










Preface

This book treats the mathematics of queueing theory and some related ar-
eas, as well as the basic mathematical tools for the study of such models.
It thus aims to serve as an introduction to queueing theory, to provide
a thorough treatment of tools such as Markov processes, renewal theory,
random walks, Lévy processes, matrix–analytic methods and change of
measure, and to treat in some detail basic structures such as the GI/G/1
and GI/G/s queues, Markov–modulated models, queueing networks, and
models within the areas of storage, inventory and insurance risk. Within
this framework the choice of topics is, however, rather traditional. The aim
has been to present what I consider the basic knowledge in the area, not
to advocate special directions in which the area is at present developing.

The first edition was published in 1987. This second edition incorpo-
rates about 100 extra pages containing an extended treatment of queueing
networks and matrix–analytic methods as well as a number of additional
topics, in particular Poisson’s equation, the fundamental matrix, insensitiv-
ity, rare events and extreme values for regenerative processes, Palm theory,
rate conservation, Lévy processes, reflection, Skorokhod problems, Loynes’s
lemma, Siegmund duality, light traffic, heavy tails, the Ross conjecture and
ordering, and finite buffer problems.

Also, the references, typically given in the Notes following the separate
sections, have been thoroughly updated. It should be noted, however, that
these Notes are mainly intended as a first guidance for further reading, not
as a bibliography or history of the subject. When a textbook or a survey
paper dealing with a topic is available, this is the preferred reference rather
than the original papers. Thus, details of priority are treated rather sporad-
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ically. The principle has been to cite only the most important milestones
and classical texts, but otherwise to make the references as up–to–date as
possible. Thus, compared to the first edition, many older references have
been removed.

The reader should be familiar with probability theory at the level of
Breiman (1968), Chung (1974), Durrett (1991) or Shiryaev (1996). Most
readers are likely to know large parts of Chapters I–II, which therefore
may serve mainly as a refresher or reference part. However, one should
note that I.5–8 has much material not usually included in introductory
texts. How to read the rest of the book is a question of particular interests.
The reader oriented towards queueing theory may want to concentrate first
on Chapters III–IV and next on X–XII after having skimmed Chapters V,
VI and VIII for needed background; the reader with more general interests
will find Chapters V–IX and XIII more relevant.

The writing of both the first and the second editions of this book has
been an immense pleasure to me. This is due not least to the interest shared
by friends, collegues and students. Their impact cannot be overestimated,
and the list of people who in some way have influenced the book would be
huge. Let me just mention and thank a few who have contributed with de-
tailed comments on the second edition: Niels Hansen, Masakiyo Miyazawa,
Mats Pihlsg̊ard, Tomasz Rolski, Volker Schmidt, Karl Sigman and Anders
Tolver Jensen. Most figures were done by Jane Bjørn Vedel (supported by
MaPhySto, Aarhus) and my mother, Hanna Asmussen, typed much of the
material that is close to the first edition.

Finally, I gratefully acknowledge the permission of World Scientific Pub-
lishing Co., Singapore, to incorporate some parts (XI.2 and XIII.3) which
are close to the exposition in Asmussen (2000).

Søren Asmussen
Aarhus

February 2003
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IX Lévy Processes, Reflection and Duality 244
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Notation and Conventions

The basic principle for references within the book is to specify the chapter
number only when it is not the current one. Thus, say, Proposition 1.3, for-
mula (2.7) or Section 5 of Chapter IV are referred to as IV.1.3, IV.(2.7) and
IV.5, respectively, in all chapters other than IV where we write Proposition
1.3, (2.7) and Section 5.

Symbols such as say A, η, etc. do not of course have the same meaning
throughout the book and may be used interchangeably for real numbers,
measures and so on. For queueing processes, some effort has been made to
make the notation (introduced in III.1) reasonably consistent throughout
the book. One inconvenience is that the associated random walk becomes
Sn = X0 + · · ·+Xn−1 and not X1 + · · ·+Xn as in Chapter VIII. Of course,
similar (hopefully minor) incidents occur at a number of other places.

The expression E[X ; A] means EXI(A), where I(A) is the indicator of
A (if say A = {X > 0}, we write E[X ; X > 0]). By X

D= Y we mean
equality in distribution and by Xn

D→ X convergence in distribution (weak
convergence). The relation an ∼ bn means that an/bn → 1 as n → ∞ (other
limits may also occur), whereas an ≈ bn indicates various different types
of asymptotics, often just at the heuristical level. We use occassionally lim
instead of lim sup, and similarly for lim, lim inf. Ends of proofs, examples
or remarks are marked by the symbol �.

The typeface P, E is used for probability and expectation; Pe, Ee have a
special meaning by referring to stationarity (equilibrium or steady state, cf.
III.1). Matrices and vectors are in boldface A, t, π, etc.; usually, matrices
have uppercase Roman letters (occasionally Greek), column vectors lower-
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case Roman letters and row vectors lowercase Greek letters. The column
vector with all entries equal to 1 is denoted 1, the ith unit vector 1i. The
transpose of A is written AT.

The standard sets are denoted as follows:
N = {0, 1, 2, . . .} the natural numbers
Z = {0,±1,±2, . . .} the integers
Q =

{
p/q : p ∈ Z, q ∈ N\{0}} the rationals

R = (−∞,∞) the real numbers
C = {x + iy : x, y ∈ R} the complex numbers

(no special notation like R+ is used for (0,∞) or [0,∞)). The index set for
the time parameter of a stochastic process, usually N, Z, [0,∞) or (−∞,∞),
is denoted by T if more than one possibility may occur.

The set D of functions {xt} which are right–continuous (xs → xt, s ↓ t)
and have left–hand limits xt− = lims↑t xs is frequently encountered. If,
say, t varies in [0, 1] and xt is E–valued, we may specify this by writing
D([0, 1], E). Most often D stands for D[0,∞) = D

(
[0,∞), R

)
. D0 is the set

of D–functions with finite lifelength; see A2.
Some main abbreviations are given in the following list (others occur

locally):

LLN law of large numbers
CLT central limit theorem
LIL law of the iterated logarithm
l.h.s. left–hand side
r.h.s. right–hand side
a.s. almost surely
i.i.d. independent identically distributed
i.o. infinitely often
r.v. random variable
t.v. total variation
w.l.o.g. without loss of generality
w.p. with probability
w.r.t. with respect to
d.R.i. directly Riemann integrable
ch.f. characteristic function
m.g.f. moment generating function
c.g.f. cumulant generating function
g.c.d. greatest common divisor
supp support
spr spectral radius

The notation F̂ for the transform of a probability distribution may denote
either of the probability generating function, the m.g.f. or the ch.f.; see A9.

The delta function is δij = I(i = j), whereas δx often denotes the
measure degenerate at x.



Part A:
Simple Markovian Models



I
Markov Chains

1 Preliminaries

We consider a Markov chain X0, X1, . . . with discrete (i.e. finite or count-
able) state space E = {i, j, k, . . .} and specified by the transition matrix
P = (pij)i,j∈E . By this we mean that P is a given E × E matrix such
that pi· = (pij)j∈E is a probability (vector) for each i, and that we study
{Xn} subject to exactly those governing probability laws P = Pµ (Markov
probabilities) for which

P(X0 = i0, X1 = i1, . . . , Xn = in) = µi0pi0i1pi1i2 · · · pin−1in (1.1)

where µi = P(X0 = i). The particular value of the initial distribution µ is
unimportant in most cases and is therefore suppressed in the notation. An
important exception is the case where X0 is degenerate, say at i, and we
write then Pi so that Pi(X0 = i) = 1.

Given µ, it is readily checked that (1.1) uniquely determines a probabil-
ity distribution on Fn = σ(X0, . . . , Xn). Appealing to basic facts from the
foundational theory of Markov processes (to be discussed in Section 8), this
set of probabilities can be uniquely extended to a probability law Pµ govern-
ing the whole chain. Thus, since the transition matrix P is fixed here and in
the following, the Markov probabilities are in one–to–one correspondence
with the set of initial distributions.

If P is a Markov probability, then (with the usual a.s. interpretation of
conditional probabilities and expectations)

pij = Pi(X1 = j) = P
(
Xn+1 = j

∣∣Xn = i
)
, (1.2)
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P(Xn+1 = j |Fn) = pXnj = PXn(X1 = j), (1.3)
E
[
h(Xn, Xn+1, . . .)

∣∣Fn

]
= EXnh(X0, X1, . . .) . (1.4)

Conversely1, either (1.3) or (1.4) is sufficient for P to be a Markov proba-
bility. The formal proof of these facts is an easy (though in part lengthy)
exercise in conditioning arguments and will not be given here. However,
equations (1.2), (1.3), (1.4) have important intuitive contents. Thus (1.4)
means that at time n, the chain is restarted with the new initial value Xn.
Equivalently, the post–n–chain Xn, Xn+1, . . . evolves as the Markov chain
itself, started at Xn but otherwise independent of the past. Similarly, in
simulation terminology (1.3) means that the chain can be stepwise con-
structed by at step n drawing Xn+1 according to pXn· (to get started,
draw X0 according to µ).

Recall from A10 (the Appendix) that a stopping time σ is a r.v. with
values in N ∪ {∞} and satisfying {σ = n} ∈ Fn for all n, that Fσ denotes
the σ–algebra which consists of all disjoint unions of the form ∪∞

0 An with
An ∈ Fn, An ⊆ {σ = n} (here n = ∞ is included with the convention F∞
= σ(X0, X1, . . .)), and that σ and Xσ are measurable w.r.t. to Fσ. The
important strong Markov property states that for the sake of predicting the
future development of the chain a stopping time may be treated as a fixed
deterministic point of time. For example, we have the following extension
of (1.4):

Theorem 1.1 (strong markov property) Let σ be a stopping time.
Then a.s. on {σ < ∞} it holds that

E
[
h(Xσ, Xσ+1, . . .)

∣∣Fσ

]
= EXσ h(X0, X1, . . .). (1.5)

Proof. We must show that for A ∈ Fσ, A ⊆ {σ < ∞} we have

E
[
h(Xσ, Xσ+1, . . .); A

]
= E

[
EXσh(X0, X1, . . .); A

]
.

However, if A ∈ Fn and σ = n on A, this is immediate from (1.4). Replace
A by A ∩ {σ = n} and sum over n. �

The mth power (iterate) of the transition matrix is denoted by P m =
(pm

ij ). An easy calculation (e.g. let n = nm in (1.1) and sum over the ik
with k 
∈ {0, m, . . . , nm}) shows that X0, Xm, X2m, . . . is a Markov chain
and that its transition matrix is simply P m.

Associated with each state is the hitting time

τ(i) = inf {n ≥ 1 : Xn = i}
(with the usual convention τ(i) = ∞ if no such n exists) and the number
of visits Ni =

∑∞
1 I(Xn = i) to i. Clearly, {τ(i) < ∞} = {Ni > 0} and we

1The meaning of (1.4) is that this should hold for any h : E ×E × · · · → R for which
(1.4) makes sense, say h is bounded or nonnegative; similarly, (1.5) should hold for all
n and j. In (1.3), PXn(X1 = j) means g(x) = Px(X1 = j) evaulated at x = Xn.
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call i recurrent if the recurrence time distribution Pi(τ(i) = k) is proper, i.e.
if Pi(τ(i) < ∞) = 1, and transient otherwise. The chain itself is recurrent
(transient) if all states are so.

Proposition 1.2 Let i be some fixed state. Then:
(i) The following assertions (a), (b), (c) are equivalent: (a) i is recurrent;
(b) Ni = ∞ Pi–a.s.; (c) EiNi =

∑∞
1 pm

ii = ∞;
(ii) the following assertions (a′), (b′), (c′) are equivalent as well: (a′) i is
transient; (b′) Ni < ∞ Pi–a.s.; (c′) EiNi =

∑∞
1 pm

ii < ∞.

Proof. Define τ(i; 1) = τ(i),

τ(i; k + 1) = inf {n > τ(i; k) : Xn = i} , θ = Pi(τ(i; 1) < ∞).

Then Ni is simply the number of k with τ(i; k) < ∞, and by the strong
Markov property and Xτ(i;k) = i,

Pi(τ(i; k + 1) < ∞) = EiP
(
τ(i; k + 1) < ∞, τ(i; k) < ∞ ∣∣Fτ(i;k)

)
= Ei

[
P
(
τ(i; k + 1) < ∞ ∣∣Fτ(i;k)

)
; τ(i; k) < ∞]

= Ei

[
PXτ(i;k)(τ(i; 1) < ∞); τ(i; k) < ∞]

= θPi(τ(i, k) < ∞) = · · · = θk+1. (1.6)

If (a) holds, then θ = 1 so that it follows that all τ(i; k) < ∞ Pi–a.s., and
(b) also holds. Clearly, (b)⇒(c) so that for part (i) it remains to prove
(c)⇒(a) or equivalently (a′)⇒(c′). But if θ < 1, then

EiNi =
∞∑

k=0

Pi(Ni > k) =
∞∑

k=1

Pi(τ(i; k) < ∞) =
∞∑

k=1

θk < ∞.

For part (ii), it follows by negation that (a′) ⇐⇒ (c′) ⇐⇒ (b′′) Pi(Ni <
∞) > 0. However, clearly (b′)⇒(b′′) and from (1.6) it is seen that if (b′′)
holds, then θ < 1. Thus (b′′) ⇒ (a′). �

It should be noted that though Proposition 1.2 gives necessary and suf-
ficient conditions for recurrence/transience, the criteria are almost always
difficult to check: even for extremely simple transition matrices P , it is
usually impossible to find closed expressions for the pm

ii . Some alternative
general approaches are discussed in Section 5, but in many cases the re-
currence/transience classification leads into arguments particular for the
specific model.

Our emphasis in the following is on the recurrent case and we shall briefly
discuss some aspects of the set–up. Two states i, j are said to communicate,
written i ↔ j, if i can be reached from j (i.e. pm

ji > 0 for some m) and
vice versa. Clearly, the relation is transitive and symmetric. Now suppose
i is recurrent and that j can be reached from i. Then also i can be reached
from j. In fact even τ(i) < ∞ Pj–a.s. since otherwise Pi(τ(i) = ∞) > 0.
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Furthermore, j is recurrent since
∞∑

m=1

pm
jj ≥

∞∑
m=1

pm1
ji pm

ii p
m2
ij = ∞

if m1, m2 are chosen with pm1
ji > 0, pm2

ij > 0. Obviously i ↔ i by recurrence,
and it follows that ↔ is an equivalence relation on the recurrent states so
that we may write

E = T ∪ R1 ∪ R2 · · · , (1.7)

where R1, R2, . . . are the equivalence classes (recurrent classes) and T the
set of transient states. It is basic to note that the recurrent classes are
closed (or absorbing), i.e.

Pi(Xn ∈ Rk for all n) = 1 when i ∈ Rk

(this follows from the above characteriztion of Rk as the set of all states
that can be reached from i). When started at i ∈ Rk the chain therefore
evolves within Rk only, and the state space may be reduced to Rk. If, on
the other hand, X0 = i is transient, two types of paths may occur: either
Xn ∈ T for all n or at some stage the chain enters a recurrent class Rk and
is absorbed, i.e. evolves from then on in Rk.

Most often one can restrict attention to irreducible chains, defined by
the requirement that all states in E communicate. Such a chain is either
transient or E consists of exactly one recurrent class. In fact, if a recurrent
state, say i, exists at all, it follows from the above that any other state j
is in the same recurrence class as i.

A recurrent state is called positive recurrent if the mean recurrence time
Eiτ(i) is finite. Otherwise i is null recurrent. The period d = d(i) is the
period of the recurrence–time distribution, i.e. the greatest integer d such
that Pi(τ(i) ∈ Ld) = 1 where Ld = {d, 2d, 3d, . . .}. If d = 1, i is aperiodic.

Proposition 1.3 Let R be a recurrent class. Then the states in R (i) are
either all positive recurrent or all null recurrent; (ii) have all the same
period.

Proof. (i) is deferred to Section 3. Let i, j ∈ R and choose r, s with pr
ij > 0,

ps
ji > 0. Then pr+s

ii > 0, i.e. r+s ∈ Ld(i), and whenever pn
jj > 0, pr+s+n

ii > 0
also, i.e. r + s + n ∈ Ld(i) so that n ∈ Ld(i) also. It follows that Pj(τ(j) ∈
Ld(i)) = 1, i.e. d(j) ≥ d(i). By symmetry, d(i) ≥ d(j). �

Proposition 1.4 Let i be aperiodic and recurrent. Then: (a) there exists
ni such that pm

ii > 0 for all m ≥ ni; (b) if j can be reached from i, then
there exists nj such that pm

ij > 0 for all m ≥ nj.

Proof. For (a), see A7.1(a). For (b), choose kj with p
kj

ij > 0 and let nj =
ni + kj . �
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Problems

1.1 Explain that Pµ =
∑

i∈E µiPi.
1.2 Show that (1.2) implies (1.4).
1.3 Show that if θ = pii > 0, then the exit time η(i) = inf {n ≥ 1 : Xn �= i} has
a geometric distribution, Pi(η(i) = n) = (1 − θ)θn−1, n = 1, 2, . . ..
1.4 In a number of population processes one encounters Markov chains with
E = N, Xn representing the population size at time n, state 0 absorbing and
Pi(τ (0) < ∞) > 0 for all i. Explain why it is reasonable to denote {τ (0) < ∞} as
the event of extinction. Show that any state i ≥ 1 is transient and that Xn → ∞
a.s. on the event {τ (0) = ∞} of nonextinction.

Notes In this book, we use the terminology that a Markov chain has discrete
time and a Markov process has continuous time (the state space may be discrete
as here or general as in Section 8). However, one should note that it is equally
common to let “chain” refer to a discrete state space and “process” to a general
one (time may be discrete or continuous).

One more convention: the bold typeface for say the initial distribution µ in-
dicates a representation as a (row) vector, but in many contexts it is more
convenient to think of the measure interpretation, and we then write µ. Simi-
larly, a function on the state space may be written either as a (column) vector
f = (fi)i∈E or just as f (with value f(i) at i) We will change freely between these
notations; say we use whichever of ν(f), νf which in a given context is convenient
to represent

∑
νif(i). Accordingly, we can think of the transition matrix P as

an operator acting on measures to the left and on functions to the right, and we
sometimes write νP as νP and P f as Pf . A particularly important function is
the constant 1 which we write as 1 in vector notation.

Markov chains and processes with a discrete state space form in many ways
a natural starting point of applied probability: when considering a specific phe-
nomenon, the first attempt to formulate and solve a stochastic model is usually
performed within the Markovian set–up, and also the mathematical question
arising in connection with Markov chains are to a large extent the same as for
more general models (in particular, this is so in queueing theory). The present
text therefore starts with a treatment of the relevant features of discrete Markov
chains and (in Chapter II) processes. The exposition is in principle self–contained,
but the novice will miss examples, and thus the aim is more to provide a refresher
and reference, covering also some topics that are not in all textbooks.

We will not list the many textbooks containing introductory chapters on

Markov chains and processes. More advanced treatments of discrete Markov

chains are in Brémaud (1999), Chung (1967), Freedman (1971), Kemeny et al.

(1976) and Orey (1971), and of discrete Markov processes in Chung (1967) and

Anderson (1991).

2 Aspects of Renewal Theory in Discrete Time

Let f1, f2, . . . be the point probabilities of a distribution on {1, 2, . . .}. Then
by a (discrete time) renewal process governed by {fn} we understand a
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point process (see A3 for the terminology) on N with epochs S0 = 0, Sn =
Y1+· · ·+Yn, where the Yi are i.i.d. with common distribution {fn}. Instead
of epochs, we usually speak of renewals. The associated renewal sequence
u0, u1, . . . is defined by uk = P(Sn = k for some k ≥ 0), i.e. the probability
of a renewal at k.

