n=0
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which is the same as (5.6). The proof of (5.7) is similar (though a little
more lengthy) and left to the Problems. |

The formula (5.5) (or its transform version, Problem 5.2, or sometimes
just (5.6)) is commonly referred to as the Pollaczeck—Khinchine formula.

Theorem 5.8 Consider the GI/M/1 queue with service intensity 8, inter-
arrival time distribution A and p = (Spa)~t < 1. Then:

(a) Consider a random walk with X,, = U, —T,, where Uy, is the nth service
time and T, the nth interarrival time. Then the equation

0 - A

= [ emaan 69
has a unique positive solution. Further G is defective exponential with
intensity & and total mass 0 = 1 —n/d = [~ e A(dy). That is, the
density is 05e =% .

(b) In the steady state, the distribution of the actual waiting time W is
given by P(W > z) = e~ ",

1 — ﬁ[n] — REe"Xn — REeMUn—Tn) _

Proof. The existence and uniqueness of 7 is easy. It follows from Lemma
5.1 that G4 is defective exponential with intensity J and mass say 6. The
factorization identity (3.1) then means

~ . . - § ~
0= 1= Fll = (-Gl (- Gof) = (1-052) (1= G-la).
Here é,[n] < 1 since 7 > 0 so that the first factor on the r.h.s. must be 0
which yields § = (6 —n)/é = 0, showing (a).
A ladder step terminates with intensity ¢ and is the last w.p. 1 — 6.

Hence the failure rate of W given W > 0 is 6(1 — 0) = 7, and since clearly
P(W > 0) =0, (b) follows. O

Problems

5.1 Assume F has a density on (—oo,0] of the form ae®® with a < . Show that
G_ is exponential with intensity 3 and that G (z) = F(z)+ 8[p — [° F(y) dy],
z >0, |G| =1+ up.

5.2 Find the m.g.f. G, in M/G/1, both directly from Theorem 5.7(a) and by
Wiener-Hopf factorization. Show hereby that the m.g.f. Ee*V is (1 — p)s/(s —
B+ BB[s]).

5.3 Show (5.7).

b¢  Distributions with a Rational Laplace Transform

We now assume X = U — T with U, T independent, U having distribu-
tion B € ZLT (cf. 1I1.4) and T having a general distribution. We write

the m.g.f. (not Laplace transform!) B[s] of B as p(s)/q(s) where p,q are
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polynomials without common roots and degree say d of ¢; we can assume
w.l.o.g. that the coefficient to s in q(s) is 1, ¢(s) = s +qg_159" 1+ +qo.
The radius of convergence of E[s] is finite, cf. (5.9) below, but p(s)/q(s) is
an analytic continuation of B[s] to the domain Qp = {s € C: ¢(s) # 0}.
Since ﬁ[—s] is always defined when R(s) > 0, A[—s]p(s)/q(s) is therefore
an analytic continuation of F[s] = /T[—S]B[s] to Q= {seQp: R(s) >0}
Lemma 5.9 For any z > O the conditional distribution of U given U > z
has a m.g.f. of the form p*)(s)/q(s) where p'*) is a polynomial.

Proof. If we write q(s) = (s —t1)% - (s — t3,)% where d; > 0, dy + - - -+ dj,
= d, fractional expansion of p(s)/g(s) and transform inversion shows that
the density b(x) of B has the form

ko d
Z Z cijrd~teli®, (5.9)

i=1 j=1

To get the density b(*)(x) of U given U > z, we must replace = by 2+ z and
divide by P(U > z) which after expanding (24 2)7~! shows that b(*) (x) has
a similar form, only with changed c;;. Therefore the m.g.f. has the asserted
form. a

Theorem 5.10 Assume p=EX =EU —ET < 0 and that the function

1—F[s] = 1— A[-s|B[s] = 1—11[—5]@ (5.10)
q(s)
. 1
has d roots s1,...,84 in Q. Then G4[s] = fﬁ]:[ s —8;)
a\s =1

Proof. By Lemmas 5.1, 5.9 , 1 — G.[s] must be of the form p. (s)/q(s)
where p, is a polynomial. From G [s] — 0,5 — —ooand q(s) = s%+--- it
then follows that p(s) = 5%+ i.e. we can write p(s) = H?Zl(s —3).
The Wiener-Hopf factorization identity 1 — F[s] = (1- G- [s])(1— Gy [s])
(valid by analytic continuation for all s € Q) becomes

d d

~

w(s)H(s—si) = (1—G [s])—H(s—s)

1
i=1 ()11

for a suitable function 4, cf. the definition preceding Theorem 5.2. Since
‘G, [SH < 1 for R(s) > 0, the result follows easily (cf. also the parallel proof
of Theorem 5.3). O

5d  Phase—Type Distributions. GI/PH/1

In the setting of the preceding subsection, we next strengthen the assump-
tion of B having a rational transform to B being phase-type, say with
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representation (E, a,T). Of course, Theorem 5.10 applies to this case as
well, but we shall present an alternative more probabilistic approach.

Proposition 5.11 G, is (defective) phase—type with representation (ci,T)
for some vector oy = (a4,;).
[defective means a1 < 1.]

Proof. By Lemma 5.1, G4 = fooo B®%) y(dz) for some measure v. But by
Problem II1.4.4, B(*) is phase-type with representation (ﬁ(z), T) for some
B [in fact, B = aeT? /aeT?1]. This is easily seen to imply the assertion
with e = [7° 8% u(d2). O

Thus, the problem is to evaluate a4. To this end, we define a process
{my} as in Fig. 5.1.

{ma}

Figure 5.1

In Fig. 5.1, we have assumed two phases represented by thick and thin
lines. The process depicted, say {R:}, is the netput process for the work-
load, i.e. the process that jumps by the service time when a customer arrives
and decreases linearly between arrivals; obviously, {R;} has the same as-
cending ladder height distribution as the given random walk {S,,}, which
corresponds to the values just after jumps. The thin and thick lines in the
jumps correspond to the phases in the Markov processes generating the
service times, and m,, is the phase in which level x is upcrossed. We let w
be the time of the first upcrossing of level 0 so that S, = R, .
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Theorem 5.12 (a) o is the (defective) distribution of mo;

(b) {my} is a (terminating) Markov process on E, with intensity matriz Q
given by Q =T +toy;

(¢) ay satisfies oy = p(ay), where

oo
olay) = aA[T +ta,] = a/ eTHe )y A(dy). (5.11)
0
(d) et can be computed by iteration of (5.11), i.e. by a4 = limy, oo agf)

where

(0) (2)

ay’ =0, ag_l):cp(ag?)), al :cp(ail)), (5.12)

Proof. Part (a) is clear. The proof of (b) is similar to that used for phase—
type renewal processes in IIL5: in between ladder heights, {m } is governed
by T'. The vector of intensities generating ladder heights in the different
states is t, and {m,} either terminates at a ladder height or is restarted
according to a;. Collecting terms, (b) follows.

For (c), we condition upon T =y and define {m}} from {R:}, — Ry}
in the same way as {m,} is defined from {R.}; cf. Fig. 5.1. Then {m}}
is Markov with the same transition intensities as {m,}, but with initial
distribution ¢ rather than a.. Also, obviously mo = m;. Since the con-
ditional distribution of my given T} = y is ae®Y | it follows by integrating
y out that the distribution a; of mg is given by the final expression in
(5.11).

In (d), note first that the term 8 in ¢(B) represents feedback with
rate vector ¢t and feedback probability vector 8. Hence ¢(3) (defined on
the domain of subprobability vectors 3) is an increasing function of 8. In

particular, ozg_l) >0= af) implies
(2 _ (1) oy _ 1
ol —<p(04+) 290(a+) = o}

and (by induction) that {af)} is an increasing sequence such that
T) exists. Similarly, 0 = af) < ay yields

1 0
ol = p@) < pley) = ay

lim,, oo &

and by induction that « ) < ay for all n. Thus, lim, agrn) < ay.

To prove the converse inequality, we let F,, = {T1 + -+ + Tp41 > wy}

(n
+

be the event that {R;} has at most n arrivals in [T}, wy], and let & fz =

IP(m*T1 =4; F,). Obviously, &T) T a4, so to complete the proof it suffices

to show that &f) < af) for all n. For n = 0, both quantities are just 0.

Assume the assertion shown for n — 1, and define a subexcursion of {R;}
as the segment from just after an arrival time, say oy (here oo = 0), until
level R, is upcrossed again (thus on Fig. 5.1 there are two subexcursions in
[0,w4]). Then each subexcursion before time w4 can contain at most n — 1
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arrivals (n arrivals are excluded because of the initial arrival at time 7).
It follows that on F), the feedback to {mX} after each ladder step cannot

exceed &5:171) so that

0 —
&l < a /0 T3y 4 (dy)

o0 1
< a/ e(T-‘rta(Jr >)yA(dy) — SD(OLS:L_U) _ agr")’
0
O

Corollary 5.13 The mazxzimum M of the random walk or, equivalently,
the GI/PH/1 waiting time, is the lifetime of {my}. In particular, P(M =
0) = 1 — a1l and M is absolutely continuous on (0,00) with density
a+e(T+ta+)x‘

Corollary 5.14 Consider the M/PH/1 queue with arrival intensity 3 and
phase representation (o, T') of the service time distribution B. Then the
steady—state waiting time W is phase—type with representation (a4, Q)
where ay = —paT ™', Q = T +ta, . In particular, P(W =0) =1 —a, 1
and W is absolutely continuous on (0,00) with density o, e®@®.

Proof. By 111.5.3, the stationary excess distribution By is phase—type with
representation (v, T) where v = —aT ™' /up. Since G = pBy by Theorem
5.7(a), it follows that a = pv = —BaT . O

We finally give the link to Theorem 5.10. Let d denote the number of
phases.

Corollary 5.15 Suppose p < 0, that the equation ﬁ[s] =1 has d distinct
To0ts p1,...,pa in the domain R(s) > 0, and define h; = (—p;I —T)7't,
Q = DC ! where C is the matriz with columns ha, ..., hq, D that with
columns —pihi,...,—pghg. Then Gy is phase-type with representation
(a4, T) with ay = a(Q—T)/act. Further, letting v; be the left eigenvector
of Q corresponding to —p; and normalized by v;h; = 1, Q has diagonal
form

d d
Q = _Zpi’/i®hi = _Zpihi’/i- (513)
i=1 i=1

Proof. Since R(p;) > 0 and G_ is concentrated on (—o0,0), we have

‘@, [pz]| <1, and hence G [pi] = 1 by the Wiener-Hopf factorization iden-
tity (3.1), which according to Proposition 5.11 means that a4 (—p; I—T) "'t
= 1. Hence

Qh; = (T+ta)h; = T(—p; I —T) 't+t
= (T+PiI*PiI)(*piI7T)71t+t = 7t7pih+t = 7,01"7/.

It follows that the matrix @ in Theorem 5.12 has the d distinct eigenvalues
—p1,-..,—pg with corresponding right eigenvectors h, ..., hy. This imme-
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diately implies that @ has the form DC™' and the last assertion on the
diagonal form. Given T has been computed, we get

1 1

Notes Results like those of the present section have a long history. In partic-
ular, some early references are Wald (1947) for Section 5a and Técklind (1942)
and Smith (1953) for Section 5c. An ingredient that is often met is Rouché’s the-
orem, a classical result from complex analysis giving a criterion for two complex
functions to have the same number of zeros within the unit circle.

This complex plane approach is often met with criticism for a number of reasons
such as to lack probabilistic interpretation and to only give transform solutions.
In queueing theory, an alternative approach (the matrix—geometric method) has
been developed largely by M.F. Neuts and his students, starting around 1975.
For surveys, see Neuts (1981, 1989) and Latouche and Ramaswami (1999) (we
cover the basics in X1.3-4). Here phase-type assumptions are essential, but the
models solved are basically Markov chains and processes with countably many
states (e.g. queue length processes). Asmussen (1992a) modified some of the ideas
to deal with waiting times and workloads, and Section 5d is from that paper (the
G1/PH/1 waiting time was studied earlier by Sengupta, 1989, by different means;
see further XI.3d).

Concerning further explicit distributions of ladder heights, random walk max-
ima, etc. it is remarkable that even the case of a Gaussian F' presents major
difficulties so that the available results (Lotov, 1996, Chang and Perez, 1997) are
recent and not of a very simple form.



IX

Lévy Processes, Reflection and Duality

1 Lévy Processes

By a Lévy process we understand a real-valued continuous—time stochastic
process {X;},-, with stationary independent increments and X, = 0, cf.
II1.7. Simple examples are: Brownian motion with drift § and variance
constant o2, for which

EX, = t0, VarX; =to?, Ee®Xt = e!x(®) (1.1)

where k(a) = fa+02a?/2; and a compound Poisson process Zflt U;. Here
{N:} is a Poisson process with rate 3 and the U; are independent, mutually
and of {NV;}, with common distribution B, and

EX; = tBEU, VarX, =tfEU?, Ee*Xt = (@) (1.2)

where x(a) = 3(Bla] — 1), Bla] = Ee®V. Of course, a linear combination
of independent Lévy processes is again a Lévy process.

Recall that a probability measure p is called infinitely divisible (i.d.)
if for each n = 1,2, ... there exists p, such that p = p*" (the nth—fold
convolution of p,, ). If { X} is a Lévy process, then for each ¢ the distribution
of Xy is i.d., since the terms in the expansion X; = Y7 (X/n — Xe(k—1)/n)
are i.i.d. This connection plays a crucial role in the theory of Lévy processes.

Lemma 1.1 If p is i.d., then the ch.f. [fit] = [ e u(dz) is nonzero for
each real t, and there exists a unique continuous complex function k() such
that fifit] = e*(),
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Proof. 1If u is i.d., then the symmetrized distribution p# defined by
p#(A) = [ (A + z)p(dz) is id. corresponding to p# = (u,)*. Since
u* = |pi|?, it follows that

1Glif) £ 0) = lim |7

Thus I(z]it] # 0) is limit of ch.f.’s, and since I(f[it] # 0) is continuous at
t = 0 because a ch.f. is continuous and 1 at 0, I(zi[it] # 0) is a ch.f., cf. e.g.
Chung (1974) p. 161. The continuity of a ch.f. and i[0] = 1 therefore implies
that I(fi(it) # 0) must be identically 1. The last statement concerning x(+)
follows from general facts on the complex logarithm. m]

P = lim .
n—oo

In view of this result, we can define the Lévy exponent k() of a Lévy
process by taking p as the distribution of X; (that is, x(a) = log Ee®X1),
and extend x(-) to © = {a € C: Ee™¥¥1 < oo} in such a way that
Ee®X1 = (@) not only for R(a) = 0 but for all & € © (cf. Problem
1.2).