A renewal occurs at k > 0 if either Y1 = k which happens w.p. fk = fku0,
or if Y1 = � < k and Y2 + · · · + Yn = k − � for some n. The probability of
this is f�uk−�, and so

uk = fku0 + fk−1u1 + · · · + f1uk−1, k ≥ 1, (2.1)

i.e. in convolution equation u = δ0 + u ∗ f where δ0i = I(i = 0). In
conjunction with u0 = 1, (2.1) clearly uniquely determines {un}.

Figure 2.1

These concepts are intimately related to Markov chains. Consider some
fixed recurrent state i, let Y1 = τ(i) and more generally let Yk be the inter–
occurence time between the (k−1)th and kth visit to i. Then Y1, Y2, . . . are
i.i.d. w.r.t. Pi according to the strong Markov property, the common distri-
bution {fn} is the recurrence time distribution of i and the renewals are the
visits to i so that un = pn

ii. Conversely, any renewal processs can be con-
structed in this way from a Markov chain which we shall denote by {An}.
Indeed, define An = n− sup {Sk : Sk ≤ n} as the backward recurrence time
at n, i.e. the time passed since the last renewal; see Fig. 2.1. Then the paths
of {An} are at 0 exactly at the renewals, i.e. the renewals are the recurrence
times of 0, and the Markov property follows by noting that {An} moves
from i to either i+1 or 0, the probability of i+1 being P(Yk > i+1 |Yk > i)
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independently of A0, . . . , An−1. The state space E is N if {fk} has infinite
support and {0, 1, . . . , K − 1} with K = inf {k : f1 + · · · + fk = 1} other-
wise. A closely related important Markov chain is the forward recurrence
time chain {Bn}, i.e. Bn is the waiting time until the next renewal after
n; see again Fig. 2.1. The Markov property is even more immediate since
the paths decrease deterministically from i to i − 1 if i > 1, whereas the
value of Bn+1, following Bn = 1, is chosen according to {fk} independently
of the past. The state space is {1, 2, . . .} in the infinite support case and
{1, . . . , K} otherwise, and a renewal occurs at n if and only if Bn−1 = 1.

Lemma 2.1 {un} and {fn} have the same period d.

Proof. Since un ≥ fn, it is clear that the period df of {fn} is at least that
du of {un}. Conversely, it is only possible that P(Sk = n) > 0 and hence
un > 0 if n is a multiple of df . Hence du ≥ df . �

If d = 1 in Lemma 2.1, we will call the renewal sequence (process)
aperiodic.

Renewal processes with the Yk having a possible continuous distribution
will play a major role in later parts of the book. We shall here exploit the
connection between (discrete) renewal processes and Markov chains in the
limit theory. Within the framework of renewal processes, the main result
is as follows (to be translated to Markov chains in Section 4):

Theorem 2.2 Let {un} be an aperiodic renewal sequence governed by {fn}
and define µ =

∑∞
1 nfn = EY1. Then un → 1/µ as n → ∞ (here 1/∞ =

0).

Proof. Define rn = fn+1 +fn+2 + · · · = P(Y1 > n) and let L be the index
of the last renewal in {0, . . . , n}. Then L = � if there is a renewal at � and
the next Y is > n − �, i.e. the probability is u�rn−� so that

1 = P(L ≤ n) = r0un + r1un−1 + · · · + rnu0. (2.2)

Now let λ = lim supun and choose n(k) such that un(k) → λ. Let i satisfy
fi > 0. Choosing N such that rN < ε, we obtain from (2.1) and un ≤ 1
that for k sufficiently large

λ − ε ≤ un(k) ≤ rN +
N∑

j=1

fjun(k)−j (2.3)

≤ ε + (1 − fi)(λ + ε) + fiun(k)−i. (2.4)

Letting first k → ∞ and next ε ↓ 0 yields lim inf un(k)−i ≥ λ which is only
possible if un(k)−i → λ. Repeating the argument we see that this also holds
for any i of the form i = x1a1 + · · ·+xtat where xk ∈ N, fak

> 0. But since
{fn} is aperiodic, it follows by A7.1(a) (see also Proposition 1.4) that any
sufficiently large i, say i ≥ a, can be represented in this form. Thus letting
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n = n(k) − a in (2.2) we obtain for any N

1 ≥
N∑

j=0

rjun(k)−a−j → λ

N∑
j=0

rj . (2.5)

Since r0 + r1 + · · · = µ, this proves 1 ≥ λµ.
It remains to show that ν = lim inf un ≥ µ−1. This is clear if µ = ∞ and

can be proved similarly as above if µ < ∞. In fact, if {m(k)} is chosen such
that um(k) → ν, we obtain, instead of (2.3),

ν + ε ≥ um(k) ≥
N∑

j=1

fjum(k)−j ≥ (ν − ε)
∑

j≤N,j �=i

fj + fium(k)−i

= (1 − fi)(ν − ε) − rN (ν − ε) + fium(k)−i.

As above, this implies lim supum(k)−i ≤ ν and um(k)−i → ν. Hence for
fixed N

1 ≤
N∑

j=0

rjum(k)−a−j +
∞∑

j=N+1

rj → ν

N∑
j=0

rj +
∞∑

j=N+1

rj ,

which tends to νµ + 0 as N → ∞. �

Corollary 2.3 Let {un}, {fn} have period d > 1. Then: (i) {und}∞n=1 is
an aperiodic renewal sequence governed by {fnd}∞n=1; (ii) um = 0 whenever
m is not of the form m = nd; (iii) und → d/EY = d/µ as n → ∞.

Proof. Here (i) and (ii) are obvious, and from Theorem 2.2 we get

und → (
fd + 2f2d + 3f3d + · · ·)−1 = d/EY. �

Sometimes one also encounters defective governing distributions {fn},
i.e. f∞ = 1− f1 − f2 − · · · > 0. The corresponding renewal sequence is still
uniquely determined by u0 = 1 and (2.1), and can be interpreted in terms
of a terminating or transient renewal process. This is defined simply by
attaching the Yk mass f∞ at ∞. If f∞ > 0, then σ = inf {n ≥ 1 : Yn = ∞}
is finite a.s., and Sn < ∞ for n = 0, . . . , σ−1, = ∞ for n ≥ σ. In particular,
the number σ of renewals is finite a.s., and hence the probability un of a
renewal at n tends to zero as n → ∞. More precisely:

Proposition 2.4 If f∞ > 0, then the expected number of renewals is given
by Eσ =

∑∞
0 un = 1/f∞.

Proof. Since un is the probability of a renewal at n, the expected number
of renewals is indeed

∑∞
0 un. But it is also

Eσ =
∞∑

n=1

P(σ ≥ n) =
∞∑

n=1

P(Yk < ∞, k = 1, . . . , n − 1)

=
∞∑

n=1

(1 − f∞)n−1 = 1/f∞.

�
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Problems

2.1 Define the generating function of {fn} by f̂ [s] =
∑∞

0 snfn (f0 = 0). Show

that û[s] =
∑∞

0 snun = (1 − f̂ [s])−1.
2.2 Consider the geometric case fn = (1− θ)θn−1. Show that un is constant for
n > 0, un = 1 − θ.
2.3 Show that {unvn} is a renewal sequence if {un}, {vn} are so.
2.4 Let {un} be a renewal sequence with

∑∞
1 fn �= 1. Assume that

∑∞
1 ρnfn = 1

for some ρ. Show that {ρnun} is a renewal sequence and that un ∼ cρ−n for some
c ≥ 0 (provided {fn} is aperiodic).

Notes The proof of Theorem 2.2 is a classical argument due to Erdös et al.

(1949) (many texts today use coupling instead and we return to this in VII.2).

Additional material on renewal sequences and related topics can be found in

Kingman (1972).

3 Stationarity

Let ν = (νi)i∈E be any nonnegative measure on E (it is not assumed that
ν is a distribution, |ν| =

∑
νi = 1, neither that ν is finite, |ν| < ∞, but

just that all νi < ∞). We can then define a new measure νP by usual
matrix multiplication (viewing ν as a row vector), so that νP attaches
mass

∑
i∈E νipij to j. We call ν 
= 0 stationary if all νi < ∞ and νP = ν,

i.e. if in algebraic terms ν is a left eigenvector of the transition matrix P
corresponding to the eigenvalue 1.

Of particular importance is the case where ν is a distribution.
Irrespective of whether ν is stationary or not, we then have

Pν(X1 = j) =
∑
i∈E

Pν(X0 = i)pij =
∑
i∈E

νipij = (νP )j .

Thus νP can be interpreted as the Pν–distribution of X1, and in a similar
manner the Pν–distribution of Xm is νP m. In particular, if ν is stationary,
then νP m = ν for all m so that the distribution of Xm is independent of
m. More generally:

Theorem 3.1 Suppose that ν is a stationary distribution. Then:
(i) The chain is strictly stationary w.r.t. Pν , i.e. the Pν–distribution of
(Xn, Xn+1, . . .) does not depend on n;
(ii) there exists a strictly stationary version {Xn}n∈Z of the chain with
doubly infinite time, such that Pν(Xn = i) = νi for all n ∈ Z.

Proof. (i) Clearly (Xn, Xn+1, . . .) is a Markov chain with transition matrix
P w.r.t. Pν . Then the distribution of the whole sequence is uniquely given
by the initial distribution which is νP n = ν, hence independent of n.

(ii) This is a standard construction based upon Kolmogorov’s consistency
theorem and valid for general stationary sequences: let Pn(1),...,n(k) be the
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Pν–distribution of
(
X0, Xn(2)−n(1), . . . , Xn(k)−n(1)

)
, n(1) < n(2) < · · · <

n(k), and note that (by stationarity)
{
Pn(1),...,n(k)

}
is a consistent family

(see Breiman, 1968, p. 105, for more detail). �

Question of existence and uniqueness of stationary distributions is one of
the main topics of Markov chain theory. We start by an explicit construction
(a generalization of which will also turn out to be basic for non–Markovian
processes; cf. VI.1 and VII.6):

Theorem 3.2 Let i be a fixed recurrent state. Then a stationary measure
ν can be defined by letting νj be the expected number of visits to j in between
two consecutive visits to i,

νj = Ei

τ(i)−1∑
n=0

I(Xn = j) =
∞∑

n=0

Pi(Xn = j, τ(i) > n). (3.1)

The proof is based upon the following lemma:

Lemma 3.3 Let λ be an arbitrary initial distribution and σ a stopping
time, and define new measures λ(σ), µ(0), µ(1) by λj(σ) = Pλ(Xσ = j),

µj(0) = Eλ

σ−1∑
n=0

I(Xn = j), µj(1) = Eλ

σ∑
n=1

I(Xn = j).

Then λ + µ(1) = µ(0) + λ(σ), µ(1) = µ(0)P .

Proof. The first statement follows by computing Eλ

∑σ
0 I(Xn = j) by split-

ting first into the contribution from n = 0 and the sum from 1 to σ, and
next into the sum from 0 to σ − 1 and the contribution from n = σ. The
second follows from

µj(1) =
∞∑

n=1

Pλ(Xn = j, σ ≥ n) =
∞∑

n=1

Eλ

[
P
(
Xn = j, σ ≥ n

∣∣Fn−1

)]
=

∞∑
n=1

Eλ

[
P
(
Xn = j

∣∣Fn−1

)
; σ ≥ n

]
=

∞∑
n=1

Eλ

[
pXn−1j ; σ ≥ n

]
=

∑
k∈E

pkj

∞∑
n=0

Pλ(σ > n, Xn = k) =
∑
k∈E

pkjµk(0) = (µ(0)P )j .

Here in the third step we used the Fn−1–measurability of I(σ ≥ n). �

Proof of Theorem 3.2. If in Lemma 3.3 we take λ as the one–point distri-
bution at i and σ = τ(i), we have µ(0) = ν and λ(σ) = λ. The conclusion
of the lemma can be written λ+νP = ν +λ. Hence νP = ν, and we need
only to check that νj < ∞ for any j. Clearly, νi = 1 and νj = 0 if j is not
in the same recurrent class as i. Otherwise observe first that pm

ji > 0 for
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some m so that νj < ∞ follows from

νi =
∑
k∈E

νkpm
ki ≥ νjp

m
ji . (3.2)

�

Theorem 3.4 If the chain is irreducible and recurrent, then a station-
ary measure ν exists, satisfies νj > 0 for all j and is unique up to a
multiplicative constant.

Here existence is immediate from Theorem 3.2 (we denote in the following
the measure in (3.1) by ν(i)). Also, νi > 0 for any i ∈ E and any stationary
measure ν is clear from (3.2) since we may choose j with νj > 0. The key
step for uniqueness is the following:

Lemma 3.5 Let i be some fixed state and let ν be superstationary (i.e.
νP ≤ ν) with νi ≥ 1. Then νj ≥ ν

(i)
j for all j ∈ E.

Proof. With P̃ the matrix obtained from P by replacing the ith column
by zeros, it is easily seen by induction that p̃kjn is the taboo probability
Pk(Xn = j, τ(i) > n). In particular, if we let k = i and sum over n, we
get ν(i) = δ(i) ∑∞

0 P̃
n

where δ(i) is the distribution degenerate at i. We
next claim that νj ≥ δ

(i)
j + (νP̃ )j . Indeed, for j = i this follows from

νi ≥ 1 = δ
(i)
i , and for j 
= i we have (νP̃ )j = (νP )j ≤ νj . Hence

ν ≥ δ(i) + νP̃ ≥ δ(i)(I + P̃ ) + νP̃
2 ≥ · · ·

≥ δ(i)
N∑

n=0

P̃
n

+ νP̃
N+1 ≥ δ(i)

N∑
n=0

P̃
n
,

and letting N → ∞, ν ≥ ν(i) follows. �

Proof of Theorem 3.4. If ν is stationary, then νi > 0 as observed above.
Thus we may assume νi = 1 and the proof will be complete if we can show
ν = ν(i). But according to the lemma, we have ν ≥ ν(i). Hence µ = ν−ν(i)

is nonnegative and µP = µ. As noted above µi = 0 then implies µ = 0
and ν = ν(i). �

Clearly, the total mass of the stationary measure ν(i) given by (3.1) is

|ν(i)| =
∑
j∈E

ν
(i)
j = Ei

τ(i)−1∑
n=0

1 = Eiτ(i). (3.3)

Now if the chain is irreducible and recurrent, it follows by uniqueness that
the |ν(i)| = Eiτ(i) are either all finite or all infinite, i.e. that the states are
all positive recurrent or all null recurrent, proving the remaining part of
Proposition 1.3. In the first case, ν hence can be normalized to a stationary
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distribution π = ν/|ν| which is unique. In particular, for each j we have
πj = ν

(j)
j /|ν(j)| = 1/Ejτ(j) which yields an expression for π independent

of the reference state i. In summary:

Corollary 3.6 If the chain is irreducible and positive recurrent, there
exists a unique stationary distribution π given by

πj =
1

Eiτ(i)
Ei

τ(i)−1∑
n=0

I(Xn = j) =
1

Ejτ(j)
(3.4)

Corollary 3.7 Any irreducible Markov chain with a finite state space is
positive recurrent.

Proof. With Si =
∑∞

0 I(Xn = i), we have
∑

i∈E Si = ∞ so that by finite-
ness Si = ∞ for at least one i. But then i is recurrent, and therefore by
irreducibility the chain is recurrent. Since obviously the stationary measure
cannot have infinite mass if E is finite, we have positive recurrence. �

Example 3.8 Consider the backward and forward recurrence time chains
{An}, {Bn} of a renewal process governed by {fn}. It is clear from the
discussion in Section 2 that both chains are irreducible on the appropriate
state spaces. It is also clear that 0 is recurrent for {An} and 1 for {Bn} with
{fn} as recurrence time distribution in both cases. In particular, positive
recurrence is equivalent to µ =

∑
nfn < ∞. For {An}, the stationary

measure (3.1) with i = 0 becomes νn = rn = fn+1 + fn+2 + · · ·, n =
0, 1, . . .. Indeed, n is visited once in between two consecutive visits to 0 if the
recurrence time is ≥ n+1. This occurs w.p. rn and otherwise n is not visited.
In particular, if µ < ∞, then the stationary distribution is πn = rn/µ. In
an entirely similar manner it is seen that the stationary measure for {Bn}
is νn = rn−1, n = 1, 2, . . ., and if µ < ∞ then πn = rn−1/µ defines the
stationary distribution. �

The above assumption of irreducibility and recurrence (i.e. one recurrent
class) can easily be weakened by invoking the decomposition (1.7) of the
state space. For example, if ν(r) is a stationary measure on the rth recurrent
class Rr, it is easy to see that ν =

∑
r ν(r) is stationary for the whole

chain. Conversely, the restriction of a stationary ν to Rr is stationary (for
the chain restricted to Rr). Also, some transient chains have a stationary
measure. The theory is more difficult than for the recurrent case and will
not be discussed here. We remark only that a stationary distribution always
attaches mass zero to the transient states because P(Xn = i) → 0 when i is
transient. It is then easy to see that the most general form of a stationary
distribution is a convex combination of the unique stationary distributions
on the positively recurrent classes.

An alternative proof of the uniqueness of the stationary measure will be
given in VII.3. It relies on restricting the Markov chain to a subset F of
the state space, a procedure that also has other applications and which
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we now take the opportunity to discuss briefly. Let τ(F ; k) be the time of
the kth visit of {Xn} to F , and define τ(F ) = τ(F ; 1), XF

k = Xτ(F ;k).
In the recurrent case, τ(F ; k) < ∞ for all k, and by the strong Markov
property

{
XF

k

}
is a Markov chain. The transition matrix has elements

pF
k� = Pk(Xτ(F ) = �), k, � ∈ F , but these cannot in general be found

explicitly in terms of the pij (but see Problem 3.8). Nevertheless, we have
the following result:

Proposition 3.9 If {Xn} is irreducible and recurrent with stationary mea-
sure ν, then

{
XF

k

}
is also irreducible and recurrent, and the stationary

measure νF = (νF
� )�∈F can be obtained by restricting ν to F , i.e. (up to a

multiplicative constant) νF
� = ν�, � ∈ F . In particular, if

{
XF

k

}
is positive

recurrent, then the stationary distribution is given by πF
� = ν�/

∑
k∈F νk.

Proof. The first assertion is obvious. If we choose the initial state i in (3.1)
in F , then both {Xn} and

{
XF

k

}
visit � ∈ F the same number of times

in between visits to i. Hence, also constructing νF according to (3.1) with
the same i yields νF

� = ν�. �

The formula which conversely expresses ν in terms of νF (and P ) is
given in VII.5.

Occasionally, the following criterion is useful:

Lemma 3.10 Let {Xn} be irreducible and F a finite subset of the state
space. Then the chain is positive recurrent if Eiτ(F ) < ∞ for all i ∈ F .

Proof. Define σ(i) = inf
{
k ≥ 1 : XF

k = i
}
, τ(F ; 0) = 0, Yk = τ(F ; k) −

τ(F ; k − 1). Then with m = maxj∈F Ejτ(F ) we have for i ∈ F that

Eiτ(i) = Ei

σ(i)∑
k=1

Yk =
∞∑

k=1

Ei

[
E
[
Yk

∣∣Fτ(F ;k−1)

]
; k ≤ σ(i)

]
≤ m

∞∑
k=1

Pi

(
k ≤ σ(i)

)
= mEiσ(i).

Since E is finite,
{
XF

n

}
is positive recurrent. Thus Eiσ(i) < ∞, implying

Eiτ(i) < ∞ and positive recurrence of {Xn}. �

Problems

3.1 Compute a stationary measure if P is doubly stochastic, i.e. both the rows
and columns sum to 1.
3.2 Show that a Bernoulli random walk (E = Z, pn(n+1) = θ, pn(n−1) = 1 − θ)
is doubly stochastic and, if in addition θ �= 1/2, transient. Show that both νn = 1
and µn = θn/(1 − θ)n are stationary.
3.3 (Continuation of Problem 2.1). Show that the generating function ν̂[s] of the
stationary measure of the backward recurrence–time chain of a renewal process
is given by ν̂[s] = (f̂ [s] − 1)/(s − 1).
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3.4 A set A of states i called an atom if pi· is the same for all i ∈ A. Show that
τ (A) is finite Pi–a.s. either for all i ∈ A or for no i ∈ A, and that in the first case
a stationary measure can be defined by

νj = Ei

τ(A)∑
n=1

I(Xn = j) with i ∈ A arbitrary.

3.5 Consider the recurrence times An, Bn of a renewal process. Show that
{(An, Bn)} is Markov with the set of states of the form (i, 1) being an atom,
and that the stationary measure is given by νij = fi+j .
3.6 Show that {(Xn, Xn+1)} is a Markov chain, and compute the stationary
measure in terms of that of {Xn}.
3.7 Let {Xn} have stationary distribution π and let τ = inf {n ≥ 1 : Xn = X0}
be the time of return to the initial state. Evaluate Eπτ .
3.8 In block notation corresponding to E = F + F c, write the transition matrix
as

P =

(
P F F P F F c

P F cF P F cF c

)
.

Show that
{
XF

n

}
has transition matrix

P F = P F F + P F F c(I − P F cF c)−1P F cF .

Notes A concept somewhat related to a stationary distribution is that of a
quasi–stationary distribution. For the precise definition, assume that a special
state, say 0 ∈ E, is absorbing, and write E0 = E\{0}. Then λ = (λi)i∈E0 is
called quasi–stationary if Pλ(X1 = j | τ (0) > 1) = λj . Closely related are Yaglom
limits, defined as limits λj of Pi(Xn = j | τ (0) > n). A main result in the area
states that a (proper) Yaglom limit is necessarily quasi–stationary. However, it
is more difficult to assess when a quasi–stationary distribution or a Yaglom limit
is unique (the finite case is, however, easy).

Under weak irreducibility conditions, it is trivial to check that when a quasi–
stationary distribution λ exists, then Pλ(τ (0) > n) = θn where θ = Pλ(τ (0) > 1)
= Pλ(X1 �= 0). This implies in particular EiR

τ(0) < ∞ for R < 1/θ. A recent
result of Ferrari et al. (1995) goes the other way and states that under mild
additional conditions, EiR

τ(0) < ∞ for some R > 1 is necessary and sufficient for
the existence of a quasi–stationary distribution. Further recent references in the
area include Seneta (1994) and Glynn and Thorisson (2001).

4 Limit Theory

The aim is to obtain the limiting behaviour of the pn
ij . We start by noting

that this is nontrivial only in the positive recurrent case:

Proposition 4.1 If state j is either transient or null recurrent, then pn
ij →

0 for any i ∈ E.
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Proof. In the transient case, I(Xn = j) = 0 eventually so that the Pi–
expectation pn

ij must tend to zero. In the null recurrent case, write

pn
ij =

n∑
k=1

Pi(τ(j) = k)un−k where un = pn
jj . (4.1)

Now {un} is a renewal sequence governed by a distribution by infinite
mean and therefore by Corollary 2.3 un → 0. Letting n → ∞ in (4.1) and
appealing to dominated convergence yields pn

ij → 0. �

Theorem 4.2 (ergodic theorem for markov chains) Suppose that
the chain is irreducible, positive recurrent and aperiodic with stationary
distribution π. Then pn

ij → πj for all j. That is, P n → 1π.

Proof. We use again (4.1). By Theorem 2.2, un → µ−1 where µ is the
mean recurrence time Ejτ(j) = π−1

j . Appeal to dominated convergence
once more to get pn

ij → πj . �

The conclusion is that the limiting distribution of Xn is π, irrespective of
the initial state. Replacing Pi by Pν shows that the same conclusion more
generally holds for any initial distribution ν.

The case d > 1 can be quite easily reduced to the case d = 1. To this end,
we need the concept of cyclic classes, i.e. a partitioning of E into disjoint
sets E0, . . . , Ed−1 with the property that the only possible transitions are
of the form Er → Er+1 (here we identify Ed with E0, Ed+1 with E1 and
so on).

Proposition 4.3 Consider an irreducible chain with period d > 1, let i be
some arbitrary but fixed state and define

Er =
{
j ∈ E : P nd+r

ij > 0 for some n ≥ 0
}

, r = 0, . . . , d − 1.

Then E0, . . . , Ed−1 partition E into nonempty disjoint sets, and if j ∈
Er, then Pj(X1 ∈ Er+1) = 1 and more generally Pj(Xm ∈ Er+m) = 1.
Furthermore, these properties determine the Er uniquely up to a cyclic
rotation.

Proof. It is obvious that Er 
= ∅ (take n = 0). By irreducibility, each j is
in some Er so that ∪d−1

0 Er = E. Suppose that pnd+r
ij and pmd+s

ij are both
> 0, and choose t with pt

ji > 0. Then nd+r+ t and md+s+ t must both be
multiples of d, so that r− s = 0 (mod d), showing that the Er are disjoint.
Clearly, j ∈ Er and pm

jk > 0 implies k ∈ Er+m. Summing over all such k
yields Pj(Xm ∈ Er+m) = 1. Uniqueness is easy and is omitted. �

It follows that if d > 1, then the chain X0, Xd, X2d, . . . has E0, . . . , Ed−1

as disjoint closed sets. In the irreducible positive recurrent case it is fur-
thermore clear that {Xnd} is aperiodic positive recurrent on each Er, i.e.
admits a unique stationary distribution π(r) concentrated on Er. Now if π
is stationary for {Xn}, its restriction to Er is also stationary for {Xnd},
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and thus by uniqueness π is a convex combination
∑d−1

0 αrπ
(r) of the π(r).

Since

αr+1 = Pπ(X1 ∈ Er) = Pπ(X0 ∈ Er) = αr,

we must even have αr = d−1. Also, the limiting behaviour of pn
jk can easily

be seen from pnd
j� → π

(r)
� if j, � ∈ Er. Indeed, if j ∈ Er then pnd+s

jk = 0 for
all n if k 
∈ Er+s, whereas if k ∈ Er+s then by dominated convergence

pnd+s
jk =

∑
�∈Er+s

ps
j�p

nd
�k →

∑
�∈Er+s

ps
j�π

(r+s)
k = π

(r+s)
k = dπk. (4.2)

In view of this discussion one can assume aperiodicity in most cases. An
irreducible aperiodic positive recurrent chain is simply called ergodic.

A further noteworthy property of the stationary distribution is as the
limit of time averages (aperiodicity is not required),

1
n

n∑
k=0

f(Xk) → π(f) = πf = Eπf(Xk) =
∑
i∈E

f(i)πi, (4.3)

which holds if f is say bounded or nonnegative. The (easy) proof is carried
out in a more general setting in VI.3; a corresponding CLT is in Section 7.

It is reasonable to ask what is the rate of convergence of pn
ij to πi. In

particular, there has been considerable interest in geometrical ergodicity,
defined by the requirement pn

ij − πj = O(δn) for some δ < 1 independent
of i, j. One has:

Proposition 4.4 (a) An ergodic Markov chain is geometrically ergodic
provided Eiz

τ(i) < ∞ for some i ∈ E and some z > 1; (b) any irreducible
aperiodic finite Markov chain is geometrically ergodic.

Proof. Part (a) is a contained in the more general VII.2.11 proved later. For
(b), we can choose mki such that pm

ki > πi/2 for all m ≥ mki. By finiteness,
this implies the existence of ε > 0 and M < ∞ such that pm

ki > ε for all
m ≥ M and all k. Hence Pi(τ(i) > (n + 1)M | τ(i) ≥ nM) ≤ 1 − ε, and
hence by the geometrical trials lemma A6.1 Eiz

τ(i) < ∞ when z > 1 is
chosen with zM(1 − ε) < 1. Now just appeal to (a). �

Also in the null recurrent case it is sometimes possible in various ways to
obtain limit statements in terms of the stationary measure which are more
refined than just pn

ij → 0. For example:

Proposition 4.5 If the chain is irreducible recurrent with stationary
measure ν, then for all i, j, k, � ∈ E∑m

n=0 pn
ij∑m

n=0 pn
�k

→ νj

νk
, m → ∞. (4.4)

For the proof, we need two lemmas (the proof of the first is a straightforward
verification and omitted; generalizations are in Problem 5.1 and Section 6).
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Lemma 4.6 The matrix P̃ with elements p̃ij = νjpji/νi is a transition
matrix. Furthermore, the ijth element p̃ m

ij of P̃
m

is given by p̃m
ij = νjp

m
ji/νi.

Lemma 4.7 Define Nm
i =

∑m
n=0 I(Xn = i) as the number of visits to i be-

fore time m. Then in the irreducible recurrent case, limm→∞ EjN
m
i /EkNm

i

= 1 for any j, k ∈ E.

Proof. It may be assumed that k = i. By recurrence, Nm
i ↑ ∞ and hence

EiN
m
i ↑ ∞. Since Nm−n

i = Nm
i + O(1), dominated convergence yields

EjN
m
i

EiNm
i

=
m∑

n=0

Pj(τ(i) = n)
EiN

m−n
i

EiNm
i

→
∞∑

n=0

Pj(τ(i) = n) = 1. �

Proof of Proposition 4.5. Consider a Markov chain
{
X̃n

}
with transition

matrix P̃ given by Lemma 4.6. The expression for p̃n
ij shows that {Xn} and{

X̃n

}
are irreducible at the same time and (sum over n and use Proposition

1.2) recurrent at the same time. Hence
{
X̃n

}
satisfies the assumptions of

Lemma 4.7, and we obtain

1 = lim
m→∞

ẼjN
m
i

ẼiNm
i

· EiN
m
k

E�Nm
k

= lim
m→∞

∑m
n=0 p̃n

ji∑m
n=0 p̃n

ki

·
∑m

n=0 pn
ik∑m

n=0 pn
�k

=
νk

νj
lim

m→∞

∑m
n=0 pn

ij∑m
n=0 pn

ik

·
∑m

n=0 pn
ik∑m

n=0 pn
�k

=
νk

νj
lim

m→∞

∑m
n=0 pn

ij∑m
n=0 pn

�k

.

�

Notes The terminology “ergodic” as used above is standard, but one should
beware not to confuse it with the meaning it has in general stationary process the-
ory (e.g. Breiman, 1968, Ch. 6), namely that the invariant σ–field is trivial. In the
Markov chain setting, this does not require aperiodicity, whereas the tail σ–field
of a positive recurrent Markov chain being trivial is equivalent to aperiodicity;
see e.g. Freedman (1971).

For further results on geometric convergence rates, see VII.2.10. Studying con-
vergence rates via asymptotics of pn

ij −πj as n → ∞ is not the only possible point
of view. For example, in a number of models one has observed that ‖νP n − π‖
(t.v. distance) changes from ‖ν −π‖ to 0 rather abrubtly at a certain time point
N , and this N may be a more appropriate measure of the convergence rate than
sharp estimates of the deviation of pn

ij from πj when n is so large that the dif-
ference is negligible anyway. Surveys of such broader aspects are in Rosenthal
(1995) and Saloff–Coste (1996).

One might expect from Proposition 4.5 and the ergodic theorem for Markov

chains that if the chain is also aperiodic, then the strong ratio property pn
ij/pn

�k →
νj/νk holds. This is, however, not true for all null recurrent chains and presents

in fact difficult and not completely solved problems; see Orey (1971). There

has also been much discussion of the strong ratio property in relation to

quasi–stationarity; see Kesten (1995).
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5 Harmonic Functions, Martingales and Test
Functions

There is a concept dual to that of a stationary measure, namely that of a
harmonic function h defined as a right eigenvector h of P corresponding
to the eigenvalue 1.2 The requirement Ph = h means

h(i) =
∑
j∈E

pijh(j) = Eih(X1) = E
[
h(Xn+1)

∣∣Xn = i
]
,

i.e. that {h(Xn)} is a martingale. Similarly, one defines h to be subharmonic
if Ph ≥ h, i.e. {h(Xn)} is a submartingale, and superharmonic or excessive
if Ph ≤ h, i.e. {h(Xn)} is a supermartingale.

Proposition 5.1 If the chain is irreducible and recurrent, then any non-
negative superharmonic function h is necessarily constant. Similarly, any
bounded subharmonic function h is constant.

Proof. We must show that h(i) = h(j) for i 
= j. Now from the convergence
of any non–negative supermartingale we have that Z = limh(Xn) exists
Pi–a.s. Since Pi(Xn = i i.o.) = 1, it follows that Z = h(i) Pi–a.s. Similarly,
Pi(Xn = j i.o.) = 1 implies that Z = h(j) Pi–a.s. and hence h(i) = h(j).
The subharmonic case is similar, using the a.s. convergence of any bounded
submartingale. �

When concerned with the recurrent case as in most of this book, the
implication is that (super– or sub–) harmonic functions do not play a ma-
jor role. In the rest of this section we will see, however, that a number
of useful recurrence/transience criteria and other properties can be stated
in terms of functions h (commonly referred to as test functions or Lya-
pounov functions), having properties which are rather similar and allowing
for arguments along the lines of the proof of Proposition 5.1.

The problems we study are trivial if E is finite, and in the infinite case
we write h(j) → ∞ if the set {j : h(j) ≤ a} is finite for any a < ∞.

Proposition 5.2 Suppose the chain is irreducible and let i be some fixed
state. Then the chain is transient if and only if there is a bounded nonzero
function h : E\{i} → R satisfying

h(j) =
∑
k �=i

pjkh(k), j 
= i. (5.1)

Proof. Obviously h(j) = Pj(τ(i) = ∞) is bounded and satisfies (5.1). If the
chain is transient, then furthermore h 
= 0. Suppose, conversely, that there
is an h as stated and define h̃(j) = h(j), j 
= i, h̃(i) = 0, α = P h̃(i). By
changing the sign if necessary, we may assume α ≥ 0 so that P h̃(i) ≥ h̃(i).

2See Notes to Section 1 for notation, identication of h with h, of Ph with Ph, etc.
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Since P h̃(j) = h̃(j) for j 
= i, h̃ is thus subharmonic. Hence if the chain is
recurrent, we have by Proposition 5.1 that h(j) = h̃(j) = h̃(i) = 0 for all
j 
= i, contradicting h 
= 0. Hence the chain is transient. �

Proposition 5.3 Suppose the chain is irreducible and let E0 be a finite
subset of the state space E. Then:
(i) the chain is recurrent if there exists a function h : E → R such that
h(x) → ∞ and ∑

k∈E

pjkh(k) ≤ h(j), j 
∈ E0. (5.2)

(ii) the chain is positive recurrent if for some h : E → R and some ε > 0
we have infx h(x) > −∞ and∑

k∈E

pjkh(k) < ∞, j ∈ E0, (5.3)

∑
k∈E

pjkh(k) ≤ h(j) − ε, j 
∈ E0. (5.4)

An often encountered compact way to write (5.3)–(5.4) is

Ph(j) ≤ h(j) − ε + bI(j ∈ E0).

The intuitive content of (5.2) is that the “center” of the state space in the
h–scale corresponds to small values, and that the drift points to the center;
similarly, (5.4) can be interpreted as a uniformly positive drift towards the
center.

Proof. By adding a constant if necessary, we may assume h ≥ 0. Write
T = τ(E0) and define Yn = h(Xn)I(T > n).
(i) Note first that (5.2) may be rewritten as E[h(Xn+1) |Xn = j] ≤ h(j)
for j 
∈ E0. Let X0 = i 
∈ E0. Then on {T > n}, Xn 
∈ E0 (this fails for
n = 0 if X0 ∈ E0) and hence

Ei[Yn+1 |Fn] ≤ Ei

[
h(Xn+1); T > n

∣∣Fn

]
= I(T > n)Ei[h(Xn+1) |Fn] ≤ I(T > n)h(Xn) = Yn. (5.5)

If T ≤ n, then Yn = Yn+1 = 0, and thus Ei[Yn+1 |Fn] ≤ Yn, i.e. {Yn} is a
nonnegative supermartingale and hence converges a.s., Yn

a.s.→ Y∞. Suppose
the chain is transient. Then h(Xn) ≤ a only finitely often, i.e. h(Xn) → ∞,
and since Y∞ < ∞, we must have Pi(T = ∞) = 0. But Pi(T < ∞) = 1 for
all i 
∈ E0 implies that some j ∈ E0 is recurrent, a contradiction.
(ii) Again let X0 = i 
∈ E0. Then as in (5.5), we get on {T > n} that

Ei[Yn+1 |Fn] ≤ I(T > n)Ei[h(Xn+1) |Fn] ≤ Yn − εI(T > n).

Again, the same is obvious on {T ≤ n} and hence

0 ≤ EiYn+1 ≤ EiYn − εPi(T > n) ≤ · · · ≤ EiY0 − ε

n∑
k=0

Pi(T > k).
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Letting n → ∞ and using Y0 = h(i) yields EiT ≤ ε−1h(i). Thus for j ∈ E0,

EjT =
∑
i∈E0

pji +
∑
i�∈E0

pjiEi(T + 1) ≤ 1 + ε−1
∑
i�∈E0

pjih(i)

which is finite by (5.3). That the chain is positive recurrent now follows by
Lemma 3.10. �

Proposition 5.4 Suppose the chain is irreducible and let E0 be a finite
subset of E and h a function such that∑

k∈E

pjkh(k) ≥ h(j), j 
∈ E0, (5.6)

and that h(i) > h(j) for some i 
∈ E0 and all j ∈ E0. Then: (i) if h is
bounded, then the chain is transient; (ii) if h is bounded below and∑

k∈E

pjk|h(k) − h(j)| ≤ A, j ∈ E, (5.7)

for some A < ∞, then the chain is null recurrent or transient .

Proof. Define T as above but let now Yn = h(Xn∧T ). It is then readily ver-
ified that {Yn} is a submartingale when X0 = i 
∈ E0. In (i), boundedness
then implies Yn

a.s.→ Y∞ where EiY∞ ≥ EiY0 = h(i). But Y∞ < h(i) on
{T < ∞} so that Pi(T < ∞) < 1, showing transience.

For (ii), we can choose j ∈ E0 such that α = Pj(τ(i) < T ) > 0. Then
Ejτ(j) ≥ EjT ≥ αEiT so that is suffices to show EiT = ∞. Suppose
EiT < ∞. Then in particular, T < ∞ Pi–a.s. and by (5.7),

Ei

T∑
n=1

|Yn−Yn−1| = Ei

∞∑
n=1

I(T ≥ n)E
[|Yn−Yn−1|

∣∣Fn−1

] ≤ AEiT < ∞.

Thus we can interchange summation and expectation to get

EiYT = EiY0 + Ei

T∑
n=1

(Yn − Yn−1) = h(i) +
∞∑

n=1

Ei[Yn − Yn−1; T ≥ n]

= h(i) +
∞∑

n=1

Ei

(
I(T ≥ n)E

[
Yn − Yn−1

∣∣Fn−1

]) ≥ h(i),

using the submartingale property in the last step. This is a contradiction
since YT < h(i). �

Proposition 5.5 Suppose the chain is irreducible and recurrent, and let
E0 be a finite subset of the state space E. Then the chain is geometrically
ergodic if for some h ≥ 0 with h(i) > A > 0, i ∈ E0, and some r > 1∑

k∈E

pjkh(k) < ∞, j ∈ E0, (5.8)
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k∈E

pjkh(k) ≤ h(j)/r, j 
∈ E0. (5.9)

Proof. Let X0 = i 
∈ E0, Yn = rnh(Xn∧T ). Then it follows easily from
(5.9) that {Yn} is a nonnegative supermartingale. By recurrence, the limit
is Y∞ = rT h(XT ) ≥ ArT . On the other hand, EiY∞ ≤ EiY0 = h(i). For
j ∈ E0, (5.8) then yields

Ejr
T ≤ r + r

∑
i�∈E0

pjiEir
T ≤ 1 + A−1

∑
i�∈E0

pjih(i) < ∞.