Proposition 1.2 For a Lévy process, the following statements are equiv-
alent: (1) the distribution of X; is a measurable function of t; (i) {X:}
is stochastically continuous; (iil) {X:} has a version with D—paths; (iv)
Ee®Xt = et(®) for allt > 0 and all o € O.

Proof. Recall that {X;} being stochastically continuous means that for all
t, Xs LN X; as s — t; for a Lévy process, this is easily seen to be equivalent

to X L 0ass - 0. In conjunction with the spatial homogeneity, the
implication (ii)=-(iii) then follows by general Markov process theory (see,
e.g., Sato, 1999, p. 59) and also (i) holds generally in D so that (iii)=(i).

For (i)=>(iv), let f(t) = Ee®X*. Then under (i), f(-) is measurable, and
the functional equation f(s+t) = f(s)f(¢) (which holds because of the
stationary independent increments) then implies f(t) = f(1)! = et*(e),
Finally, (iv)=-(ii) is trivial. O

We will usually assume that a Lévy process satisfies one of the minor
equivalent conditions in Proposition 1.2.
Recall the Lévy—Khintchine representation of an i.d. distribution:

Theorem 1.3 Let p be i.d. with x(-) as in Lemma 1.1. Then there exists
0 €R, o0 >0 and a nonnegative measure v on R with

/6 r?v(dr) < oo, v([—e,€]) /{ e }I/(da:) < 00 (1.3)

—€

for all e > 0, such that

k(a) = Oa + a%a®/2 + / [e* —1—azl(|z] <1)]v(dz), a€O. (14)
[I(|z] < 1) could be replaced by I(|z| < €) for any ¢ > 0 by changing ¢
appropriately]. The proof is given below. The measure v is referred to as



246 IX. Lévy Processes, Reflection and Duality

the Lévy measure and (v, 0,02) to as the characteristic triplet. The Lévy
measure is unique and additive under convolutions, as is # and o2. Note
that if v satisfies the stronger requirement

/ |z| v(dz) < oo, v([—¢€,€]%) < oo, (1.5)
then (1.4) can be rewritten in the form
k(a) = Ba + 0%a?/2 + / e —1]v(dx), a€®© (1.6)

(replace 6 by 6 — fil zv(dz)). Here the first two terms correspond to a
Brownian motion with drift # and variance constant o2 and, when |v| < oo,
the last to an independent compound Poisson process with 8 = |v|, B =
v/|vl], cf. (1.1), (1.2). We proceed to the construction and interpretation of
the process in the general case.

Proposition 1.4 Let v be a nonnegative measure satisfying (1.5) and let
M(dt,dz) be a Poisson process on [0,00) X R with intensity measure dt ®

v(dz). Then
_ /Ot/RxM(ds,dx) (1.7)

is a Lévy process with D—paths and Lévy exponent ffooo [e®* — 1] v(dx).

Proof. By the additivity property noted above, we may write { X;} as an in-
dependent sum of terms corresponding to components of v concentrated on
different subsets, say {|z| > 1}, {—1 <z <0} and {0 < z < 1}. The first
term is compound Poisson and the assertion is trivial, so by symmetry,
we can assume w.l.o.g. that v is concentrated on (0,1). Then the expec-
tation of the r.h.s. of (1.7) is tfol 2z v(dz), which is finite by (1.5). Hence
X is welldefined and finite, and the property of D- paths follows by mono-
tone convergence in (1.7). Finally, if we let X° fo f x M(ds,dz), then

{Xt(e)} is compound Poisson and hence by (1.2) and monotone convergence,

1
log Ee®*1 = hPol log EecXi” = lim [ — 1] v(dx)

el0
= Al[e‘” — 1] v(dz).

The interpretation of (1.7) is that {X;} moves by jumps alone, that a
jump of size x occurs with intensity v(dz), and that jumps of different sizes
are independent. In the general case (1.3), the situation is more complicated
since the r.h.s. of (1.7) need not converge, and one needs to subtract means
and go to the limit (this procedure is known as compensation).

O
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Proposition 1.5 Let v be a nonnegative measure satisfying (1.3), let
VO(A) = v(AN [—€€), pl© = f{x:e<|x|§1}x1/(dx) and let {Yt(e)} be
a compound Poisson process with Lévy measure v ¢, Xt(e) = Yt(é) — tule).
Then X; = lim.|o Xt(€) exists a.s. and is a Lévy process with Lévy exponent
25 [e*® =1 — azI(|z| < 1)] v(dz).

Proof. Assume w.l.o.g. that v is concentrated on [—1,1]. Then by (1.2),
VarXt(e) = tf{x:€<|x|<1} 2?2 v(dz). Also, clearly IEXt(E) = 0 and hence the

family {Xt(e)}6>U is Lo—bounded. The existence of a limit X; as € | 0
therefore follows by verifying that it is a backward martingale, i.e. that

E[X{V | x{?] = x% (1.8)

when 0 < €; < €3. But by general results on Poisson thinning, Yt(Q) is

independent of Yt(q) - Yt(Q) which is readily seen to imply (1.8). The rest
of the proof is easy by limit arguments. a

We now turn to the proof of Theorem 1.3.

Lemma 1.6 For any i.d. distribution u, there exists a stochastically
continuous Lévy process { X} such that X1 has distribution .

Proof. For each t, define O [is] = et*(5). The nth root u, of p is unique
and has ch.f. fi[is]'/" = A/ [is] by Lemma 1.1 and its proof. Taking k—
fold convolutions and writing ¢ as limit of rationals of the form k/n shows
that A([] is a limit of ch.f.’s, hence (since A()[] is continuous) the ch.f.
of a probability distribution A®). Since the ch.f.’s are multiplicative in ¢,
we have A6T = \6) x \O) Hence if for 0 = tg < t; < - < t,, We
define the distribution Py, . ;. of (Xy,,...,X¢, ) by the requirement that
Xi, = 0 a.s. and that the X;, — X;,_, are independent with distributions
Mt=te=1) e get a consistent family, the Kolmogorov extension of which
is the distribution of a Lévy process. Stochastic continuity follows since
A[is] — 1 as ¢ | 0 and hence X; 2.0, and that X; has distribution s
clear from AD[is] = 7i[is]. O
Lemma 1.7 Let {X;} be a Lévy process such that the absolute value of a
jump is bounded. Then © = R.

Proof. Assume w.l.o.g. that | X; — X;_| <1 for all t. Define 79 = 0, 7441 =
inf{t >0: |Xy4r, — X7 | >1}, K =0,1,.... Then by the strong Markov
property (Problem 1.1), the 75 are i.i.d., with common distribution say F,
and since | X¢qr, — X7, | < 2, we get

P(|X;|>2n) < P(ri+--+70 <t) = F*(t).