It remains to show that Ejr
T ≤ for all j ∈ E0 implies geometric ergod-

icity. By Proposition 4.4, this will follow if we can show Eir
T < ∞ for all

i ∈ E0. This in turn follows by a variant of the proof of Lemma 3.10, left
as Problem 5.3. �

Proposition 5.6 Suppose the chain is irreducible and positive recurrent
with stationary distribution π, and let f, g, h be nonnegative functions on
E such that ∑

j∈E

pijh(j) ≤ h(i) − f(i) + g(i), i ∈ E. (5.10)

If π(g) < ∞, π(h) < ∞, then also π(f) < ∞.

Proof. We can rewrite (5.10) as f ≤ h−Ph+g. Thus P kf ≤ P kh−P k+1h+
P kg and for any i,

n∑
k=1

P kf(i) ≤ Ph(i) − P n+1h(i) +
n∑

k=1

P kg(i) ≤ Ph(i) +
n∑

k=1

P kg(i).

Applying π to the left and noting that π(Ph)/n = π(h)/n → 0 yields
π(f) ≤ π(g) < ∞. �

Example 5.7 Consider a queue where service takes place at a discrete
sequence of instants n = 0, 1, 2, . . ., let Xn be the queue length at time
n, Bn the number of customers arriving between n and n + 1 and An the
maximal number of customers that can be served at the (n + 1)th service
epoch. Thus with Yn = Bn − An

Xn+1 = (Xn + Yn)+, (5.11)

a recurrence relation (the Lindley recursion) also typical for many other
queueing situations and discussed in length in III.6. For example, this could
describe the queue at the stop of a bus with regular schedule, with An the
number of free seats in the nth bus.

Assume further that the random vectors (An, Bn) are i.i.d.; then {Xn}
is a Markov chain on N. Let µ = EYn. With h(i) = i, (5.11) then yields
EiW1 = E(i + Y1)+ ≥ i + µ. Thus, if µ ≥ 0, Proposition 5.4(ii) shows
immediately that {Xn} cannot be positive recurrent. Suppose on the other
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hand that µ < 0 and let µi = E[Yn; Yn > −i]. Then µi → µ, i → ∞, and
hence for i so large, say i > i0, that µi ≤ µ/2,

E(i + Y1)+ = E[i + Y1; Y1 > −i] ≤ i + µi ≤ i + µ/2.

Thus Proposition 5.3(ii) with E0 = {0, . . . , i0}, h(i) = i, ε = −µ/2 yields
positive recurrence.

For geometrical ergodicity, assume µ < 0 and that EzB1 < ∞ for some
z > 1. By replacing z by a smaller z if necessary, we may assume r1 =
EzY1 < 1. We have Ezi+Y1 = zir1, and as above, one then gets Eiz

W1 < zir
for i ≥ i0 and some r ∈ (r1, 1). Thus Proposition 5.5 with h(i) = zi yields
geometric ergodicity.

Finally, assume µ < 0, µ2 = EY 2
n < ∞. With h(i) = i2, we then have

Eh(i+Y1) = h(i)+µ2+2iµ. As above, this implies Ph(i) ≤ h(i)−f(i)+g(i)
for i ≥ i0 where g(i) = µ2/2, f(i) = −iµ. Since π(g) < ∞, Proposition
5.6 yields π(f) < ∞. I.e., the stationary distribution has finite mean when
µ2 < ∞ [see further X.2]. �

Problems

5.1 (doob’s h–transform) Suppose the chain is irreducible and h ≥ 0 har-

monic with h �= 0. Show that h(i) > 0 for all i and that the matrix P̃ with
elements p̃ij = h(j)pij/h(i) is a transition matrix.
5.2 Consider a population process satisfying the assumptions of Problem 1.4
and with all states i, j ≥ 1 communicating. Show that the extinction probability
qi = Pi(τ (0) < ∞) is either 1 for all i ≥ 1 or 0 for all i ≥ 1. Let E0 be finite
and suppose (5.2) holds. Show that qi = 1 if h(j) → ∞ and that qi < 1 if h
is bounded with h(i) < h(j) for some i �∈ E0 and all j ∈ E0. [Hint: Consider

{X̃n} evolving as {Xn} except that p̃01 = 1 rather than p̃01 = 0, and use h as

test function for {X̃n}.] Show in particular that if E[Xn+1 |Xn] ≤ Xn (i.e. the
expected number of children per individual does not exceed 1), then extinction
occurs a.s.
5.3 Carry out the last part of the proof of Proposition 5.5.

Notes Results of type Proposition 5.3, 5.4(i) have a long history and are often

referred to as Foster’s criteria. A main reference for test function techniques

is Meyn and Tweedie (1993), who also treat the case of an uncountable state

space (essentially, all results carry over at the cost of more tedious proofs and

formulations). It is known that many of the sufficient conditions given above are

also necessary in the sense that a test function with the stated properties must

exist. However, finding the appropriate one is far from easy in more complicated

models; Brémaud (1999) surveys a number of examples dealing with nonstandard

queueing models. See also Fayolle et al. (1995).
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6 Nonnegative Matrices

Finite square matrices with nonnegative elements occur in a variety of
contexts in applied probability. The so–called Perron–Frobenius theory of
such matrices describes in quite some detail their spectral properties (and
therefore also the asymptotic properties of their powers), and is therefore
a powerful and indispensable tool for many applications. We shall here
develop this theory by exploiting the intimate connection to Markov chains
with a finite number of states.

We start by recalling some facts from linear algebra. Let A be any p ×
p matrix and define for λ ∈ C Eλ = {x ∈ Cp : x 
= 0, Ax = λx}. Thus
sp(A) = {λ : Eλ 
= ∅} is the set of eigenvalues of A or the spectrum of A,
and spr(A) = sup

{|λ| : λ ∈ sp(A)
}

is the spectral radius of A. If λ ∈ sp(A),
then λ is a root in the characteristic polynomial det(A − λI), and if the
multiplicity is 1, we call λ simple. Then also the geometric multiplicity
dim

(
Eλ ∪ {0}) is 1, i.e. the eigenvector is unique up to a constant. If

λ ∈ sp(A), then λ is also eigenvalue for the transposed matrix AT. The
existence of an eigenvector for AT then means that νA = λν for some row
vector ν 
= 0, called a left eigenvector for A (x ∈ Eλ is a right eigenvector).
The following lemma is standard (all statements are easy to verify if one
writes A on the Jordan canonical form):

Lemma 6.1 (i) sp(Am) =
{
λm : λ ∈ sp(A)

}
; (ii) the Am–multiplicity of

λ ∈ sp(A) is the sum of the A–multiplicities of the λi ∈ sp(A) with λm
i = λ;

(iii) if λ ∈ sp(A) is not simple, then either dim
(
Eλ ∪ {0}) > 1 or for any

h ∈ Eλ we can find k with Ak = h + λk; (iv) An = O
(
nk[spr(A)]n

)
for

some k = 0, 1, 2, . . ..

We start by examining the spectral properties of ergodic transition
matrices:

Proposition 6.2 Let P = (pij)i,j=1,...,p be an ergodic p × p transition
matrix with stationary distribution π. Then spr(P ) = 1 and 1 is a simple
eigenvalue of P with π and 1 = (1 · · · 1)T as corresponding left and right
eigenvectors. Furthermore for λ ∈ sp(P ), λ 
= 1, we have |λ| < 1 and
with λ1 = max

{|λ| : λ ∈ sp(P ), λ 
= 1
}

it holds for some k that the powers
P n = (pn

ij) satisfy

pn
ij = πj + O(nkλn

1 ), n → ∞. (6.1)

Proof. It is clear that πP = π, P1 = 1 and hence 1 ∈ sp(P ). Also
h ∈ E1 means that h is harmonic and thus h = c1 (cf. Proposition 5.1;
the extension to the complex case is easy). Thus if 1 is not simple, Lemma
6.1(iii) shows that we can find k with Pk = 1+k. But then P nk = n1+k
which in Markov chain terms means that EikXn = n + ki, contradicting
that k is bounded in the finite case. Similarly, the ergodic theorem means
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that P n → 1π and hence if λ ∈ sp(P ), k ∈ Eλ, we have λnk = P nk →
1πk. But λnk can only converge if |λ| < 1 or λ = 1.

It only remains to prove (6.1). Write P = P 1 + P 2 with P 1 = 1π,
P 2 = P − 1π. It is then readily checked that P 1P 2 = P 2P 1 = 0 and
hence P n = P n

1 +P n
2 . It is also easily seen that P n

1 = P 1 = 1π. Hence by
Lemma 6.1(iv) it suffices to show that if λ ∈ sp(P 2)\ {0}, then |λ| ≤ λ1.
But from P 2k = λk we get P k = (P 1 +P 2)λ−1P 2k = λk, i.e. λ ∈ sp(P ).
If λ = 1, we would have k = c1 and hence P 2k = 0 which is impossible.
Hence |λ| ≤ λ1. �

If λ1 < δ < 1, (6.1) may be rewritten as pn
ij = πj + O(δn), and we have

obtained a second proof of Proposition 4.4(b), stating that any irreducible
finite Markov chain is geometrically ergodic.

A matrix Q is nonnegative if qij ≥ 0 for all i, j, and substochastic if also
Q1 ≤ 1, i.e. the rows sums are at most 1. The following result is often used
and holds under weaker conditions than irreducibility:

Proposition 6.3 Let Q be substochastic, such that to each i there is a k
and j1, . . . , jm with

∑
� qk� < 1 and qij1qj1j2 . . . qjmk > 0. Then spr(Q) < 1.

Proof. Let λ be an eigenvalue of absolute value spr(Q) and let h ∈ Eλ.
Consider a Markov chain {Xn} on {0, 1, . . . , p} such that 0 is absorbing,
and the probability of a transition i → j is qij for i, j ≥ 1 and 1 − ∑

� qi�

for j = 0. The assumptions on Q and a geometrical trials argument (cf.
A6.1) then easily yield that Xn = 0 eventually and that taking h0 = 0
makes λ−nhXn a martingale. If |λ| ≥ 1, boundedness would imply L1–
convergence (necessarily to h0) so that taking X0 = i yields hi = h0 = 0
which contradicts h 
= 0. Hence |λ| < 1 and spr(Q) < 1. �

We shall now derive a close analogue of Proposition 6.2 for nonnegative
matrices A. We shall adopt the definitions of irreducibility and the period
d from transition matrices to nonnegative matrices by noting that they
depend only on the pattern of entries i, j with aij > 0. Thus A is irreducible
if for any i, j we can find m such that am

ij > 0, and we have:

Lemma 6.4 If A is an irreducible nonnegative matrix, then the greatest
common divisor d of the m with am

ii > 0 does not depend on i. If d = 1,
then it holds for all sufficiently large m that am

ij > 0 for all i, j.

Proof. Choose a transition matrix P with pij > 0 for exactly the same i, j
as for which aij > 0. Then am

ij > 0 precisely when pm
ij > 0 and results from

Section 1 complete the proof. �

The d in Lemma 6.4 is called the period of A, and A is aperiodic if d = 1.

Theorem 6.5 (perron–frobenius) Let A be an irreducible non–
negative p × p matrix. Then:
(a) the spectral radius λ0 of A is strictly positive and a simple eigenvalue of
A with the corresponding left and right eigenvectors ν, h satisfying νi > 0,
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hi > 0 for all i;
(b) if A is also aperiodic, then λ1 = max

{|λ| : λ ∈ sp(A)\{λ0}
}

< λ0 .
Furthermore, if we normalize ν, h by νh =

∑p
1 νihi = 1, then for some k

An = λnhν + O(nkλn
1 ), n → ∞; (6.2)

(c) if A has period d > 1, then |λ| ≤ λ0 for any λ ∈ sp(A). Further-
more, λ ∈ sp(A), |λ| = λ0 holds exactly when λ is of the form λ0θ

k,
k = 0, 1, . . . , d − 1, with θk = e2πk/d the roots of unity.

Figure 6.1

Figure 6.1 depicts sp(A) for the aperiodic case in (a) and for the periodic
case d = 5 in (b). The eigenvalues fall in pairs of complex conjugates since
A is real. We shall refer to λ0 as the Perron–Frobenius root of A.

The proof of the Perron–Frobenius theorem will be reduced to the
Markov case in Proposition 6.2. We need some lemmas.

Lemma 6.6 If A has all aij > 0, then there exists λ ∈ sp(A), x ∈ Eλ

with λ > 0, xi > 0, i = 1, . . . , p.

Proof. The basic observation is that all aij > 0 implies

xi ≥ 0,

p∑
i=1

xi > 0 ⇒ all components of Ax are > 0. (6.3)

Define

K =
{
x ∈ Rp : 0 ≤ xi ≤ 1,

p∑
i=1

xi = 1
}
,

S =
{
µ ≥ 0 : Ax ≥ µx for some x ∈ K

}
,

λ = sup {µ : µ ∈ S}. Since AK is compact, λ < ∞. For a given x ∈ K,
(6.3) implies Ax ≥ εx for small enough ε, and hence λ > 0. Now choose
λn ∈ S, xn ∈ K with λn ↑ λ, Axn ≥ λnxn. Passing to a subsequence if
necessary, we may assume that x = limxn exists. Then Ax ≥ λx and we
shall complete the proof by showing that indeed Ax = λx (xi > 0 is then
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ensured by (6.3)). Otherwise let y = cAx with c > 0 chosen so that y ∈ K.
Then Ay − λy = cA(Ax − λx) has all components > 0 by (6.3). Hence
Ay ≥ (λ + ε)y for some ε > 0, a contradiction. �

Lemma 6.7 Suppose that Ak = λk with λ > 0 and all ki > 0. Then the
matrix P with elements aijkj/λki is a transition matrix, P1 = 1, and the
formulas

λA = λλP , hA
i = kih

P
i , πA

i = πP
i /ki

establish a one–to–one correspondence between λA ∈ sp(A) and λP ∈
sp(P ) and the corresponding right and left eigenvectors (πAA = λAπA

etc.). Furthermore, λA is simple for A if and only if λP is simple for P .

Proof. Everything is a straightforward verification except for the last
statement which follows from

det(P − µI) = det(λ−1A − µI) = λ−p det(A − µλI).

Indeed, multiplying the ith row by ki and the jth column by k−1
j leaves

the determinant unchanged and transform P into λ−1A, I into I. �

Proof of Theorem 6.5 in the aperiodic case. Choose first m with all am
ij > 0,

cf. Lemma 6.4, and next λ, k with Amk = λk, λ > 0, all ki > 0, cf. Lemma
6.6. Then by Lemma 6.7 1 is simple for P m = (am

ij kj/ki) and hence λ
simple for Am. If λ0 ∈ sp(A) satisfies λm

0 = λ, then by Lemma 6.1(ii) λ0

is simple for A. Choose h ∈ Eλ0 . Then Amh = λm
0 h = λh, and since λ is

simple for Am, it follows that we may take h = k. Then by nonnegativity,
Ah = λ0h implies λ0 > 0 and P = (aijkj/λ0ki) is a transition matrix.
Applying Proposition 6.2 and Lemma 6.7 everything then comes out in a
straightforward manner. For (6.2), note that if πP = π, π1 = 1 and we
let νi = πi/hi, then νA = λ0ν, νh = 1 and

an
ij = λn

0

pn
ijhi

hj
= λn

0

hi

hj

{
πj + O

(
nk
(λ1

λ0

)n)}
= λn

0 hiνj + O(nkλn
1 ).

�

Proof of Theorem 6.5 in the periodic case. We can reorder the coordinates
by a cyclic class argument so that A has the form⎛⎜⎜⎜⎜⎜⎝

0 A1 0 . . . 0
0 0 A2 0
...

. . .
...

0 0 0 . . . Ad−1

Ad 0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎠ .

Letting Bk = AkAk+1 · · ·AdA1 · · ·Ak−1, it follows that Ad is block–
diagonal with diagonal elements Bk which are irreducible aperiodic. Let µk

be the Perron–Frobenius root of Bk and Bkh(k) = µkh(k) with h
(k)
i > 0.
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Now

BkAkh(k+1) = AkBk+1h
(k+1) = µk+1Akh(k+1)

(identifying d + 1 with 1). Since Akh(k+1) 
= 0, it follows that µk+1 ∈
sp(Bk) and hence µk+1 ≤ µk. Hence all µk are equal, say µk = µ, and we
may take h(k) = Akh(k+1) = Ak . . . Ad−1h

(d). Now

det(Ad − ηI) =
d∏

k=1

det(Bk − ηI).

This shows that if λ ∈ sp(A), then η = λd is in sp(Bk) for some k. Hence
|λ| = |η|1/d ≤ |µ|1/d = λ0 (say) and |λ| = λ0 can only occur if λd = µ, i.e.
λ is of the form λ0θ

k for some k. Also the Ad–multiplicity of µ is exactly
d. By Lemma 6.1(ii) the proof is now complete if we can show that each
λ0θ

k is an eigenvalue and that z(0) ∈ Eλ0 may be taken with all z
(0)
i > 0.

But an easy calculation shows that

z(k) =
(
(λ0θ

k)0h(1)T · · · (λ0θ
k)d−1h(d)T

)T

satisfies Az(k) = λ0θ
kz(k). �

Problems

6.1 Is it true that if P is an infinite ergodic transition matrix, then all pn
ij > 0

for some n?
6.2 Suppose that A is an irreducible aperiodic nonnegative matrix such that
Am is a transition matrix for some m = 1, 2, . . . Show that then A is itself a
transition matrix. Show also that the result fails in the periodic case.
6.3 Let A be irreducible and nonnegative, and assume that Ax ≤ λx with
x ≥ 0, x �= 0 and λ > 0. Show that spr(A) ≤ λ provided either (i) A is
irreducible, or (ii) all xi > 0. Show also in case (i) that spr(A) < λ if in addition
Ax �= λx.

Notes Standard references for nonnegative matrices are Berman and Plem-

mons (1994) and Seneta (1994). Of extensions of the Perron–Frobenius theorem,

we mention in particular operator versions such as the Krein–Rutman theorem,

e.g. Schaefer (1970), and the more probabilistic inspired discussion of Nummelin

(1984).

7 The Fundamental Matrix, Poisson’s Equation
and the CLT

We assume throughout this section that {Xn} is irreducible positive
recurrent with stationary distribution π.
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Let f be a real–valued function on E, sometimes written as a column
vector f (see Notes to Section 1 for this and other notational issues like
π(f) versus πf , Pf versus P f , etc.). The equation

g = f + Pg, (7.1)

with g the unknown, is referred to as Poisson’s equation.

Proposition 7.1 Assume that f is π–integrable. Then: (i) a necessary
condition for the existence of a π–integrable solution to Poisson’s equation
is π(f) = 0; (ii) a π–integrable solution is unique up to a multiple of 1; (iii)
if π(f) = 0, then for any k g(i) = Ei

∑τ(k)−1
0 f(Xn) is a finite solution

satisfying g(k) = 0.

Proof. Multiplying (7.1) by π immediately gives (i). If g1, g2 are solutions,
then d = g1 − g2 satifies d = P d, i.e. d is harmonic and must therefore be
constant by Proposition 5.1, showing (ii). In (iii), we have from Corollary
3.6 that

π(|f |)Ekτ(k) = Ek

τ(k)−1∑
n=0

|f |(Xn) ≥ Pk

(
τ(j) < τ(k)

)
Ej

τ(k)−1∑
n=0

|f |(Xn).

This shows first that g(j) is finite and next, upon replacing |f | by f in the
left identity, that g(k) = 0. Conditioning upon X1 and using the definition
of g then gives

g(i) = f(i) +
∑
j �=k

pijg(j) = f(i) +
∑
j∈E

pijg(j) = f(i) + Pg(i),

which is the same as (7.1). �

Theorem 7.2 Let f be a π–integrable function on E and define f̃(i) =
f(i)−π(f). Assume that g is a solution of g = f̃ +Pg and that π(g2) < ∞.
Then

1√
n

(
f(X0) + · · · + f(Xn−1) − nπ(f)

) D→ N(0, σ2(f)) (7.2)

where σ2(f) = π(g2) − π
(
(Pg)2

)
.