For fixed ¢, F*"(t) decreases faster than any exponential, cf. V.2.5. From
this, it follows that Ee®X®) < oo for all a. i
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Lemma 1.8 A Lévy process {X:} with continuous sample paths is
Brownian motion (8,02) for some 6,02,

Proof. By Lemma 1.7, all cumulants of X exist (and are necessarily linear
functions of t) so we may assume w.l.o.g. that EX; = 0, VarX; = ¢t and
then have to show that X; is standard normal. Writing X; as a sum of
n ii.d. terms distributed as X; (h = 1/n), this follows from the Feller—
Lindeberg theorem provided we can show E[X7?; |X}| > €] = o(h) for each
e > 0. Let 7(§) = inf{¢t > 0: |X;| > d}. Then by stochastic continuity,
there is a constant ¢; such that P(|X,| > 6) > 1 P(7(29) < h) for all small
h. By Chebycheff, the Lh.s. can be bounded by czh, so that P(7(e) < h),
being bounded by P(7(e/2) < h)? because of continuity, is O(h?). We then
get
E[X7; [ Xn| > €]
< E[X}; 7(€) < h] = E[e* + Var(Xy|r(e) < h); 7(e) < h]
< [€4+0(h)]P(r(e) <h) = O(R?).

O

Given the i.d. distribution y, we can find a Lévy process {X;} with D—
paths such that X; has distribution u, cf. Lemma 1.6 and Proposition 1.2.

Let N;(A) be the number of jumps of size in A before t, Nt(€) =N ([*6, e]c),
Z9 = fot X, dN{? (the sum of jumps of absolute size > ¢) and Y} =

X, — 29, 1f 0 ¢ A4, then N;(A) < oo for all t, and since {N;(A)} is a
point process without multiple points and having stationary independent
increments, {N;(A)} must be Poisson with rate v(A) for some v(A); that
the set function v(-) is a measure is clear from v(4) = EN;(A), and it

is also obvious that v([—e, €]¢) < oco. Similarly, {Zée)} must be compound
Poisson, and we denote its jump size distribution by F(€).

Lemma 1.9 {Zgé)} and {Yt(é)} are independent for each € > 0.

Proof. Clearly, {Yt(é)} g<<p has stationary independent increments con-

ditionally upon Ng) = 0, and accordingly, there exists /i(é)(~) such
that

Now for T' > 0 and a given n, define J, = ((k — 1)T/n,kT/n], Y§§) =

() (€)
YkT/n - Y(k,l)T/n, etc. Then
E {eisYT(E); Nj(f) _ LZ;E) < x} (19)

- Y E [eisYT“); N =1, N =004k, 2 < x}
k=1
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DT @ (1) N [V O 1 A ©
= T/ S [0 N = 1, N = 0,0 8, 2) < .
k=1

Define M,, = sup{ |ei5(Y155>’Yv(€)) - 1|} where the sup extends over all u, v <
T such that |u — t| < 1/n, |v —t| < 1/n for some epoch ¢ of {Nt(e)}. Then

since each such ¢t must be a continuity point of {Y;(E)}, we have M,, %30,
n — oo, and hence by dominated convergence,

Ay

n sy ()
ZE{GISYJ" _ 17 N§Z) — LN}Z) — 076 7& k7 Zf]? S .1?:|
k=1

< E[M,; NY =1] — o
It follows that (1.9) is

n
TN R (NG = 1N = 0,0 £ 8, 25) <) + o(1)
k=1

TP (N = 1,28 <o)

Similar arguments apply first to the case Ng) = m > 1, showing that Zj(f )
and YT(E) are independent, and next to the independence of Z}f), YI(IE), ey
Z}j), Yl(f) for disjoint intervals I, ..., I,. O

Proof of Theorem 1.3. Let v(€) be the restriction of v to [—e, €]°. Applying
Lemma 1.9 repeatedly yields easily that {Zt(ﬁ)} is a Lévy process with Lévy
measure (¢ and independent of {Y;(E)} for each € > 0, in particular for
e=1. Let 2(6) = Y;(e) — t0(©) where 0(¢) = IEYl(E) (note that both the mean
and the variance exist by Lemma 1.7) and J\ = ¥, — ¥, 0 < ¢ < 1.

Then as above, {Jt(e)} is a Lévy process, which is independent of {Yt(e)}
and where the Lévy measure is the restriction of v to {z: e < |z| < 1}.
Hence

VarY, V) = VarJ + Vary,? > VarJl® = t/ 2?v(dz).

e<|z|<1

Since the Lh.s. is finite, we can make two conclusions: that f_ll r?v(dz) <
00, so that v is a legitimate Lévy measure; and that {Jt(é)}oo is a back-

ward martingale having an a.s. limit Jt(o) (combine with the arguments
around (1.8)). Therefore also W; = lim i/v;(é) exists. But obviously, {W;},~,
is continuous and since the property of stationary independent increments
is easily seen to carry over in an a.s. limit, we conclude from Lemma 1.8 that

{W,} is Brownian motion with suitable drift # and suitable variance o2.

Finally in the decomposition X; = W, +6Mt + Jt(o) + Zt(l), the components
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are independent Lévy processes with Lévy exponents

1
fa + a’0? /2, 6Ma, /

-1

(e* — 1 — az)v(dx), / (e — 1Dr(dx).
|z|>1

Adding shows that p has a c.g.f. of the form given by the Lévy—Khintchine

representation. O

Problems

1.1 Show that a Lévy process with D—paths is strong Markov.
1.2 Show that Ee®*1 # 0 whenever the expectation is welldefined.

Notes Standard references on Lévy processes are Protter (1990), Bertoin
(1996) and Sato (1999). A good impression of the many directions in which the
topic has been developed and applied can be obtained from the volume edited
by Barndorff-Nielsen et al. (2001).

An important special case is a—stable processes (0 < o < 2), where v(dz) =
cex™ 1 with ¢y for £ > 0 and c_ for z < 0, see Samorodnitsky and Taqqu
(1994), another subordinators defined as nondecreasing Lévy processes (here § >

0, 0% = 0 and one has spectral positivity, i.e. v(dz) = 0, 2 < 0).

2 Reflection and Loynes’s Lemma

2a. Local Time and Reflection

2b. The Skorokhod Problem

2c. Stationarity and Loynes’s Lemma
2d. Reflected Lévy Processes

2a  Local Time and Reflection

Let {S;} be a real-valued stochastic process with a discrete or continuous
nonnegative time parameter ¢t € T and Sy = 0. For x > 0, we want to
define and study the reflected (at 0) version {Vi(x)} of {S;} starting from
Vo(z) = .

In discrete time, we can just as in III.6 define the increment as X,, =
Sy — Sp—1 and let Vy(z) = z,

Vi (2) = (Vale) + X)) " (2.1)

(the Lindley recursion). Some more care is needed to incorporate also the
continuous-time case. Here we define

L, = — inf S, = sup =S, Liz)=(Li—2)",
t ot S, () = (Lt — x)

Vilz) = o4+ S+ Li(x) = Se+aV L. (2.2)
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The process {L;} is called the local time and is nonnegative and increasing
(in particular of bounded variation). It follows immediately that L;(z) =
—x —inf,_(;y<y<¢ Sy for t > 7_(x) where 7_(2) = inf {t > 0: S; < —x},
and Li(z) = 0 for ¢t < 7_(z). When the initial value z is unimportant, we
write V; instead of V;(x).

Define the additively shifted version {St(T)}t>0 by St(T) = Seyr — ST,
and let LET) (y), ete. be defined in terms of {St(T)} rather than {S;}.

Proposition 2.1 Viip(z) = Vp(z) + S’t(T) + L,gT) (Vr(z)).

Proof. The stated expression for Viyr = Viir(x) is the same as

St(T) +VrV L,gT) = St+T - ST+ (ST +xV LT) V (ST — inf S’U+T>
0<v<t

Seur+2v (s —5)v (s —Surr)
0<v<T 0<v<t

5t+T+95\/( sup *Sv) = Vigr.
0<v<t+T

O

The result shows that Vi is constructed from {St(T)}, Vr in the same
way as Vr(z) is constructed from {S;}, z. If in discrete time we take ¢t = 1,
T = N, Proposition 2.1 takes the form

Vit = VN +Xni+ Xy —Vn)™ = (W + Xnve)™,
so that we are back to (2.1).

2b  The Skorokhod Problem

An alternative characterization of the reflected process is as the solution
to a so—called Skorokhod problem:

Proposition 2.2 Let {L}} be any nondecreasing right—continuous process
such that (a) the process {Vy*} given by V' = x, V;* = Sy + L} satisfies
Vi* >0 for all t, (b) {L}} can increase only when V* =0, i.e. fOT Vi dLy
=0 for all T. Then L} = Li(z), V;* = Vi(z).

Proof. Let Dy = Ly — L}, ADs = Dg — Ds_. The integration-by—parts
formula for a right—continuous process of bounded variation gives

t
2/ D.dD, — Z(ADS)2

0

t

D}

s<t

R A Y R SLIEES WEvH

s<t

t t
2 [((V- vz -2 [ (- v - S(AD,)?
0 0

s<t



252 IX. Lévy Processes, Reflection and Duality

t t
- _2/ VS*dLS—2/ V.dL; =) (AD,)’.
0 0

s<t

Here the two first integrals are nonnegative since V.,V are so, and also
the sum is clearly so. Thus D? < 0, which is only possible if L, = L;. O

2c  Stationarity and Loynes’s Lemma

We will extend the framework slightly by including some supplementary
variables. We call a E x R-valued process {(J¢, St)},~, stationary marked
additive if a

T) T 2
{7,855 o0 Z {0, S)}s. T >0, (2.3)
where Jt(T) = Jirr. A doubly infinite version is defined by the requirement
that the time parameter is —oo < t < oo and that (2.3) holds also for
T < 0 (it is inherent in the definition that one must have Sy = 0 also for a
doubly infinite version).

Proposition 2.3 A stationary marked additive process has always a
doubly infinite version.

Proof. For T > 0, t > —T define jt(fT) = Jiyr, §§7T) = Sirr — S7. A
standard construction based upon Kolmogorov’s consistency theorem then
shows that there exists a unique probability measure p on D(R, E x R)
such that the restriction of u to ¥p = o(Jy, Sy : t > —T) is the same as
the distribution of {(<7t(7T), §§7T))}t>_T. Now just take the doubly infinite
version as a process with distribution . a

Remark 2.4 In discrete time, the doubly infinite version can be con-
structed by taking a doubly infinite version of {(Jn, Xy)},, (exists
because obviously {(Jn, Xn)}, oy is stationary) and letting So = 0,

g - —Xpp1—- =X 1—-Xo n<0,
n Xi+ -+ X, n> 0.

To see this, just note that the process constructed in this way satisfies
Sy(LT) = Xnt1+ -+ X~ (consider the cases n + N < 0, = 0 and > 0

separately). O

Theorem 2.5 Let {(Jt, St)}telR be a doubly infinite stationary marked ad-

ditive process and define Vi = sup (Sp — S¢). Then {(Ji,V;")} is a
—oo<t<T

doubly infinite stationary version of {(Jt, Vt)}

Proof. Stationarity is clear, so that by Proposition 2.1, all that needs to be
checked is Vior = Vp + St(T) + LET)(VT). But the r.h.s. is the same as
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SIET) +VrVv LgT) which in turn equals

Seyr — ST+ ( sup (St — Su)) \ (ST - Ogl}fgtsu-m)

—oco<v<T

= Syyr+  sup =8, = Viur.
—oco<v<t+T

O

In the doubly infinite situation, define S} = —S_,_, Jf = —J_;_. We
refer to {(J;,S;)} as the reversed version of the marked additive process.
Note that in discrete time, we have S} = Xo+X_1+---+ X_,,41, n > 0.

Corollary 2.6 Assume S; *3 —oco, t — 0o. Then M* = sup,sq S} is finite
a.s., and the distribution of (J§, M*) = (Jo, M*) is the unique stationary
distribution for {(Ji,V;)}. Further, for all x > 0, (J;, Vi(z)) — (Jo, M*)
in total variation.

Proof. By coupling: let y be another (possibly random) initial value and
T=inf{t>0: 5 < —zVy}. Then 7 < co a.s. by assumption (as well as
M* < 00). Since L, = —S; > z V y, we have

Vi(z) = S +aVL, = S;+L;, =0

and similarly V;(y) = 0. Proposition 2.1 then implies V;(z) = V;(y) for all
t > 7. Now just consider the doubly infinite stationary situation and take
y = Vo which has the same distribution as M*. O

The following alternative representation is often useful:
Corollary 2.7 Define 7*(z) =inf {t > 0: S} > x}. Then P.(J; € A, V;
x) = P(J; € A, 7*(x) < o0). In particular, if E is discrete and m;

Po(Ji = i) = Pu(Jo = i), P; = Pu(-| J*(0) = 1), then Po(Jy = i,V; > 2)
WZ]IDZ(T*(’I') < OO)

v

2d  Reflected Lévy Processes
We now assume that {S;} is a Lévy process as in Section 1.

Corollary 2.8 A reflected Lévy process {V:} is strong Markov. Further,
P(V; > x) = P(sup;50S: > z) = P(r(x) < o00) where 7(z) =
inf{t >0:5; >z}.

Proof. The Markov property follows immediately from Proposition 2.1. For
the strong Markov property, combine with 1.8.3 and an easy continuity
argument, cf. Problem 1.1. For the last statement, just note that the time—
reversion in Corollary 2.7 does not change the distribution. o

We next continue a study initiated in III.7: how does a reflected Lévy
process leave 07 Throughout, V; = V;(0).
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Lemma 2.9 Assume that {S;} is a pure jump Lévy process with Lévy
measure v satisfying [ |z| A1v(dz) < oo. Then S/t >3 0 ast | 0.

Proof. Denote by Z = Z(v) the limit (if it exists) of S/t so that we must
show Z(v) = 0 a.s. This is obvious if {S;} is compound Poisson, and since
clearly Z(v) is additive in v, we may assume that v is concentrated on
0,1].