Proof. We may assume w.l.o.g. that π(f) = 0 so that f = f̃ . Let ∆k =
g(Xk) − Pg(Xk−1). Then g = f + Pg implies

n∑
k=0

f(Xk) = g(X0) − Pg(Xn) +
n∑

k=1

∆k. (7.3)

Since Pg(Xk−1) = E(g(Xk) |Fk−1), the sequence {∆k} is a martingale
difference sequence, and we have

Var(∆k |Fk−1) = Var(g(Xk) |Fk−1) = ω2(Xk−1)
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where ω2(i) = g2(i)− (Pg)2(i). Here π(ω2) = σ2(f) is finite by assumption
so that

∑n
1 Var(∆k |Fk−1)/n → σ2(f) by the LLN (4.3). Therefore an

appropriate martingale CLT (e.g. Hall and Heyde, 1980, p. 58, or Shiryaev,
1996, p. 541) shows that

∑n
1 ∆k/n1/2 has a limiting N(0, σ2(f)) distribu-

tion. In view of (7.3), this is equivalent to the assertion of the theorem.
�

Now assume that E is finite and define the fundamental matrix Z by

Z = (I − P + 1π)−1 =
∞∑

n=0

(P − 1π)n = I +
∞∑

n=1

(P n − 1π). (7.4)

Note that by Proposition 6.2 we have |λ| < 1 for any eigenvalue of P − 1π
when P is aperiodic, so that the first series converges and equals the inverse;
the last expression for Z follows by verifying by induction that (P −1π)n =
P n−1π (we omit the easy proof that (7.4) also holds in the periodic case).
Some easily verified identities are

πZ = π, Z1 = 1, PZ = ZP = Z − I + 1π. (7.5)

Proposition 7.3 Assume that E is finite. Then if πf = 0, the unique
solution g of Poisson’s equation satisying πg = 0 is g = Zf .

Proof. From (7.5), we first get πg = πf = 0 and next

Pg = (Z − I + 1π)f = g − f + 0. �

Proposition 7.4 zij =
{

πjEπτ(j) i = j
πjEπτ(j) − πjEiτ(j) i 
= j

.

Note in particular that whereas the calculation of Eiτ(i) = 1/πi is easy,
so is not the case for Eiτ(j), and the answer (zjj − zij)/πj is provided by
Proposition 7.4.

Proof. Define f = 1j − πj1. Then π(f) = 0, and so by Proposition 7.1(iii)
the solution g of Poisson’s equation with g(j) = 0 is given by

g(i) = Ei

τ(j)−1∑
n=0

I(Xn = j) − πjEiτ(j) = δij − πjEiτ(j).

Thus the solution g∗ satifying π(g∗) = 0 is

g∗(i) = g(i) − π(g) = δij − πjEiτ(j) − πj + πjEπτ(j).

On the other hand, by Proposition 7.3 we have

g∗(i) = 1′
iZf = zij − πj .

Equating these two expressions yields the result (if i = j, note that
πjEiτ(j) = δij = 1). �

Corollary 7.5 In the finite case, σ2(f) = π(2f •Zf −f •f)− f
2

where
f = πf and • denotes multiplication element by element, (a • b)i = aibi.
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Proof. We have π(f ) = f , g = Z(f − f1) in Theorem 7.2 and thus

σ2(f ) = π(g • g − Pg • Pg)
= π

(
(Zf − f1) • (Zf − f1) − (Zf − f) • (Zf − f)

)
= π

(
f

2
1 − 2fZf − f • f + 2f • Zf

)
= f

2 − 2f
2

+ π(−f • f + 2f • Zf ),

where we used (7.5) repeatedly in the second step. �

8 Foundations of the General Theory of
Markov Processes

We shall consider two generalizations, first that of a general (not necessarily
countable) state space E, and next that of a continuous time parameter
t ∈ [0,∞).

In the general state space case, one needs to assume that E is equipped
with a measurable structure, i.e. a σ–algebra E to which all subsets of E
considered in the following are assumed to belong. Instead of the transition
matrix we have a transition (or Markov) kernel, i.e. a function P (x, A) of
x ∈ E and A ∈ E such that P (x, ·) is a probability on (E, E) for each x and
P (·, A) is E–measurable for each A.

Markov chains with transition kernel P and the corresponding Markov
probabilities Pµ (with µ a distribution on (E, E)) are defined by the
requirements Pµ(X0 ∈ A) = µ(A),

Pµ(Xn+1 ∈ A |Fn) = P (Xn, A) (8.1)

where Fn = σ(X0, . . . , Xn). With the usual a.s. interpretation of
conditional probabilities, it follows from (8.1) that

Pµ(Xn+1 ∈ A |Xn = x) = P (x, A) (8.2)

Also, say by induction, one easily gets

Pµ(X0 ∈ A0, X1 ∈ A1, . . . , Xn ∈ An)

=
∫

A0

µ(dx0)
∫

A1

P (x0, dx1) · · ·
∫

An−1

P (xn−2, dxn−1)P (xn−1, An). (8.3)

This formula also immediately suggests how to define the Markov proba-
bilities and the Markov chain: take X0, X1, . . . as the projections EN → E
and let

En = σ(X0, . . . , Xn), E∞ = σ(X0, X1, . . .) = EN.

Then by standard arguments from measure theory it can be seen that
the r.h.s. of (8.3) in a unique way corresponds to a probability Pn

µ on
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(EN, En). The Pn
µ have the consistency property Pn

µ(A) = Pm
µ (A), m ≤ n,

A ∈ Em, and hence define a finitely additive probability on the algebra
∪∞

0 En. The desired Pµ is the (necessarily unique) extension to E∞ =
σ (∪∞

0 En). The existence, i.e. the σ–additivity on ∪∞
0 En, may be seen

either from Kolmogorov’s consistency theorem which requires some topo-
logical assumptions like E being Polish and E the Borel σ–algebra, or by a
measure–theoretic result of Ionescu Tulcea (see Neveu, 1965).

The continuous–time case is substantially more involved. What will be
needed in later chapters is, however, only a few basic facts and we shall
therefore just outline a theory which needs several amendments when
pursuing Markov process theory in its full generality.

One does not get very far without topology, so we assume right from the
start that E is Polish with E the Borel σ–algebra. That a process {Xt}t≥0

with state space E is Markov means intuitively just the same as in discrete
time: given the history Ft = σ(Xs; s ≤ t), the process evolves from then
on as restarted at time 0 in state Xt and depending on Ft through Xt only.
Formally, this may be expressed by the existence of a family of probability
measures Pµ with the property Pµ(X0 ∈ A) = µ(A),

Eµ

[
h(Xs+t; t ≥ 0)

∣∣Fs

]
= EXsh(Xt; t ≥ 0) (8.4)

where Px, Ex refer to X0 = x and (8.4) should hold for a class of functions
h of the process sufficiently rich to determine the distribution of {Xt}t≥0.
For example, it would suffice to consider the class H of all h of the form

h(xt; t ≥ 0) =
n∏

i=0

I(xti ∈ Ai). (8.5)

If {Xt}t≥0 has paths say in D = D([0,∞), E), then (8.4) for all h ∈ H
will be equivalent to (8.4) to hold for all bounded measurable h : D → R.
In fact, an easy induction argument shows that it is even sufficient to let
n = 0 in (8.5), and the Markov property in this equivalent formulation then
becomes

P(Xs+t ∈ A |Fs) = P t(Xs, A) where P t(x, A) = Px(Xt ∈ A). (8.6)

Given a Markov process, it is clear that P t(x, A) as defined by (8.6) is a
transition kernel. Using the Markov property we get

P t+s(x, A) = ExP(Xs+t ∈ A |Fs) = EP t(Xs, A) =
∫

P t(y, A)P s(x, dy),

which in operator notation is written P t+s = P tP s and referred to as the
Chapman–Kolmogorov equations (or the semi–group property). Conversely,
given a family {P t}t≥0 satisfying the Chapman–Kolmogorov equations, it
is possible to construct a corresponding Markov process. To this end, we
proceed as in discrete time: let Xt : E[0,∞) → E be the projection and
define for 0 = t0 < t1 < · · · < tn a probability on the sub–σ–algebra
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σ(Xti ; i = 0, . . . , n) by

Pµ(Xt0 ∈ A0, Xt1 ∈ A1, . . . , Xtn ∈ An)

=
∫

A0

µ(dx0)
∫

A1

P t1−t0(x0, dx1)

· · ·
∫

An−1

P tn−1−tn−2(xn−2, dxn−1)P tn−tn−1(xn−1, An). (8.7)

That this defines a semigroup is readily apparent from the Chapman–
Kolmogorov equations. Since E is Polish, there thus exists a unique
extension to E [0,∞), and the Markov property (8.4) with h ∈ H is inherent
in the definition (8.7).

There are, however, severe difficulties associated with this approach.
First, the intuitive description of a particular model is seldom in terms
of the P t. Next, the construction makes E [0,∞) the collection of measur-
able sets, i.e. when A 
∈ E [0,∞) one cannot make sense of Pµ(A). But E [0,∞)

is not very rich since one can easily see that A ∈ E [0,∞) implies that A de-
pends on the Xt for t in a countable collection TA ⊂ [0,∞) of time points.
Thus for example sets like{

ω : Xt(ω) is a continuous function of t
}

is not in E [0,∞), and (when say E = R) similarly max0≤t≤T Xt and
inf {t : Xt = 0} are not measurable. Hence it is necessary to construct ver-
sions of the process with sample paths say in D. This requires further
properties of the P t, typically continuity requirements. We shall not go
into this since the explicit examples that we shall encounter will almost
a priori satisfy such path regularity properties. For example, queues are
constructed by simple transformations of sequences of service times and
interarrival times, and not starting from semi–groups, consistent families
and so on.

Now let σ be a stopping time w.r.t. {Ft}t≥0 amd let Fσ be the stop-
ping time σ–algebra, cf. A10. We say that {Xt}t≥0 has the strong Markov
property w.r.t. σ if a.s. on {σ < ∞}

P
(
Xσ+t ∈ A

∣∣Fσ

)
= P t(Xσ, A); (8.8)

again, this implies a functional form

Eµ

[
h(Xσ+t; t ≥ 0)

∣∣Fσ

]
= EXσh(Xt; t ≥ 0).

The process is strong Markov if it has the strong Markov property w.r.t.
any stopping time σ.

Proposition 8.1 A Markov process {Xt}t≥0 has the strong Markov prop-
erty w.r.t. any stopping time σ which assumes only a countable number of
values, σ ∈ {∞, s1, s2, . . .}.
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Proof. We must show that for A ∈ E, F ∈ Fσ

Pµ

(
Xσ+t ∈ A; F, σ < ∞)

= Eµ

[
P t(Xσ, A); F, σ < ∞]

.

However, if F ⊆ {σ = sk} this is immediate from the Markov property
(8.4). In the general case, decompose F ∩{σ < ∞} as the disjoint union of
the sets F ∩ {σ = sk} and sum over k. �

As an immediate consequence, we have:

Corollary 8.2 Any discrete time Markov chain (with discrete or general
state space) has the strong Markov property.

Also in continuous time, Proposition 8.1 is greatly helpful in establishing
the strong Markov property. A typical example is the following:

Corollary 8.3 Assume that {Xt}t≥0 has right–continuous paths and that
for any bounded continuous f : E → R and any s it holds that Exf(Xs) is
a continuous function of x or, more generally, that the paths of EXtf(Xs)
are right–continuous functions of t. Then the strong Markov property holds.

Proof. Let σ be a given stopping time and define σ(k) = n2−k on{
(n − 1)2−k < σ ≤ n2−k

}
. Then the σ(k) are stopping times and σ(k) ↓ σ

as k → ∞. By Proposition 8.1 we have furthermore

Eµ

[
f(Xσ(k)+s)

∣∣Fσ(k)

]
= EXσ(k)f(Xs). (8.9)

If F ∈ Fσ, then F ∈ Fσ(k), and hence (8.9) implies

Eµ[f(Xσ(k)+s); F ] = Eµ[EXσ(k)f(Xs); F ].

A check of the assumptions show that the integrands converge pointwise.
Thus by dominated convergence,

Eµ[f(Xσ+s); F ] = Eµ[EXσ f(Xs); F ].

The truth of this for all bounded continuous f and all F ∈ Fσ implies
(8.8). �

We next consider the hitting time τ(A) of a Borel subset A, τ(A) =
inf {t > 0 : Xt ∈ A}. That τ(A) is a stopping time is a triviality in discrete
time since then obviously

{τ(A) ≤ n} =
n⋃

k=1

{Xk ∈ A} .

However, in continuous time some (perhaps unexpected) difficulties arise
even for elementary sets like closed and open ones, and this is in fact one
of the reasons that one needs to amend and extend the theory that has
been discussed so far and which may still appear reasonably simple and
intuitive. We discuss these points briefly below, but first state and prove
a more elementary result that is sufficient to deal with virtually all the
processes to be met and all the questions to be asked in this book.
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Proposition 8.4 Suppose the paths of {Xt} are piecewise continuous with
right limits. Then:
(a) the jump times 0 < ι(1) < ι(2) < · · · are stopping times w.r.t. {Ft};
(b) if A is closed, then τ(A) is a stopping time w.r.t.

{
Ft

}
.

Proof. Let Q(t) be the set of numbers of the form qt with q rational and
0 ≤ q ≤ 1, and let d be some metric on E. Then the sets G1 = {ι(1) ≤ t}
and

G2 =
∞⋃

m=1

∞⋂
n=1

⋃
u,s∈Q(t)

{|u − s| ≤ 1/n, d(Xu, Xs) > 1/m
}

coincide. In fact, on G1 we have for some m a jump of size at least m−1, and
this easily gives G1 ⊆ G2. Conversely, the uniform continuity of {Xs}s≤t on
Gc

1 easily shows Gc
1 ⊆ Gc

2. Since d(Xu, Xs) is Ft–measurable for u, s ≤ t,
we have G1 = G2 ∈ Ft, and thus ι(1) is a stopping time. For ι(2), just add
the requirement u, s ≥ ι(1) in the definition of G2, and so on.

To prove (b), define m(S) = inf {d(Xu, A); u ∈ S}, S ⊆ [0,∞). If A is
closed, we have Xτ(A) ∈ A by right–continuity, and hence in the special
case of continuous paths

{τ(A) ≤ t} =
{
m
(
[0, t]

)
= 0

}
=

{
m
(
Q(t)

)
= 0

} ∈ Ft. (8.10)

But if Ik,n =
{
u : ι(k) − 1/n ≤ u < ι(k) ≤ t

}
, then

{u ∈ Ik,n} =
{
u < ι(k) ≤ t ∧ (u + 1/n)

} ∈ Ft.

Thus as in (8.10)

{τ(A) ≤ t} = lim
n→∞

{
τ(A) ∈ [0, t]

∖ ∞⋃
k=1

Ik,n

}

= lim
n→∞

{
m
(

Q(t)
∖ ∞⋃

k=1

Ik,n

)
= 0

}
∈ Ft.

�

We conclude with a brief discussion of some more difficult topics which,
however, are not essential for the rest of the book. Define Ft+ = ∩s>tFs

and let G(µ) denote the Pµ–completion of G (some arbitrary σ–field), i.e.
the smallest σ–field containing G and all Pµ–null sets. Then:

Proposition 8.5 Suppose that {Xt} has right–continuous paths. Then:
(a) If A is open, then τ(A) is a stopping time w.r.t.

{
Ft+

}
;

(b) For any Borel set A, τ(A) is a stopping time w.r.t.
{
F

(µ)
t+

}
.

Proof of (a). If A is open and Xu ∈ A, then Xu+v ∈ A for all small positive
v. Hence the event {τ(A) ≤ t} may be written as

∞⋂
n=1

⋃
s≤t+1/n

{Xs ∈ A} =
∞⋂

n=1

⋃
s∈Q(t+1/n)

{Xs ∈ A} ,
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and here the event on the r.h.s. is clearly in Ft+.
The proof of (b) is far beyond the present scope (and need!), and we

refer, e.g., to Dellacherie and Meyer (1975–93). �

One now defines a history of the process as an increasing family {Gt}t≥0

of σ–fields (a filtration) with Ft ⊆ Gt (or equivalenty Xt Gt–measurable)
for all t, and say that {Xt} is Markov with transition semigroup {P t} w.r.t.
{Gt} and some fixed governing probability measure if

P(Xt+s ∈ A |Gs) = P t(Xs, A). (8.11)

Apart from {Ft}, some main candidates for the history are {Ft+} and{
F

(µ)
t+

}
. It follows immediately from the chain rule for conditional expec-

tations that if {Xt} is Markov w.r.t. some history, then {Xt} is Markov
w.r.t. {Ft} as well. Conversely:

Proposition 8.6 Let {Xt} be Markov w.r.t. {Ft} and satisfy the regular-
ity conditions of Corollary 8.3. Then:
(a) for each µ and each bounded measurable h, we have Pµ–a.s. that

Eµ

[
h(Xs+t; t ≥ 0)

∣∣Fs

]
= Eµ

[
h(Xs+t; t ≥ 0)

∣∣Fs+

]
= Eµ

[
h(Xs+t; t ≥ 0)

∣∣F(µ)
s+

]
;

(b) (blumenthal’s 0–1 law) if A ∈ F0+, then for a fixed x ∈ E either
Px(A) = 0 or Px(A) = 1.
(c) {Xt} is Markov w.r.t. {Ft+} and

{
F

(µ)
t+

}
as well.

Proof. (a) The second identity is just a general property of the completion
operator. For the first, arguments similar to those used many times above
show that it suffices to take h of the form h(Xt) with t > 0 and h con-
tinuous and bounded. Since then h(Xs+t+1/n) a.s.→ h(Xs+t), it follows from
a continuity result for conditional expectations (Chung, 1974, p. 340) that
indeed

Eµ

[
h(Xs+t)

∣∣Fs+

]
= lim

n→∞ Eµ

[
h(Xs+t+1/n)

∣∣Fs+1/n

]
= lim

n→∞ EXs+1/n
h(Xt) = EXsh(Xt) = Eµ

[
h(Xs+t)

∣∣Fs

]
,

and the proof of (a) is complete. For (b), let t = 0 and h = I(A) in (a) to
obtain Px(A|F0+) = Px(A|F0) a.s. Here the l.h.s. is just I(A) and since
F0 is Px–trivial, the r.h.s. is constant. Hence I(A) is constant a.s. which is
only possible if the probability is either 0 or 1. Finally (c) is an immediate
consequence of (a). �

We stop the discussion of the foundations of the general theory of Markov
processes at this point. As for the topics discussed in Sections 2–4, clas-
sification of states and limit theory will be discussed in Chapter II for a
discrete state space and continuous time process. The case of a general E is
much more complicated even in discrete time. For example, it is not clear
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what recurrence should mean since even in simple–minded continuous state
space models, Px(τ(x) < ∞) will most often be 0. Some results (more or
less the best known ones) are given in VII.3 and can, somewhat surpris-
ingly, be derived as simple consequences of the ergodic theorm for discrete
Markov chains. In continuous time, the existing theory is hardly equally
satisfying, but a number of special cases will be encountered. For example,
the main problem within the whole area of renewal theory (Chapter V) will
be seen to be equivalent to the ergodicity question for the continuous–time
and –state version of the recurrence time chains in Section 2.

Notes General Markov chains in discrete time are discussed, e.g., in Neveu
(1965), Meyn and Tweedie (1993) and Revuz (1984). For up–to–date and readable
accounts of the continuous–time case, see Rogers and Williams (1994) or Revuz
and Yor (1999).