( N(])W note that {S;/t},.,~, is a backward martingale (by the standard
random walk analogue, this holds for {Sk/n/(k/n)}k:h
continuity argument or mimic the proof). Hence by the martingale conver-
gence theorem in continuous time Z(v) exists and satisfies EZ(v) < ES;.
Now if (™) denotes the restriction of v to (0,1/n] and St(n) denotes the
sum of the jumps < 1/n before t, we have S, = St(n) for all small ¢, and
hence Z(v) = Z(v™),

; use an easy

)
Ln

1/n
EZ(v) = lim IEZ(I/(")) < lim yv(dy) = 0,

n—oo n—oo 0

so that Z(v) = 0. O

Example 2.10 Let S; = 0t —Y; where 6 > 0 and {Y;} is a pure jump Lévy
process whose Lévy measure is infinite and concentrated on (0, c0). Then
by Lemma 2.9, we have S, > 0 for all small v, say 0 < v < vy, and hence
L;=0and V; = S; for t <wg. That is, {V;} leaves state 0 instantaneously
and in the same way as {St}. O

Example 2.11 Let § > 0, say § = 1 and let {Y;} be as in Example 2.10,
but take now S; = Y; — 6t. We shall see that this case is much more com-
plicated than Example 2.10 in the sense that 7, = inf{t >0: V; > 0}
is still zero but that for any € > 0 the Lebesque measure of A. =
{t € ]0,€] : V; =0} is nonzero. To this end, we let Yt("), Vt(n) ete. refer to
the case where all jumps < 1/n have been neglected. Clearly, Yt(n) — Yv(n)
1Y =Y, for v <t and hence Vt(n) T V;. Now since {Yt(n)} is compound
Poisson, each {Vt(n)} is simply of M/G/1 workload form, i.e. decreases at
a unit rate in states > 0 and has the same upward jumps as {Yt(") }. From
this it is obvious that

t
VO =y - [ s 0
0
and we may pass to the limit n — oo to get

Vi(0) = Y, — / tI(Vt > 0)ds. (2.4)

0

Now let € > 0 satisfy ¥; < ¢/2, t < ¢, and assume |A,| = 0. Then (2.4)
yields Ve = S, = Y. — € < 0, which is impossible. Also, 71 = 0 a.s. follows,
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since if {Y;} jumps say ¢ at time ¢, then V; > §; further, since v is infinite,
the jump times have 0 as accumulation point. a

Notes Theorem 2.5 and the many variants such as Corollaries 2.6 and 2.7,
which are around, are often referred to as Loynes’s lemma after Loynes (1962).

For Skorokhod problems, see e.g. example Rogers and Williams (1994), Revuz
and Yor (1999) and Whitt (2002). The theory is more difficult in multidimensions.
Tanaka (1979) is a classical reference for diffusions. A special problem on so—
called oblique reflection comes up in connection with the heavy—traffic limits for
queueing networks mentioned in the Notes to IV.5 and can be formulated as
follows: for a given matrix R and a given D—function x(t) with values in R and
z;(0) > 0 for all ¢ = 1,..., K, find functions v(t) and £(¢t) (and show they are
unique) such that v(0) = z(0), v(0) > 0, v(t) = x(t) + RE(t) > 0, and each
£;(t) in nondecreasing and can only increase when v;(t) = 0. It is easily seen that
conditions on R are required for this problem to be meaningful. See e.g. Harrison
and Reiman (1981) and Chen and Yao (2001).

3 Martingales and Transforms for Reflected
Lévy Processes

Let {S:} be a Lévy process with Lévy exponent k(«). The Wald martingale
is then M, = e*5:—t%(®). for some typical applications of this martingale,
see II1.8d and VIIL.5.4. We now study a martingale obtained as a stochastic
integral w.r.t. {M;} and which has a somewhat different range of applica-
tions; in particular, it allows for a more direct study of aspects of reflected
Lévy processes.

Theorem 3.1 Let {S;} be a Lévy process with Lévy exponent k(a), let
t
Vi = / vy + ) AY.
0 0<s<t

be an adapted process of locally bounded variation with continuous part
{Y£}, D—paths and jumps AY, = Yy — Ys_, and define Zy = © + Sy + Ys.
For each t, let K; be the r.v.

t t

/@(a)/ e“Zsds + e — 2%t 4 a/ e“Zs VS + Z e@Zs(1 — e @RYs),
0 0 0<s<t

Then {K:} is a local martingale whenever « € ©.

Proof. Let B, = e®Y++t5(®) Then, by the general theory of stochastic in-
tegration, K; = f(f Bs_ dM; is a local martingale. Using the formula for
integration by parts (see Protter, 1990, p. 60, for a version sufficiently
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general to deal with the present case) yields

M,B, — MyBy = / M, dB, + K} + Z AM,AB;.

0<s<t

Inserting

t
Z AM,AB, = / AM,dB, = /(MS—MS_)dBS,
0

0<s<t

it follows that
¢
K = / M,dB, + MyBo — M,B;. (3.1)
0
Using M B, = e*?s and dB; = B,(adY¢ + k(a)ds + 1 — e *2Ys) shows
that the r.h.s. of (3.1) reduces to K. O

Let as in Section 2 L, = infy<,<; S, denote the local time, L;(z) =
(Ly —z)*, and V; = Vi(z) = . + S¢ + Li(x) the reflected version of {S;}
starting from Vy = z. For simplicity, we will present most of the applications
of Theorem 3.1 in the following setting:

Corollary 3.2 Let {S:} be a Lévy process with no negative jumps,
v(—00,0) = 0. Let © > 0 and consider Vi = Vi(x). Then for k(a) < oo, the
process {K{} defined by

t
K, = n(a)/ eVeds + e — eVt aL(x)
0
s a martingale. More generally, for any 5 <0
t
K] = ﬁ(a)/ eWVethBLs qs — e 4 ViHPt L (1 4 a/B) (Pl — 1)
0

defines a martingale. If T is a stopping time, then a sufficient condition
that either of K, K are integrable with mean 0 is that sup,, eVt and
TSUD;<, eVt are both integrable.

For the proof, we need:

Lemma 3.3 (a) If k() < 0o, then By supgc <, €Y < oo for all t;
(b) if E|S1| < o0, then also EV; < 0o and EL; < oo for all .

Proof. Tt is easy to see that 0 < V;(x) — V;(0) < 2 so we may assume = = 0.
Then by Corollary 2.7, we have

Po(V; > 2) = P(1(z) <) (3.2)

where 7(z) = inf {t : Sy > z}. Choose €,y > 0 with P(L; < y) > € and let
7 =inf{t: V; > 2+ y}. Then

P(Sy > z—y) > P(r(2) <t,S — Srz) > ~¥)
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t) = ePo(V; >2) > P(r<t,S:— S, >—y)

) <
<t) = GQP()( sup V;>z+y).
0<s<t

eP(r(z
EP(r

(AVARAY]

That Eg supg< <, e®Vs < 00 now follows from Ee®St < oo by using integra-
tion by parts which also yields EqV; < oo and hence EqL; = EqV;—ES; < oo
when E|S;| < cc. O

Proof of Corollary 3.2. Consider {K'} (the case of {K/} is similar but
easier), where we take Y; = (1+ 3/a)L:(z). Note that {L;} has continuous
paths in the case of no negative jumps so that the last term in the definition
of K; in Theorem 3.1 vanishes, and that L,(x) only increases when V; =0
so that the term involving dY ¢ is

o / ") (1 4 B/a) dLy(a)
0
= (o +ﬁ)/ @ dLy(x) = (1+a/8)EH@ — 1),

Therefore K;' = K;. That {K]'} is a martingale and not just a local mar-
tingale follows since sup ., K is integrable by Lemma 3.3 (see Protter,
1990, p. 35). -

For the optional stopping problem, one has as always that EK”,, = EK//
= (0. However, by dominated convergence

TAL T
E/ QOVatBLy qs s E/ (@VetBLe (s eaVeni+Bloni _, eaVrtfLs
0 0

where both limits are finite. This implies 0 = EK”,, — EK”. a

Recall the Pollaczeck—Khinchine formula in Problem VIII.5.2 for the
m.g.f. of the steady—state M/G/1 workload. Here is a more general version:

Corollary 3.4 Consider a Lévy process with no negative jumps and nega-
tive drift, —oo < p = £'(0) = ES; < 0. Then the limit V in distribution of
V; ezists and for Ra < 0 one has Ee®V = au/k(a).