A topic not treated above but used at a few places in the book is the generator
A of a continuous-time Markov process, a certain operator on a subspace DA

of functions on E. There are many variants of the definition around, but the
intutition behind them all is that one should have

Exf(Xh) = f(x) + Af(x)h + o(h), f ∈ DA. (8.12)

The domain DA is specified by additional requirements in (8.12), one classical
variant (see e.g. Karlin and Taylor, 1981) being that f should be bounded and the
convergence in (8.12) uniform. Note that the identification of DA in this set–up
is tedious even in such a basic case as standard Brownian motion where A is a
restriction of the differential operator f → f ′′/2. Note also that DA actually may
contain crucial information on the process. For example, for reflecting Brownian
motion with reflection at 0 or absorbtion at 0, Af = f ′′/2 in both cases, but
f ∈ DA requires f ′(0) = 0 in the reflected case and f(0) = 0 in the absorbing
case.

Typically, f(Xt) −
∫ t

0
Af(Xs) ds is a martingale (the Dynkin martingale) for

f ∈ DA, and a modern variant of the definition is that f ∈ DA, g = Af means
that f(Xt) −

∫ t

0
g(Xs) ds is a local martingale.

The most basic case is a Markov jump process as in Chapter II, where in the

finite case it holds for any of the possible definitions that DA is the set of all

functions on E and A is the operator f → Λf where Λ is the intensity matrix.



II
Markov Jump Processes

1 Basic Structure

Let E be a discrete (finite or countable) state space and {Xt}t≥0 a Markov
process with state space E as defined in I.8, with transition semigroup
{P}t≥0. We write pt

ij = P t(i, {j}) = Pi(Xt = j), and we may identify
the transition semigroup by the family

{
P t

}
t≥0

=
{
(pt

ij)
}

t≥0
of transition

matrices. The Chapman–Kolmogorov equations P t+s = P tP s may then
be interpreted in the sense of usual matrix multiplication.

Problems arising when pursuing the theory without further regularity
conditions have already been discussed in I.8. As a further unpleasant
possibility, we mention here that some (or even all) states i may be in-
stantaneous, i.e. the process jumps out of i immediately after i has been
entered. We shall avoid these problems by imposing upon the process a
further regularity property, which is inherent in the intuitive picture of any
of the models we are concerned with, and which turns out to be sufficient
for developing the theory quite smoothly.

The feature that we concentrate on is that of a pure jump structure
illustrated in Fig. 1.1: the amount of time spent in each state is positive so
that the sample paths are piecewise constant. For a pure jump process, we
denote the times of jumps by S0 = 0 < S1 < S2 · · ·, the sojourn times (or
holding times) by Tn = Sn+1 − Sn and the sequence of states visited by
Y0, Y1, . . .. Thus the sample paths are constant between consecutive Sn and
we define the value at Sn by right–continuity, i.e. XSn = Yn. Two possible
phenomena require some further comment. The process may be absorbed,
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say at i. In that case there is a last finite Sn (the absorbtion time) and we
use the convention Tn = Tn+1 = · · · = ∞, Yn = Yn+1 = · · · = i. This still
yields a very simple structure of paths. More troublesome from that point
of view is the possibility of the jumps to accumulate, i.e. of the explosion
time ω(∆) = supn Sn to be finite (in that case the Yn and Tn determine the
process only up to ω(∆). This seems contrary to intuition in most cases, but
is perfectly feasible from the point of view of general theory. We discuss the
point in more detail later in Sections 2 and 3, and proceed here to discuss
some fundamental properties of a Markov jump process.

Figure 1.1

Sample path of a pure jump process. The scale of the state space is chosen to

illustrate the possibility of explosion within finite time.

Theorem 1.1 Any Markov jump process has the strong Markov property.

Proof. This is a trivial consequence of the first part of I.8.3 since when E
is discrete, then any function g on E (in particular g(x) = Exf(Xs)) is
continuous. �

The next result describes the basic structure of a Markov jump process
up to the time of explosion. Consider the exponential distribution with
density λe−λx, x > 0, and denote by the intensity (or sometimes rate)
the parameter λ (by the exponential distribution with intensity λ = 0 we
understand the distribution degenerate at ∞).

Theorem 1.2 Consider a Markov jump process. Then the joint distribu-
tion of the sequences {Yn} of states visited (before explosion) and {Tn}
of holding times is given by: (i) {Yn} is a Markov chain; (ii) there ex-
ist λ(i) ≥ 0 such that, given {Yn}, the T� are independent, with Tk being
exponentially distributed with intensity λ(Yk).
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Proof. The joint distribution of the Yn, Tn is completely specified by proba-
bilities of the form PiFn where Fn = {Yk = i(k), Tk−1 > t(k), k = 1, . . . , n}.
Letting i(0) = i, the assertion of the theorem is equivalent to

PiFn =
n∏

k=1

qi(k−1)i(k) exp
{−λ(i(k − 1))t(k)

}
(1.1)

for some transition matrix Q and suitable intensities λ(i). It is clear that
the only possible candidate for Q is qij = Pi(Y1 = j). To determine λ(i),
we let z(t) = Pi(T0 > t). Since Xt = i on {T0 > t}, the Markov property
yields

z(t + s) = EiPi

(
T0 > t + s

∣∣Ft

)
= Ei

[
Pi(T0 > s); T0 > t

]
= z(s)z(t).

Since z is nonincreasing with z(0) = 1, elementary facts on functional
equations yield z(t) = e−λ(i)t for some λ(i) ≥ 0 (the pure jump property
implies z(t) ↑ 1 as t ↓ 0 so that z(t) = I(t = 0), i.e. λ(i) = ∞, is excluded).

Applying the Markov property once more, we get similarly

Pi(Y1 = j, T0 > t) = EiPi

(
Y1 = j, T0 > t

∣∣Ft

)
= Ei

[
Pi(Y1 = j); T0 > t

]
= qije−λ(i)t

which is (1.1) for n = 1. The case n > 1 now follows easily by the strong
Markov property and induction. Indeed, evaluating PiFn upon conditioning
upon FSn−1 we obtain from XSn−1 = Yn−1 that

PiFn = Ei

[
PXSn−1

(
Y1 = i(n), T0 > t(n)

)
; Fn−1

]
= Pi(n−1)

(
Y1 = i(n), T0 > t(n)

)
Pi(Fn−1)

= qi(n−1)i(n)e−λ(i(n−1))t(n)Pi(Fn−1).

�

Problems

1.1 Show that the explosion time is a stopping time w.r.t. {Ft}t≥0.

2 The Minimal Construction

The intuitive description of a practical model is usually given in terms of
the intensities λ(i) and the jump probabilities qij rather than in terms
of the transition matrices P t which are difficult to evaluate even in ex-
tremely simple cases. The question therefore arises whether any set of λ(i),
qij leads to a Markov jump process. The construction (given below) is im-
mediately suggested by Theorem 1.2 and the problem becomes to check
whether indeed a Markov process comes out. As will be seen, the answer
is affirmative.
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We assume therefore that we are given a set λ(i) ≥ 0, i ∈ E, and a
transition matrix Q on E (the Q of Theorem 1.2 has the property qii = 0
if and only if λ(i) > 0, but this need not be assumed here). Let ∆ 
∈ E be
some extra state (needed to describe the process after a possible explosion),
write E∆ = E∪{∆} and define λ(∆) = 0, q∆∆ = 1. We consider the sample
space

Ω = (0,∞]N × EN
∆ = {(t0, t1, . . . , y0, y1, . . .) : 0 < tk ≤ ∞, yk ∈ E∆}

and let T0, T1, . . . , Y0, Y1, . . . be the obvious coordinate functions (projec-
tions) on Ω. It is then a matter of routine to construct probabilities Pi,
i ∈ E, on Ω with the following properties:

(i) {Yn} is a Markov chain with transition matrix Q and Pi(Y0 = i) = 1;
(ii) given {Yn}, the T� are independent, with Tk being exponentially

distributed with intensity λ(i) on {Yk = i}.
We construct {Xt}t≥0 up to the time of explosion simply by reversing

the construction of the Yk, Tk illustrated in Fig. 1.1 (and if needed letting
Xt remain in ∆ after explosion). That is, we let S0 = 0,

Sn = T0 + · · · + Tn−1, ω(∆) = sup Sn = T0 + T1 + · · · ,
Xt =

{
Yk if Sk ≤ t < Sk+1

∆ if t ≥ ω(∆) .

We shall prove the following main result:

Theorem 2.1 {Xt}t≥0 is a Markov jump process on E∆.

In the proof, we need to study the residual sojourn time (overshoot) Rt, at
time t, i.e. Rt = Sn(t) − t, where n(t) = min {n : Sn > t}.
Lemma 2.2 Given Ft = σ(Xs; s ≤ t), the conditional distribution of Rt

is exponential with intensity λ(Xt).

Proof. The intuitive argument is just that given Ft, the distribution of
Tn(t)−1 is that of T given T > u, where u = t−Sn(t)−1 and T is exponential
with intensity λ(Yn(t)−1) = λ(Xt). To spell out a formal proof we must show
that

Pi(Rt > r, A) = Ei

[
exp {−λ(Xt)r} ; A

]
(2.1)

for all r < ∞ and all A ∈ Ft. If A ⊆ {ω(∆) ≤ t}, then both sides are
just PiA so we may assume A ⊆ {ω(∆) > t} and it then suffices to con-
sider A of the form {n(t) − 1 = n, Fn} = {Fn, Sn ≤ t, Sn + Tn > t} where
Fn is as in the proof of Theorem 1.2. Thus if we condition upon the
Yk, Tk−1, k = 1, . . . , n and use the formula P(T > t + r) = e−λrP(T > t)
for the exponential distribution, we may evaluate the l.h.s. of (2.1) as

Pi

(
Fn, Sn ≤ t, Sn + Tn > t + r

)
= e−λ(i(n))rPi

(
Fn, Sn ≤ t, Sn + Tn > t

)
which is the same as the r.h.s. �
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Proof of Theorem 2.1. {Xt}t≥0 is clearly pure jump, so it suffices to show
that on {Xt = i} the conditional distribution of {Xt+s}s≥0 given Ft is just
the Pi–distribution of {Xs}s≥0. Define

Mt =
(
Tn(t), Tn(t)+1, . . . , Yn(t)−1, Yn(t), . . .

)
.

Then {Xt+s}s≥0 is constructed from (Rt, Mt) in just the same way as
{Xt}t≥0 is constructed from

(R0, M0) = (T0, M0) =
(
T0, T1, . . . , Y0, Y1, . . .

)
.

Hence we must show that on {Xt = i}, the conditional distribution of
(Rt, Mt) given Ft is the Pi–distribution of (R0, M0), i.e. that in the
conditional distribution (i) Rt, Mt are independent, (ii) Rt has the Pi–
distribution of R0, (iii) Mt has the Pi–distribution of M0. Now clearly
{(Yn, Tn)} is a Markov chain with state space E∆ × (0,∞] and transition
kernel given by

P
(
Yn+1 = j, Tn+1 > t

∣∣Hn

)
= qYnje−λ(j)t (2.2)

where Hn = σ(Yk, Tk : k ≤ n). Also n(t) − 1 is a stopping time w.r.t.
this chain and we shall evaluate the distribution of (Rt, Mt) conditionally
upon Ft by first conditioning upon the larger σ–algebra Hn(t)−1. Since
Yn(t)−1 = Xt, the strong Markov property I.8.2 and (2.2) imply that given
Hn(t)−1, Mt has the PXt–distribution of M0, whereas Rt (being Hn(t)−1–
measurable) is degenerate. These facts and the Ft–measurability of Xt

imply (i) and (iii), whereas (ii) is the statement of Lemma 2.2. �

It should be noted, that if the process is explosive (i.e. Pi(ω(∆) < ∞) > 0
for some i ∈ E), then (see the Problems) there are in general several ways
of continuing the process after ω(∆) which will lead to a Markov jump
process (to use a common phrase, the process “runs out of instructions” at
the explosion time). Among such processes, all behaving in the same way
up to the explosion time, the one in Theorem 2.1 obviously minimizes pt

ij =
Pi(Xt = j) for any i, j ∈ E, and for this reason it is called the minimal
one.

Some further discussion of the basic structure of a Markov jump process
will be given in Sections 3a, 3b (though essentially this is only a reformu-
lation of what has been shown so far), and we return here to the explosion
problem. In most cases this presents an unwanted technicality, and one
wants to assert as quickly as possible that a given Markov jump process
is nonexplosive (e.g., in the minimal construction one can then restrict the
state space to E). Necessary and sufficient conditions are given in the fol-
lowing Proposition 2.3 and in Proposition 3.3 of the next section, whereas
Proposition 2.4 gives some sufficient conditions that are easier to work with
in many cases.

Proposition 2.3 Define R =
∑∞

0 λ(Yn)−1. Then for any i ∈ E, the sets
{ω(∆) < ∞} and {R < ∞} coincide Pi–a.s.
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Proof. Conditionally upon {Yn}, ω(∆) = sup Sn =
∑∞

0 Tn is distributed
as

∑∞
0 λ(Yn)−1Vn, where the Vn are i.i.d. and exponential with intensity

1. The result therefore comes out by standard facts on weighted sums of
i.i.d. random variables. Thus R < ∞ implies ω(∆) < ∞ because of R =
E(ω(∆) |Y0, Y1, . . .), and the converse may be seen, e.g., by an application
of the three–series criterion. �

Proposition 2.4 Sufficient criteria for Pi(ω(∆) < ∞) = 0 for all i ∈ E
are: (i) supi∈E λ(i) < ∞; (ii) E is finite; (iii) {Yn} is recurrent.

Proof. It follows from Proposition 2.3 that λ(Yn) → ∞ on {ω(∆) < ∞}.
Hence the sufficiency of (i) is clear, and (ii) is a consequence of (i). If {Yn}
is recurrent, and X0 = Y0 = i, then λ(i) is a limit point of {λ(Yn)}. Thus
λ(Yn) → ∞ cannot hold, so that R = ∞ and Pi(ω(∆) < ∞) = 0. �

Problems

2.1 Let {Xt} be explosive and modify the process so as to restart in some fixed
state i after each explosion. Show that we obtain a Markov jump process.
2.2 Let E = Z\ {0} and λ(k) = k2, qn(−n−1) = q(−n)(n+1) = 1/n2, qn(n+1) =
q(−n)(−n−1) = 1 − 1/n2, n > 0. Show that the process is explosive and that
0 < PF+ < 1, PF+ + PF− = 1 where F± =

{
limt↑ω(∆) Xt = ±∞}. Show that we

get a Markov process by letting Xω(∆) = 1 on F+, = −1 on F− (and similarly
for the explosions after ω(∆)).
2.3 Let E = Z ∪ {∆} and λ(k) = (k + 1)2, qk(k+1) = 1 for all k ∈ Z. Show that
the process is explosive and (at least heuristically) that there exists a version
with ∆ as instantaneous state and Xt → −∞, t ↓ ω(∆) [such a version cannot
be pure jump in the present strict sense, of course].
2.4 Let E1 ⊂ E2 ⊂ · · · ⊂ E be finite sets with En ↑ E. Assume that λ(i, j) = 0
when i ∈ En, j ∈ En+k with k > 1 and that λ(i, j) is bounded uniformly in n,
i ∈ En, j ∈ En+1. Show that the process is nonexplosive.

3 The Intensity Matrix

3a. Definition and Uniqueness
3b. Reformulations and Examples
3c. Reuter’s Explosion Condition
3d. The Forward and Backward Equations

3a Definition and Uniqueness

Assume from now on qii = 0 when λ(i) > 0 and define the intensity matrix
Λ = (λ(i, j))i,j∈E of the process by

λ(i, j) = λ(i)qij , j 
= i, λ(i, i) = −λ(i). (3.1)
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Proposition 3.1 An E ×E matrix Λ is the intensity matrix of a Markov
jump process {Xt} if and only if

λ(i, i) ≤ 0, λ(i, j) ≥ 0, j 
= i,
∑
j∈E

λ(i, j) = 0. (3.2)

Furthermore, Λ is in one–to–one correspondence with the distribution of
the minimal process.

Proof. If Λ is an intensity matrix, it follows from (3.1) by considering
the cases λ(i) = 0 and λ(i) > 0 separately that

∑
j �=i λ(i, j) = λ(i) and

therefore that (3.2) holds. Conversely, if (3.2) is satisfied, then we let λ(i) =
−λ(i, i), define qij by (3.1) and qii = 0 if λ(i) > 0, and let qij = δij

otherwise. It is then a matter of routine to check from (3.2) that Q is a
transition matrix, and clearly the Markov jump process determined by Q
and the λ(i) has intensity matrix Λ. The stated one–to–one correspondence
is obvious from Sections 1 and 2. �

3b Reformulations and Examples

It is now possible to give a reinterpretation of the intuitive picture of the
evolvement of a Markov jump process which has been developed in Sec-
tions 1 and 2. So far, by the well–known interpretation of the intensity
parameter of the exponential distribution this picture has been that the
process, when in state i at time t, exits from i before t + dt with proba-
bility (risk) λ(i)dt. The next value j is selected independently of the time
of exit from i and according to qij . However, we can now instead consider
the process as subject to (with a terminology used in survival analysis)
competing risks with intensities λ(i, j), j 
= i. That is, after entrance to i
the jth type of event has an exponential waiting time Zij and the Zij are
independent. Physically only the first (say J = j) of the events occur at
time Zi = minj Zij and the process then jumps to j. That this yields the
given transition mechanism is checked as follows:

P(Zi > z, J = j) = P(Zik > Zij > z, k 
= j)

= λ(i, j)
∫ ∞

z

P(Zik > y, k 
= j)e−λ(i,j)y dy

= λ(i, j)
∫ ∞

z

∏
k �=j

e−λ(i,k)ye−λ(i,j)y dy

= λ(i, j)
∫ ∞

z

e−λ(i)y dy =
λ(i, j)
λ(i)

e−λ(i)z = qije−λ(i)z .

This means in infinitesimal terms that the probability of a transition to j
before t + dt is λ(i, j)dt. In standard o(·), O(·) notation, the meaning is
that the probability of a transition to j before t + h is λ(i, j)h + o(h).
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A description along these lines is usually the most natural in a given
practical situation, and the intensity matrix is therefore the parameter in
terms of which the process is usually specified. An obvious example is a
queue where arrivals occur at rate β and service is completed at rate δ (the
M/M/1 queue, cf. III.1b). Here E = N and

Λ =

⎛⎜⎜⎜⎝
−β β 0 0 0 . . .
δ −β − δ β 0 0 . . .
0 δ −β − δ β 0 . . .
...

. . .

⎞⎟⎟⎟⎠ .

When started at state i > 0 at time t = 0, we may think of Zi(i−1) as
the service time of the customer being presently handled by the server,
and of Zi(i+1) as the waiting time until the next arrival. In contrast, the
holding time T0 = Zi is the time until either an arrival occurs or service is
completed, and is not quite as intuitive as the Zij .

In some situations it may also be convenient to extend the sample space of
the minimal construction in order that certain random variables naturally
associated with the process are well defined. An example is a linear birth–
death process, i.e. E = N and

Λ =

⎛⎜⎜⎜⎝
0 0 0 0 0 . . .
δ −β − δ β 0 0 . . .
0 2δ −2β − 2δ 2β 0 . . .
...

. . .

⎞⎟⎟⎟⎠ ,

where one may think of Xt as the total size at time t of a population with
individuals who (independently of one another) terminate their lives with
intensity δ and give birth with intensity β. Here quantities like the individ-
ual lifetimes or the number of children of an individual are not recognizable
from the minimal construction and a more natural construction proceeds
as follows: represent each individual by its life, i.e. the pair of its lifetime
Z (exponential with intensity δ) and an independent Poisson process with
intensity β whose events in [0, Z) correspond to the birth times. Construct
the process, started from say X0 = 1, from a sequence of i.i.d. lives by
letting the first correspond to the ancestor, the second to his first child,
. . ., the nth to the nth individual being born; see Fig. 3.1. Such variants of
the minimal construction will sometimes be used without further notice.