Proof. The existence of V' was noted in Section 2. Take § = 0 and choose
Vo = V* as a r.v. distributed as V' and independent of {S;}. Then {V;} is
stationary and we get

0 = EK] = k(a)Ee® —Ee®V" +Ee®t + oEL; = k(a)Ee®” + oEL,

so that it only remains to show that in a stationary process EL; = —tpu.
However, if EV < oo, this follows from V; = Vo + Sy + Ly and EV; =
EVy = EV in stationarity. The general case follows by an easy truncation
argument; see Problem X.2.3. O
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Example 3.5 Let {S;} be Brownian motion with drift 4 < 0 and variance
1 and {V;} the reflected version. We then get
ap 2|p

Ee®V = =
‘ opt a2~ 2 —a

which shows that V' is exponential with intensity 2|u|.

It is instructive to compare with an alternative proof using the Wald
martingale and the limiting case P(V > y) = p where p = P(7(y) < c0) of
(3.2). We have to show p = e~2I#l¥. Since v = —2pu solves #(7y) = 0, letting
a =~ yields M; = e=2#5 and

1 = EM 0 = e 2"P(r(y) <t) + Ele 5 r(y) > t].

Since Sy *3 —o00 and —2uS; < 2|uly on {7(y) > t}, dominated convergence
yields 1 = e ™2*Yp 4+ 0 and the desired conclusion. O

Example 3.6 Let {S;} be Brownian motion with drift x4 and variance 1
and {V;} the two—sided reflected version on [0, K], V; = VO—i-St—i—LEO) —LEK)
where Lgo), LEK) are the local times at 0, resp. K as defined as the solution
to an obvious generalization of the Skorokhod problem (see further XIV.3).
Letting Y; = L§0> — LEK), we get

t
K, = m(a)/ e®Vsds — e 4 eVt 4 ozL,gO) — oze‘XKLEK)
0

and equating the expectation in stationarity to 0 (x = V* as above) yields
0 = (ap+a?/2)Ee® + al® — qeaX )

where (0 = IELEO)/t, 1K) = ELEK)/t. In particular, taking o« = —2u we
get () = 21K 9(0)  Also, EV; = EVy = EV gives £(0) — ¢(K) 4 ) = 0. Tt
follows by easy algebra that £(°) = i/ (e?#K — 1), 0(F) = ;21K /(2K 1),
and hence

ueaK—‘,—QuK —

(€5 — 1) (n+a/2)’
which is readily seen to be the m.g.f. of a truncated exponential distribution
with density 2ue?** /(K — 1), 0 <z < K. O

EeaV _

Wald’s identity pEr = ES, allows to find an expected stopping time
when the distribution of .S, is accessible. Here is a similar formula for the
reflected case (by stopping time, we mean stopping time for {S;}):

Corollary 3.7 Consider a reflected Lévy process with no negative jumps
and Vo = x. Assume that a v # 0 with k() = 0 exists. Let T be a stopping
time such that sup,<, eVt and T SUpP;< eVt are both integrable. Then
VE,V; —Ege?Vr +e7* — Yy

v£/(0) '

E,m =
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Proof. Taking oo = v and using optional stopping (E, K. = 0) in Corollary
3.2 yields 0 = e7* — E,e"V" + 4E, L. (x). On the other hand, from Wald’s
identity

E.S- E, V., —z—E,L,(x)

BTN T SR -

Example 3.8 Let {V;} be reflected Brownian motion with drift p # 0
and variance 1, and let 7 = inf {¢ > 0: V; = 1}. Then k(o) = ap + o?/2
which shows that v = —2u solves k() = 0. Hence E[7|Vp = 0] = (2u +
e~ —1)/(2u?); cf. VL.2c. O

Example 3.9 For an example involving negative jumps, consider the
M/M/1 queue length process {Q:} with arrival intensity £ and service in-
tensity ¢ and the problem of evaluating E,7 where 7 =inf {t > 0: Q; = n}.
We will assume = = Q¢ < n and then 7 can be interpreted as the first buffer
overflow time

Take {S;} as the independent difference between two independent Pois-
son processes with intensities 3, resp. § (then k(o) = f(e*—1)+ d(e~*—1)),
and Y; = L¢(x). Then Z; = Q¢ in Theorem 3.1. Taking o = v = log d—log 3,
we have k(v) =0, e”7 = p, and the martingale is

Ki=0-e® 4" 40+ L(x)1—e )= —p 4+p Q4 Ly(2)(1-p)

(for the form of the last term note that L;(z) is the number of dummy
service events in the idle state before t so that the jumps are 1 and only
occurs at times where @; = 0). As in the proof of Corollary 3.7 we therefore
get

0 = —p " +p "+ EsLr(2)(1 - p),
E.r — E.S- _ E.Qr — 2 — Ey; Lo (2) _ (I-pn—z)—p"+p"
’ K'(0) B—0 (1=p)(B=9)

O

Theorem 3.10 Let {S;} be a Lévy process with no negative jumps, let
x > 0 and consider V; = Vi(z). Then for each o, 3 <0 and § > 0,

T s aVerfLu(n) g, — &P+ B) — e (o B)
f) o W= RN+ ) (33)

where p = p(0) is the negative root of k(p) = 9.

Proof. Let I denote the Lh.s. of (3.3) and let T be exponential with intensity
0 and independent of {S;}. Then

T
Ez/ eaVS—&-ﬂLS(z) ds = T — 5—1]Eze(XVT+BLT(I)_
0
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Taking Y; = (1+ /a)L; and using optional stopping at T in Theorem 3.1
(justified when «, 8 < 0) therefore yields

0 = (5(a) — ) + ¢ + (a+ ) / BePLe(x)=b3 gL,
0

Replacing a by p shows that the last integral is —e”*/(p + ). |

Problems

3.1 Discuss the case z > n in Example 3.9.

3.2 Find Ee’” in Example 3.9. Do the same if instead of the M/M/1 queue
length process one considers reflected Brownian motion or the M /M /1 workload
process.

3.3 Let {S:} be Brownian motion with drift p and variance 1 and 7" an inde-
pendent exponential r.v. with intensity . Show that Lt and Vpr = St + Lt are
independent exponential r.v.’s with intensities \/u? + 20 — u, resp. \/u? + 26 + .
3.4 Show IIL.(8.13).

Notes Theorem 3.1 is from Kella and Whitt (1992); more or less related mar-
tingale techniques allowing to incorporate local time appear in Baccelli and
Makowski (1989) and Revuz and Yor (1999), Ch. VI.2.4. Further references on
martingale techniques in queueing theory include Robert (2000) and Rougham
and Pearce (2002).

Corollary 3.7 is from Asmussen and Kella (2001) (their conditions for optional
stopping are somewhat sharper than here). Corollary 3.4 and Theorem 3.10 are
classical for Lévy processes, see e.g. Prabhu (1980, pp. 76-77) and Bertoin (1999).

A restriction of the approach of this section is that in many problems one
needs to control the distribution of V; which often is only possible for processes
that are skip—free or have only exponential jumps in one direction. The Markov
additive extension in Asmussen and Kella (2000) allows, however, for phase-type
jumps.

4 A More General Duality

We are concerned with extensions in two directions of the relations
P(Wo2a) = P(M,>2) = Pr(x) <n), (4.1)
PW>2z) = PM>z) = Plr(z) < o0) (4.2)

for the reflected version {W,} of a random walk {S,} (here 7(z) =
inf{n>1: S5, >z} is the ruin probability), cf. II1.6 and the Loynes
analogue in Section 2.

The first extension is to more general Markov processes. Let T = N or
T = [0,00), let {V;},cr be Markov with state space £ = [0,00) or £ = N,
and let V;(z) be the version starting from Vo = x. Then {V;} is stochastically
monotone if © < y implies V;(z) <s Vi(y) (stochastical ordering, cf. A4)
forallt € T, i.e. if P,(V; > 2) <Py (Vi > 2) for all ¢ and z.
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Proposition 4.1 The existence of a Markov process {Ri},cp on E'U{oo}
such that

B(Vi > y) = Py(R <) (4.3)

is equivalent to (1) {Vi} is stochastically monotone and (i) P,(V; > y) is a
right—continuous function of x for all t and y.

Proof. If {R;} exists, the Lh.s. of (4.3) is nondecreasing and right—
continuous in z and so necessity of (i), (ii) is clear. If conversely (i),
(ii) hold, then the r.h.s. of (4.3) defines a probability measure P'(y,-)
(thus Pt(y, {oo} = 1 — limg o P2 (V; > %)), and we shall show that the
Chapman—Kolmogorov equations Pi*¢ = P!P* hold; cf. 1.8. This follows
since

P5(y,[0,2]) = Py(Vigs >y) = /E Po(V; € d2)P. (Vs > v)

_ /EIP’;C(VtEdz)/OZPS(y,du) _ /OZPS(y,du)IP’x(VZZu)

/OZ Po(y,du)P(u, [0,2]) = (P'P*)(y.[0,2]).
O

Theorem 4.2 The state 0 is absorbing for {R;}. Furthermore, letting 7 =
inf{t >0: Ri(x) <0} =inf{t >0: Ri(x) =0}, one has

Po(Vr > z) = P,(r <T), (4.4)
and if Vi converges in total variation, say to V, then
Po(V > 2) = Pu(r < 0), (4.5)

Proof. Taking x = y = 0 in (4.3) yields Po(R: < 0) = Po(V; > 0) =1 so
that indeed 0 is absorbing for {R;}. We then get

P.(r <T) = P,(Rr <0) = Po(Vp > 2x). |

We turn to the second extension of (4.1) which does not require the
Markov property but, however, works more easily when T = N than when
T = [0,00). We there assume that {V,,}, oy is generated by a recursion of
the form

Vn+1 = f(Vn,Un), (4'6)

where {U,} (the driving sequence) is a stationary sequence of random el-
ements taking values in some arbitrary space F and f : Ex F — E is
a function. The (time-homogeneous) Markov case arises when the U, are
ii.d. (w.lo.g., uniform on F' = (0, 1)), but also much more general examples
are incorporated. We shall need the following easily proved lemma.
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Lemma 4.3 Assume that f(x,u) is continuous and nondecreasing in x for
each fizedu € F and define g(x,u) = inf {y : f(y,u) > x}. Then for fized u
g(x,w) is left—continuous in x, nondecreasing in x and strictly increasing on
the interval {x : 0 < g(z,u) < oco}. Further, f(y,u) =sup{x: g(z,u) <y}
and
g(z,u) <y <= f(y,u)>=. (4.7)
W.lo.g., we can take {U,} with doubly infinite time, n € Z, and define
the dual process {R,}, oy by
Rov1 = g(Ry,U-p), nEN; (4.8)

when the initial value z = Ry is important, we write R, ().

Theorem 4.4 Equations (4.3) and (4.5) also hold in the set—up of (4.6)

and (4.8).
Proof. For T € N, define VO(T) (y) =v,
Vi) = FV W), Uorny)s VA ) = S (VDL (), o).

We shall show by induction that
Vi) > 2 = Rr(x) <y (4.9)

(from this (4.3) follows by taking expectations and using the stationarity;
since g(0,u) = 0, (4.4) then follows as above). The case T' = 0 of (4.9) is
the tautology y > ¢ <= x < y. Assume (4.9) shown for T'. Replacing y
by f(y,U_r) then yields

ViD (fy,U-r) 22 <= Rr(x) < f(y,U ).
But V3" (f(y,U-1)) = Vi7" (y) and by (4.7),
Rr(z) < f(y,U-r) <= Rrui(z) = g(Rr(z),U-r) < y.

Hence (4.9) holds for 7'+ 1. O
Example 4.5 Consider a reflected random walk V11 = (V,, + X,,)* with
increments X, X1, ... which are i.i.d. or, more generally, stationary.

In the set—up of Proposition 4.1 and Theorem 4.2, we need (for the
Markov property) to assume that Xo, X1, ... are i.i.d. We take F = [0, 00)
and for y > 0, we then get

Py(Ri<z) = P,(Vi>y) = Ploa+Xo>y) = Ply— Xo < x).

For y = 0, we have Po(R; = 0) = 1. These two formulas show that {R,}
evolves as a random walk with increments — Xy, — X1, ... aslong as R, > 0,
ie. Rp(z) =2 — Sp, n <7, Ry(x) =0, n > 7; when (—o0,0] is hit, the
value is instantaneously reset to 0 and {R,} then stays in 0 forever. We
see further that in the setting of (4.1) we can identify 7 and 7(x), and thus
(4.5), (4.4) are the same as (4.1), (4.2).
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Consider instead the approach via Theorem 4.4 (which allows for incre-
menst that are just stationary). We let again E = [0, 00), take U = Xy
and f(z,u) = (z +u)". It is easily seen that g(y,u) = (y —u)™ and so
{Rn} evolves as a random walk with increments —Xo, —X_1,... as long
as R, > 0, while 0 is absorbing. With S,, = —X¢o — X_1 — -+ — X_p41,
S* = —8, it follows that 7 = inf {n cx+ 8, < O} =inf{n: S} >z}, and
this last expression shows that (4.4) is the same as in Loynes’ lemma in the
form of Corollary 2.7. O

Example 4.6 Consider again the setting of Example 4.5 but now with
two reflecting barriers 0 and B > 0. That is,

Vo1 = min[B, (V, + X,,)"]. (4.10)

For Theorem 4.2, we take X, X1,... i.i.d. and F = [0,00) (not [0, B]!).
For y > B, we then get

for all z, i.e. Py(Ry =o00) =1. For 0 <y < B, Py(R:1 <z) =P, (Vi > 9)
becomes

1 y=0
+ _ b
P