As a by–product and further illustration of the above discussion, we shall
also show an important property of the exponential distribution (which is
also easily proved by a direct analytical argument; cf. Problem 3.1):
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γ

Figure 3.1

Lemma 3.2 Let T0, T1, . . . be i.i.d. and exponential with intensity δ, and
let N be independent of the Tn and geometric, P(N = n) = (1 − ρ)ρn−1,
n = 1, 2, . . .. Then S = T0 + · · · + TN−1 is exponential with intensity η =
δ(1 − ρ).

Proof. Let the intensities of a three–state process be specified by Fig. 3.2
where β = ρδ.

Figure 3.2

Then if we start the process in 1, the sojourn times T0, T1, . . . and N =
inf {n ≥ 1 : Yn = 2} satisfy the given assumptions because of β/(β+η) = ρ
and β + η = δ, and S is just the entrance time ω(2) = inf {t > 0 : Xt = 2}
of 2. On the other hand, the symmetry between 0 and 1 ensures that the
distribution of ω(2) is left unchanged if we collapse 0, 1 into the single state
1 according to 1

η→ 2. This makes it clear that P(ω(2) > s) = e−ηs. �

Problems

3.1 Show Lemma 3.2 (a) using Laplace transforms, (b) by showing that S has
failure rate η.

3c Reuter’s Explosion Condition

The following result is of a similar form as the transience criterion I.5.2
for Markov chains and gives a necessary and sufficient condition (known
as Reuter’s condition) for a Markov jump process to be explosive; for a
nontrivial application (birth–death processes), see III.2.2.

Proposition 3.3 A Markov jump process is nonexplosive if and only if
the only nonnegative bounded solution k = (ki)i∈E to the set of equations
Λk = k is k = 0.
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Proof. Suppose first that the process is explosive and define ki = Eie−ω(∆).
Then k = (ki) is bounded and ki > 0 at least for one i. Conditioning upon
the time T0 = y of the first jump we get

ki =
∫ ∞

0

∑
j �=i

λ(i, j)Eje−y−ω(∆)e−λ(i)y dy =
∑
j �=i

λ(i, j)kj

1 + λ(i)
.

Using λ(i) = −λ(i, i), this implies ki =
∑

j∈E λ(i, j)kj and k = Λk.

Suppose, conversely, the process is nonexplosive, and define h
(n)
i =

Ei exp {−T0 − · · · − Tn−1}, h
(0)
i = 1. Then just as above

h
(n+1)
i =

∫ ∞

0

∑
j �=i

λ(i, j)e−yh
(n)
j e−λ(i)y dy =

∑
j �=i

λ(i, j)h(n)
j

1 + λ(i)
. (3.3)

Now let k ≥ 0 be bounded (w.l.o.g. ki ≤ 1) with Λk = k. Then ki =∑
j �=i λ(i, j)kj/(1 + λ(i)), and since 1 = h

(0)
i ≥ ki, it follows by induction

from (3.3) that h
(n)
i ≥ ki for all n. But T0 + · · · + Tn ↑ ω(∆) = ∞ implies

h
(n)
i → 0. Hence ki = 0 for all i. �

Problems

3.2 Consider a pure birth process (E = N, λ(i, i+1) = λ(i) = βi). Show that the
process is nonexplosive if and only if

∑∞
0 β−1

n = ∞, and check that Propositions
2.3 and 3.3 yield the same result.

3d The Forward and Backward Equations

We now turn to one of the most celebrated classical topics in Markov
process theory:

Theorem 3.4 Let Λ be an intensity matrix on E and {Xt} the corre-
sponding minimal Markov jump process on E constructed in Theorem 2.1,
pt

ij = Pi(Xt = j). Then the E ×E–matrices P t = (pt
ij)satisfy the backward

equation (d/dt)P t = ΛP t, i.e.

dpt
ij

dt
=

∑
k∈E

λ(i, k)pt
kj (3.4)

and the forward equation (d/dt)P t = P tΛ, i.e.

dpt
ij

dt
=

∑
k∈E

pt
ikλ(k, j) . (3.5)

Proof. Conditioning upon T0 = s yields

pt
ij = Pi(T0 > t)δij +

∫ t

0

λ(i)e−λ(i)s
∑
k �=i

qikpt−s
kj ds



3. The Intensity Matrix 49

= e−λ(i)t

[
δij +

∫ t

0

∑
k �=i

λ(i, k)eλ(i)sps
kj ds

]
.

The integrand f(s) =
∑

k �=i . . . is well defined with sups≤T f(s) for all T <

∞ since
∑ |λ(i, k)| = 2λ(i) < ∞. This shows first that pt

ij (and similarly
all pt

kj) is continuous and thereafter that f(s) is continuous. Therefore pt
ij

is differentiable with derivative

−λ(i)e−λ(i)t

[
δij +

∫ t

0

f(s) ds

]
+ e−λ(i)tf(t)

= −λ(i)pt
ij +

∑
k �=i

λ(i, k)pt
kj =

∑
k∈E

λ(i, k)pt
kj .

The proof of the forward equation is more involved and will only be given
subject to the assumption

sup
i∈E

λ(i) < ∞ (3.6)

which will be used to infer that the (ps
kj − δkj)/s are bounded uniformly in

s, j, k. This follows since

0 ≤ ps
kj ≤ λ(k)

∫ s

0

e−λ(k)u du, k 
= j,

0 ≤ 1 − ps
kk ≤ λ(k)

∫ s

0

e−λ(k)u du,

and (3.5) comes out by dominated convergence (using
∑

pt
ik < ∞) from

pt+s
ij − pt

ij

s
=

∑
k∈E

pt
ik

ps
kj − δkj

s
→

∑
k∈E

pt
ikλ(k, j). �

In the case of a finite E, standard results on existence and uniqueness of
systems of linear differential equations yield together with P 0 = I yield:

Corollary 3.5 If E is finite, then P t = eΛt =
∞∑

n=0

tn

n!
Λn, t ≥ 0.

Example 3.6 Suppose that E has just p = 2 states 1, 2 and, to avoid
trivialities, that λ(1) and λ(2) are not both zero. Then Λ has eigenvalues
0 and λ = −λ(1) − λ(2) with corresponding right eigenvectors (1 1)T,(
λ(1) − λ(2)

)T. Hence

Λ =
( −λ(1) λ(1)

λ(2) −λ(2)

)
= B

(
0 0
0 λ

)
B−1 where

B =
(

1 λ(1)
1 −λ(2)

)
, B−1 =

1
λ(1) + λ(2)

(
λ(2) λ(1)

1 −1

)
,
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P t = eΛt =
∞∑

n=0

tn

n!
B

(
0 0
0 λn

)
B−1 = B

(
1 0
0 eλt

)
B−1

=
1

λ(1) + λ(2)

(
λ(2) + λ(1)eλt λ(1) − λ(1)eλt

λ(2) − λ(2)eλt λ(1) + λ(2)eλt

)
.

�

For purposes like those of the present book, the backward and forward
equations are of quite limited utility. This is so in particular for an infi-
nite state space, but even for p < ∞ states the Jordan canonical form and
hence the algebra corresponding to Example 3.6 becomes much more cum-
bersome for p > 2 due to the possibility of eigenvalues which are complex
or of multiplicity > 1. One common application is to look for a station-
ary probability distribution (πP t = π) by means of (πP t)′|t=0 = 0, i.e.
πΛ = 0. This equation comes out, however, quite easily by a direct argu-
ment in the next section. Also the time–dependent solution (i.e. the pt

ij for
t < ∞) can be found explicitly only in very special cases when E is infinite
and is even then frequently easier to obtain by different means. Examples
are the linear birth–death process (see e.g. Harris, 1963) and the M/M/1
queue to be discussed in III.8.

4 Stationarity and Limit Results

4a. Classification of States
4b. Stationary Measures
4c. Ergodicity Criteria and Limit Results
4d. Spectral Properties, the Fundamental Matrix and the CLT

4a Classification of States

When defining concepts such as irreducibility, recurrence or transience in
continuous time, one may either mimic the discrete time definition or refer
to the jump chain {Yn}. We consider in the following a minimal process
and look first at irreducibility. Then:

Proposition 4.1 The following properties are equivalent: (a) {Yn} is ir-
reducible; (b) for any i, j ∈ E we have pt

ij > 0 for some t > 0; (c) for any
i, j ∈ E we have pt

ij > 0 for all t > 0.

Proof. Denote here and in the following

ω(i) = inf
{
t > 0 : Xt = i, lim

s↑t
Xs 
= i

}
(4.1)

(ω(i) = ∞ if no such t exists) so that ω(i) is the hitting time of i if X0 
= i
and the recurrence time of i if X0 = i. Since j has an exponential holding
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time, it is clear that pt
ij > 0 if and only if Pi(ω(j) ≤ t) > 0 (similarly

we always have pt
ii > 0). Now Pi(ω(i) ≤ t) > 0 if and only if some path

ii1 · · · inj from i to j is possible for {Yn}, and in that case we may evaluate
the conditional distribution F of ω(j) given ω(j) < ∞ by conditioning
on the various paths. Thus F is a mixture of convolutions of exponential
distributions with intensities λ(i, i1), λ(i1, i2), . . . and hence has a density
> 0 on (0,∞). Thus Pi(ω(j) ≤ t) > 0 if and only if {Yn} can reach j from
i, proving the proposition. �

Accordingly we define {Xt} to be irreducible if one of properties (a),
(b), (c) hold. Similarly (but easier), it is seen that we can define i to be
transient (recurrent) for {Xt} if either (a) the set {t : Xt = i} is bounded
(unbounded) Pi–a.s., (b) i is transient (recurrent) for {Yn} or (c) Pi(ω(i) <
∞) < 1 (= 1). As will be seen in the following, the distinction between null
recurrence and positive recurrence cannot, however, be related to {Yn}
alone. Note also that we do not pay attention to periodicity. This is due to
the fact that even though {Yn} may be periodic, the exponential holding
times smooth away any such behaviour in continuous time.

4b Stationary Measures

A measure ν 
= 0 is stationary if 0 ≤ νj < ∞, νP t = ν for all t.

Theorem 4.2 Suppose that {Xt} is irreducible and recurrent on E. Then
there exists one, and up to a multiplicative factor only one, stationary mea-
sure ν. This ν has the property νj > 0 for all j and can be found in either
of the following ways:
(i) for some fixed but arbitrary state i, νj is the expected time spent in j
between successive entrances to i. That is, with ω(i) given by (4.1)

νj = Ei

∫ ω(i)

0

I(Xt = j) dt; (4.2)

(ii) νj = µj/λ(j), where µ is stationary for {Yn};
(iii) as solution of νΛ = 0.

Proof. We first prove uniqueness by considering the Markov chain
X0, X1, . . .. This is irreducible since all pt

ij > 0, and any ν stationary for
{Xt} is also stationary for {Xn}, so in order to apply I.3.4 we just have
to show that {Xn} is recurrent. But for any i, the sequence U1, U2, . . . of
holding times of i is nonterminating since i is recurrent. The Uk being i.i.d.
with P(Uk > 1) > 0, we have Uk > 1 i.o. and therefore also Xn = i i.o.

For (i) we show the stationarity of (4.2) by evaluating the jth component
of νP h in a somewhat similar manner as in the proof of I.3.2. First note
that {Xt}0≤t≤h and

{
Xω(i)+t

}
0≤t≤h

have the same Pi–distribution because
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Xω(i) = i. Hence

νj = Ei

[∫ h

0

+
∫ ω(i)

h

I(Xt = j) dt

]
= Ei

[∫ ω(i)+h

ω(i)

+
∫ ω(i)

h

I(Xt = j) dt

]
= Ei

[∫ ω(i)+h

h

I(Xt = j) dt

]
= Ei

∫ ω(i)

0

I(Xt+h = j) dt

(note that the first equality is valid also if ω(i) < h). Thus

νj = Ei

∫ ∞

0

P
(
Xt+h = j, ω(i) > t

∣∣Ft

)
dt = Ei

∫ ∞

0

ph
XtjI(ω(i) > t) dt

=
∑
k∈E

ph
kjEi

∫ ∞

0

I(Xt = k, ω(i) > t) dt =
∑
k∈E

νkph
kj ,

proving νP h = ν and (i). With τ(i) = inf {n : Yn = i}, we then get

νj = Ei

∫ ω(i)

0

I(Xt = j) dt = Ei

τ(i)−1∑
n=0

TnI(Yn = j)

=
∞∑

n=0

EiEi

[
Tn; Yn = j, τ(i) > n

∣∣ {Yn}∞0
]

=
1

λ(j)
Ei

∞∑
n=0

I(Yn = j, τ(i) > n) =
1

λ(j)
µj

µi
,

using I.(3.1) in the last step. That is, νj is proportional to µj/λ(j), showing
(ii).

For (iii) we note that according to (ii) ν is stationary for {Xt} if and
only if (νjλ(j))j∈E is stationary for {Yn}, i.e. if and only if

∑
i∈E νiλ(i)qij

= νjλ(j) for all j ∈ E, or, since qii = 0, if and only if

0 = −νjλ(j) +
∑
i�=j

νiλ(i, j) =
∑
i∈E

νiλ(i, j) .

Finally, 0 < νj < ∞ follows easily say by (ii), since in the recurrent case
0 < λ(j) < ∞. �

4c Ergodicity Criteria and Limit Results

An irreducible recurrent process with the stationary measure having finite
mass is called ergodic, and we have:

Theorem 4.3 An irreducible nonexplosive Markov jump process is ergodic
if and only if one can find a probability solution π (π1 = 1, 0 ≤ πi ≤ 1) to
πΛ = 0. In that case π is the stationary distribution.

Proof. That a solution exists and is stationary in the ergodic case follows
immediately from Theorem 4.2. Suppose conversely that a solution exists
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and define

pt;n
ij = Pi(Xt = j, T0 + · · · + Tn > t), n = 0, 1, 2, . . . .

Now a path starting from i contributes to pt;n
ij either if it has no jumps

before t (and i = j) or it has a last jump, say from k to j at time s ≤ t,
and at most n − 1 jumps before s. Thus collecting terms we get

pt;n
ij = δije−λ(i)t +

∫ t

0

∑
k �=j

ps;n−1
ik λ(k, j)e−λ(j)(t−s) ds ,

∑
i∈E

πip
t;n
ij = πje−λ(i)t +

∫ t

0

e−λ(j)(t−s)
∑
k �=j

λ(k, j)
∑
i∈E

πip
s;n−1
ik ds. (4.3)

Obviously ∑
i∈E

πip
t;0
ij = πje−λ(j)t ≤ πj , i.e. πP t;0 ≤ π.

It thus follows by induction from (4.3) that πP t;n ≤ π since then∑
i∈E

πip
t;n+1
ij ≤ πje−λ(j)t +

∫ t

0

e−λ(j)(t−s)
∑
k �=j

λ(k, j)πk ds

= πje−λ(j)t + πjλ(j)
∫ t

0

e−λ(j)s ds = πj .

But since the process is nonexplosive, we have pt;n
ij → pt

ij and
∑

j∈E pt
ij = 1.

Hence
∑

i∈E πip
t
ij ≤ πj , and since summing both sides over j yields 1,

equality must hold so that πP t = π. Thus π is a stationary distribution.
This implies recurrence (since in the transient case Pπ(Xt = j) → 0) and
π1 = 1 then finally shows ergodicity. �

As noted in Section 3, the equation πΛ = 0 is the same as that which
comes out by formal manipulations with the differential equations. In the
literature one occasionally proves ergodicity by checking irreducibility and
finding a probability solution to πΛ = 0. This procedure is, however, not
valid without having excluded explosion. To see this, consider for example a
transient {Yn} with a stationary measure µ (for an example, see Problem
I.3.2) and choose the λ(j) such that πj = µj/λ(j) has mass 1. Then as
in the proof of Theorem 4.2(iii), it holds that πΛ = 0, and clearly the
transience of {Yn} excludes recurrence of {Xt} (it follows from Theorem
4.3 that {Xt} must even be explosive). However:

Corollary 4.4 A sufficient condition for ergodicity of an irreducible pro-
cess is the existence of a probability π that solves πΛ = 0 and has the
additional property

∑
πjλ(j) < ∞ (which is automatic if supi∈E λ(i) < ∞).
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Proof. Letting µj = πjλ(j), it follows as in the proof of part (iii) of Theorem
4.2 that µ is stationary for {Yn}. Since µ has finite mass, {Yn} is positive
recurrent, in particular recurrent, hence {Xt} is nonexplosive and Theorem
4.3 applies. �

Exactly as in I.3.1(ii) one also has:

Proposition 4.5 If the process is ergodic, then there exists a strictly
stationary version {Xt}−∞<t<∞ with doubly infinite time.

We next turn to the limiting behaviour of the pt
ij and have as expected:

Theorem 4.6 If {Xt} is ergodic and π the stationary distribution, then
pt

ij → πj, t → ∞, for all i, j.

Proof. As noted above in the case δ = 1, {Xnδ} is an irreducible recurrent
aperiodic Markov chain for each δ. It is ergodic since π is stationary, and
hence pnδ

ij → πj as n → ∞. The continuity of the pt
ij being straightforward

to verify, the assertion thus follows by the method of discrete skeletons,
A11.2. Alternatively, we may apply the more elementary A11.1. The re-
quired uniform continuity follows say from the backward equation (3.4)
which in conjunction with

∑ |λ(i, k)| < ∞ shows that dpt
ij/dt exists and

is bounded in t. �

As in discrete time, I.(4.3), time–average properties like

1
T

∫ T

0

f(Xt) dt
a.s.→ π(f) = Eπf(Xt) =

∑
i∈E

πif(i) (4.4)

hold under suitable conditions on f ; see VI.3.
Exactly the same argument as for Theorem 4.6 yields

Corollary 4.7 If {Xt} is irreducible recurrent but not ergodic (i.e. ν1 =
∞), then pt

ij → 0 for all i, j ∈ E.

Corollary 4.8 For any minimal Markov jump process (irreducible or not),
the limits limt→∞ pt

ij exist [recall that in discrete time periodicity might
cause an exception to the parallel result].

Proof. Clearly pt
ij → 0 if j is transient. If j is in a recurrent class C, let

ν(C) be stationary for the process restricted to C. Then by Theorem 4.6
and Corollary 4.7

pt
ij → Pi(some Xt ∈ C)

ν
(C)
j

ν(C)1
. �

Problems

4.1 Consider a Markov jump process {Xt} with bounded intensities, say λ(i) ≤
λ < ∞. Show that Q̃ = Λ/λ + I is a transition matrix. Now consider a Poisson

process {Nt} with intensity λ and a process {X̃t} which jumps according to Q̃

at the jumps of {Nt}, say X̃t = Ỹn on {Nt = n} where {Ỹn} is a Markov chain
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governed by Q̃ and independent of {Nt}. Show that {X̃t} is a version of {Xt},
that {Xt} is ergodic if and only if {Ỹn} is positive recurrent and that then the
stationary distributions are the same (this procedure is known as uniformization;
see e.g. Keilson, 1979).

Notes For further discussion of the equation πΛ = 0 is the explosive case, see

Kelly (1983).

4d Spectral Properties, the Fundamental Matrix and the CLT

Corollary 4.9 If Λ is an irreducible p × p intensity matrix, then 0 is
eigenvalue with left and right eigenvectors π, resp. 1. Any other eigenvalue
has strictly negative real part.

Proof. The first statement is obvious. For the second, let a > 0 be larger
than any |λ(i, i)| and consider A = Λ/a+I. Then A is an ergodic transition
matrix, so that by I.6 one of the eigenvalues s, say, is s = 1 and all others
have |s| < 1. Since the eigenvalues of Λ are precisely the numbers of the
form a(s − 1), the assertion follows. �

Define the fundamental matrix by

Z =
∫ ∞

0

(eΛt − 1π) dt = (1π − Λ)−1(I − 1π). (4.5)

Note that the existence of the integral as well as the inverse is ensured
by Corollary 4.9. Note also that Z is singular (πZ = 0 and Z1 = 0)
in contrast to the discrete time case in I.7. The second expression for Z
follows from

(1π − Λ)
∫ T

0

(eΛt − 1π) dt = −
∫ T

0

ΛeΛt dt = I − eΛT → I − 1π.

Poisson’s equation in continuous time is Λg = −f .

Proposition 4.10 Assume π(f) = 0. Then g = Zf solves Poisson’s
equation and is the unique solution with π(g) = 0.

Proof. Using the second expression in (4.5) and πZ = 0, we get

−Λg = (−1π + 1π − Λ)g = −1πZf + (I − 1π)f = −0 + f − 0.

Uniqueness follows since the difference d between two solutions satisfies
Λd = 0. Hence d = c1, and π(d) = 0 then gives c = 0. �

Theorem 4.11 Let f : E → R and define g = Zf , σ2(f) = 2π(fg). Then

1
T 1/2

(∫ T

0

f(Xt) dt − Tπ(f)
)

→ N
(
0, σ2(f)

)
.
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Proof. Assume first π(f) = 0. Then
∫ T

0
f(Xt) dt = −g(XT ) + MT where

MT = g(XT ) − ∫ T

0
Λg(Xt) dt is a martingale (see the Notes to I.8). Here

Vari(Mh) = Ei

(
g(Xh) − g(i) −

∫ h

0

Λg(Xt) dt

)2

= h
∑
j �=i

λ(i, j)
(
g(j) − g(i)

)2 + o(h)

= h
∑
j∈E

λ(i, j)
(
g(j) − g(i)

)2 + o(h)

= h
(
Λg2(i) − 2g(i)Λg(i)

)
+ o(h),

Vari(Mt+h − Mt |Ft) = h
(
Λg2(Xt) − 2g(Xt)Λg(Xt)

)
+ o(h).

Thus the quadratic variation of {Mt} is

QT =
∫ T

0

(
Λg(Xt)2 − 2g(Xt)Λg(Xt)

)
dt.

Since πΛg2 = 0, Λg = −f , the LLN (4.4) yields QT /T
a.s.→ 2π(fg) = σ2(f).

The rest of the proof is a straightforward application of the martingale CLT
as in I.7.

For the case π(f) 
= 0, see Problem 4.2. �

Problems

4.2 For π(f) �= 0, let f̃ = f − π(f)1, g̃ = Zf̃ . Check that π(fg) = π(f̃ g̃).
4.3 Verify using the diagonalization formulas in Example 3.6 that for p = 2
states one has

Z = B

(
0 0
0 −λ−1

)
B−1 = (λ(1) + λ(2))−2

( −λ(1) λ(1)
λ(2) −λ(2)

)
,

σ2(f) =
(
f(1) − f(2)

)2 λ(1)λ(2)

|λ(1) + λ(2)|3 .

Notes A matrix with nonpositive off–diagonal elements is called a Z–matrix,

and a matrix whose eigenvalues have nonnegative real parts a M–matrix.
Thus if Λ is an intensity matrix, −Λ is a Z–matrix and (by Corollary 4.9)
a M–matrix in the irreducible case. For further discussion of Z– and M–
matrices and their spectral properties, see Berman and Plemmons (1994).

5 Time Reversibility

Time reversibility (or just reversibility) of a process means loosely that the
process evolves in just the same way irrespective of whether time is read
forward (as usual) or backward. The concept is studied here mainly for
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the purpose of certain queueing applications in Chapter IV, but its scope
is in fact rather more general. For example, it could be mentioned that
time reversibility of processes occuring in physics is considered a property
of intrinsic physical interest.

Our main interest is in Markov jump processes, but we start by the
Markov chain case in order to motivate the definition to follow and to
make some simple observations.

Proposition 5.1 Let X0, . . . , XN be a time–homogeneous Markov chain
with transition matrix P and define the time–reversed chain X̃0, . . . , X̃N

by X̃n = XN−n. Consider some fixed Markov probability P, define πi(n) =
P(Xn = i) and assume that πi(n) > 0 for all i ∈ E, n = 0, . . . , N . Then:
(a) X̃0, . . . , X̃N is a time–inhomogeneous Markov chain with transition
matrices P̃ (n) =

(
p̃ij(n)

)
given by

p̃ij(n) = P
(
X̃n+1 = j

∣∣ X̃n = i
)

=
πj(N − n − 1)pji

πi(N − n)
. (5.1)

If furthermore all pij > 0, then:
(b) X̃0, . . . , X̃N is time–homogeneous, i.e. P̃ (n) independent of n, if and
only if X0, . . . , XN is stationary, i.e. πi(n) = πi independent of n;
(c) X̃0, . . . , X̃N has the same distribution as X0, . . . , XN if and only if
X0, . . . , XN is stationary and πjpji = πipij.

Proof. (a) Letting π̃i(n) = P(X̃n = i) = πi(N − n), we must show that

P(X̃0 = i0, . . . , X̃N = iN) = π̃i0(0)p̃i0i1(0)p̃i1i2 (1) . . . p̃iN−1iN (N − 1).
(5.2)

But the l.h.s. of (5.2) is

P(X0 = iN , . . . , XN = i0) = πiN (0)piN iN−1piN−1iN−2 . . . pi1i0 . (5.3)

Inserting the definition of P̃ (n) in the r.h.s. of (5.2), the πj telescope and
the r.h.s. of (5.3) comes out.

(b) It is clear that πi(n) = πi implies that P̃ (n) is independent of i. For
the converse, first let i = j in (5.1). It then follows that πi(n) = πiρ

n
i for

suitable πi, ρi. Since pji > 0, the independence of p̃ij(n) of n yields ρi = ρj .
Hence all ρi are equal, say ρi = ρ. But then 1 =

∑
πi(n) = ρn

∑
πi implies

ρ = 1, i.e. πi(n) = πi and stationarity. In (c) stationarity is necessary by
(b); πjpji = πipij is then equivalent to p̃ij = pij by (5.1). �

This result does not cover the Markov chain case in full generality since
all πi(n) and all pij being nonzero is a restriction. However, if X0, . . . , XN

is obtained by observing an irreducible Markov jump process at times
δ, 2δ, . . . , (N + 1)δ, this assumption is automatic. Since time reversibility
in continuous time should imply reversibility of such discrete skeletons, it
follows by (b) that we can safely restrict attention to stationary versions
of ergodic processes.
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Consider thus, as in Proposition 4.5, a stationary version {Xt}t∈R of
an ergodic Markov jump process with doubly infinite time (we assume for
convenience that {Xt} is nonexplosive). Define the time–reversed process{
X̃t

}
t∈R

by X̃t = X−t− = lims↑−t Xs [the reason for not simply letting

X̃t = X−t is to obtain right–continuous paths; of course, this is immaterial
for the distribution of finite–dimensional sets (since the probability of a
jump at t is always zero) and therefore of the whole process].

Proposition 5.2
{
X̃t

}
is a stationary Markov jump process with π as

stationary distribution and intensities λ̃(i, j) = πjλ(j, i)/πi.

Proof. By nonexplosiveness,
{
X̃t

}
is a pure jump process which is time–

homogeneous Markov by Proposition 5.1 (consider discrete skeletons). Thus
all that remains to be shown is that the asserted expression for λ̃(i, j) holds
for i 
= j. But

λ̃(i, j) = lim
h↓0

p̃h
ij

h
= lim

h↓0
P(X̃0 = j, X̃−h = i)

hP(X̃−h = i)

= lim
h↓0

P(X0 = j, Xh = i)
hP(Xh = i)

= lim
h↓0

πjp
h
ji

hπi
=

πjλ(j, i)
πi

. �

Call {Xt} time–reversible if
{
X̃t

}
has the same distribution as {Xt}.

Corollary 5.3 Let π be the ergodic distribution. Then a necessary and
sufficient condition for time reversibility is πiλ(i, j) = πjλ(j, i) for all i 
= j.

The term πiλ(i, j) is the rate at which transitions i → j occur in sta-
tionarity and is often denoted as the probability flow from i to j. Thus the
reversibility condition means that the flow from i to j is the same as the
flow from j to i, and for this reason it is called the condition of local or
detailed balance in contrast to the equilibrium equation πΛ = 0 which is
the condition of full balance. More precisely, rewriting πΛ = 0 in the form
πiλ(i) =

∑
j �=i πjλ(j, i), the l.h.s. is the total flow out of state i and the

r.h.s. the total flow into state i.

Corollary 5.4 Let Λ,Λ∗ be nonexplosive intensity matrices and π a dis-
tribution such that πiλ(i, j) = πjλ

∗(j, i) for all i, j ∈ E. Then Λ and Λ∗

are ergodic with stationary distribution π for both, and further Λ∗ coincides
with the intensity matrix Λ̃ of the time–reversed process

{
X̃t

}
.

Proof. Summing πiλ(i, j) = πjλ
∗(j, i) over i and using that the row sums of

Λ∗ are zero immediately yields πΛ = 0. Theorem 4.3 then gives ergodicity,
and Λ∗ = Λ̃ then follows by Proposition 5.2. �

Problems

5.1 Show that a nonexplosive intensity matrix Λ is time reversible if and only
if there is a function γ(i, j) such that γ(i, j) = γ(j, i) and λ(i, j)/γ(i, j) is
independent of j.
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5.2 Show Kolmogorov’s loop criterion: an ergodic Markov process is time re-
versible if and only if for each chain i0, i1, . . . , in of states with i0 = in it holds
that

∏n
1 λ(ik−1, ik) =

∏n
1 λ(ik, ik−1). [Hint: For “if,” show that local balance

holds if one takes πi =
∏m

1 λ(jk−1, jk) where j0 is arbitrary but fixed and
j0, j1, . . . , jm = i is an arbitrary chain of states with positive transitions rates
connecting j0 and i.]
5.3 Consider a circular birth–death process. That is, E = {ei2πk/n : k = 1, . . . , n}
and the transition rate from ei2πk/n to ei2π(k+1)/n is βk and the rate from ei2πk/n

to e2π(k−1)/n is δk (all other transitions have rate 0). Show that the process is
reversible if and only if

∏n
1 βk =

∏n
1 δk.

Notes Time reversibility is studied for example in Kelly (1979), Keilson (1979)

and Serfozo (1999). Corollary 5.4 is often referred to as Kelly’s lemma and will

be used repeatedly in Chapter IV.



III
Queueing Theory at the Markovian
Level

1 Generalities

1a. Queueing Theory and Some of Its Daily Life Motivations
1b. Classification of Simple Queues
1c. The Queue Discipline
1d. Queue Lengths, Waiting Times and Other Functionals
1e. Measures of Performance. The Traffic Intensity
1f. Equilibrium Theory versus Time-Dependence
1g. Queueing Theory in This Book

1a Queueing Theory and Some of Its Daily Life Motivations

Though the general field of applied probability has by now developed into
a diversity of subareas, queueing theory is not only one of the oldest, but
also one of the most notable and prominent. Queueing problems come up
in a variety of situations in the real world and have stimulated an enor-
mous literature which, though in part quite mathematical and abstract,
is not of a purely academic nature. In fact, there has been a considerable
interaction between the developments at the various degrees of abstraction
in the field. Thus, though the more theoretical–orientated part of the lit-
erature (incorporating this book) tends to deal with models and problems
too simplified to be of any great direct practical applicability, the notions
and techniques that are studied are also important for the practical worker
in the field. Conversely, the call for solutions to particular problems has of
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course stimulated not only the theory of queueing but also that of proba-
bility as a whole, fields like Markov processes, renewal theory and random
walks owing their present state and importance to a large extent to the
impact from queueing theory. Queueing problems present a great challenge
to the probabilist and a memento mori to probability theory as a whole.
The development of abstract probability theory may be of great beauty, but
seldom sheds much light on how to come up with the numbers the practical
worker asks for. The crux is more often a thorough understanding of the
particular features of the model combined with a few basic mathematical
techniques, and it is a feeling for this that the present treatment aims at
bringing the reader.

Queueing situations from daily life are almost too obvious, but we shall
list a few anyway: customers queueing up before the m cashiers in a su-
permarket; telephone callers waiting for one of the lines of an exchange
to become available; aircraft circling over the airport before a runway be-
comes free; machines under care of a repairman who can handle only one at
a time; and so on. Of more recent date than these classical examples are a
number of problems connected with computer organization or networks in
teletraffic theory or data transmission: in a time–sharing computer, we may
think of the jobs as customers who are served by the central processor unit
(CPU) and possibly input/output facilities. At each of these units queues
may form, and in particular the queue at the CPU has some rather specific
features (feedback, simultaneous service). In telephone networks there is a
hierarchy of exchanges, so that, for example, local calls need only to pass an
exchange of the lowest level, whereas long–distance calls may be directed
among one of several possible paths connecting exchanges at various levels.
Queues may form at the exchanges and are highly interactive.

We finally mention that a number of other situations may either directly
be formulated in queueing terms or at least are closely related. Examples
occur in inventory processes and insurance risk. For example, in a store
with items placed from time to time and taken out as demand arises, we
may think of items as customers and of the removals as service events.

1b Classification of Simple Queues

The great diversity of queueing problems gives rise to an enormous variety
of models each with their specific features. Incorporating more than one or
two such features usually makes the model not only complicated but also
analytically intractable. Therefore a substantial part of the literature deals
with models of a very simple structure.

Without attempting anything near a classification of all queueing sit-
uations, one might tentatively single out the following relevant features
for the description of a queue of reasonably simple structure: (a) the in-
put or arrival process, i.e. the way in which the customers arrive to the
queue; (b) the service facilities, i.e. the way in which the system handles
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a given input stream. Logically incorporated in (b) but treated separately
in Section 1c is (c) the queue discipline, i.e. the algorithm determining the
order in which the customers are served. The descriptions of these features
may be quite complicated and are, at least in their verbal form, always
lengthy. A convenient shorthand notation system was suggested by D.G.
Kendall in 1953 and has to a large extent become standard since then. It
enables one to replace phrases such as “the single–server queue with com-
pletely random arrivals and general service times” with symbolic notation
such as “M/G/1”. The notation covers some simple and basic queueing
systems (but by no means all important ones) which have the following
characteristics:

(i) Customers arrive one at a time according to a renewal process in
discrete or continuous time. That is, the intervals between successive
arrivals of customers are i.i.d. and governed by a distribution A on N

or (0,∞). We number the customers 0, 1, 2, . . . and assume most often
that customer 0 arrives at time 0. Thus, if Tn denotes the interval
between the arrival of customers n and n+1, the Tn are i.i.d. governed
by A and the arrival instants are 0, T0, T0 + T1, . . ..

(ii) The service times of different customers are i.i.d. and independent
of the arrival process. We denote the governing distribution (concen-
trated on (0,∞)) by B and the service time of customer n by Un.
Thus U0, U1, . . . are i.i.d. governed by B and independent of the Tn.

In Kendall’s notation, a queueing system of this type is denoted by a
string of the type α/β/m, where α refers to the form of the interarrival
distribution, β to the form of the service time distribution and m is the
number of servers. The most common values of α, β are as follows:

M The exponential distribution. (M = Markovian. Other terms are
“completely random” and “Poissonian.”)

D The distribution degenerate at some point d ∈ (0,∞), frequently d = 1.
(D = deterministic. Also, the term “regular” is used.)

Ek The Erlang distribution with k stages; see Section 4.

Hk The hyperexponential distribution with k parallel channels; see Section
4.

PH A more general phase–type distribution; see Section 4.

GI or G No restrictions on the form of the distribution. (GI = General
Independent, G = General; we shall here follow the tradition to use
GI when referring to the interarrival distribution and G for the service
time distribution.)
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Thus examples of the particular queueing models become M/D/1,
GI/G/∞, Ek/M/1, M/Hk/m etc., with, for example, M/D/1 denoting the
single–server queue with Poisson arrivals and deterministic service times.

The notation is widely accepted, but notice should be taken that vari-
ants and extensions abound in the literature. One variant has a different
distinction between GI and G than the (usual) one given here. This is
motivated from the considerable attention that has in recent years been
given to queues where the independence assumptions are replaced by the
sequences {Tn} and {Un} being only strictly stationary. One then writes
G/G/1 etc. and uses GI to denote the classical independent case (e.g. in
G/GI/1 service times will then be independent but interarrival times not).
Other extensions (that will not be used in the present book) are for exam-
ple MX/D/m and M/M/m/n. The first case refers to customers arriving
in batches, distributed as the random variable X , at the epochs of a Pois-
son process. The second may be used for an M/M/m queue with a finite
waiting room of size n, a finite population of n customers or even other
models.

1c The Queue Discipline

We start with a list of some of the main types of queue disciplines.

FIFO First In, First Out. Also denoted FCFS = First Come, First Served.
The customers are served in the order of arrival. Apparently this is the
usual procedure at an ordered queue and therefore the predominant
assumption in the literature. Unless otherwise stated, this is the queue
discipline in force throughout this book.

LIFO Last in, First out. Also denoted LCFS = Last Come, First Served.
After having completed a service the server turns to the latest arrived
customer. This would occur, for example, in inventories where the
items (customers) are stacked and all in–out operations occur at the
top of the pile.

SIRO Service in Random Order. After having served a customer, the
server picks the next at random among the remaining ones. This
would occur, for example, in technical systems such as telephone ex-
changes where the system does not remember when the customers
arrived.

PS Processor Sharing. The customers share the server, i.e. when n cus-
tomers are present, the server devotes 1/n of his capacity to each.
Equivalently, the customers attain service at rate 1/n and leave the
system once the attained service reaches the service time. The situa-
tion is illustrated in Fig. 1.1. The main example is a computer with
several jobs running simultaneously. Here PS is really only an ap-
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proximation to what physically occurs, namely the next discipline in
the list:

RR Round Robin. Here the server works on the customers one at a time
in a fixed time quantum δ. A customer not having completed service
within this time is put back in the queue, and before he can retain
service the other customers are each allowed their quantum of δ (or
less, if service is completed). The situation is illustrated in Figs. 1.2,
1.3. As δ becomes infinitely small, PS is obtained as a limiting case
of RR.

Figure 1.1

Figure 1.2

Figure 1.3

This list is by no means complete and does not cover all aspects. For
example, it is not quite clear what is meant by a FIFO GI/G/s queue
since the customers may either queue up in one line (what we shall assume
in the following) or in some way form s separate waiting lines. Further
examples of queue disciplines are found above all in the area of priority
queueing. Here the customers are divided into priority classes 1, 2, . . . , K,
a customer from a lower class having priority before one from a higher
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class. The system may be preemptive or nonpreemptive. In the first case
the customer being served is interrupted in his service if a new one of
higher priority arrives, in the second case not. In the preemptive case an
interrupted customer may then either have attained some service or not,
and so on, a great number of variations being possible.

1d Queue Lengths, Waiting Times and Other Functionals

In connection with a given queueing system, a great variety of stochastic
processes and functionals arise. The main ones that we shall study are the
following three (defined for GI/G/s, but with obvious generalizations to
many other models):

Qt The queue length at time t (denoted Xt in the present chapter where
{Qt}t≥0 is a Markov jump process). Also denoted as the number in
system to stress that the customer being presently handled by the
server is included.

Wn The actual waiting time (or just waiting time) of customer n, i.e. the
time from arrival to the system until service starts.

Vt The workload in the system at time t, i.e. the total time the m servers
have to work to clear the system. Thus Vt is the sum of the residual
service times of customers being presently served and the customers
awaiting service. In the case m = 1 of a single server, this is simply the
time needed for the server to clear the system provided that no new
customers arrive, i.e. the waiting time of a hypothetical customer
arriving just after t. For this reason Vt is sometimes denoted the
virtual waiting time at time t for m = 1.

The connection is illustrated in Fig. 1.4. It is simplest to visualize for m = 1,
where the actual waiting time of customer n+1 is the virtual waiting time
Vσ(n)− just before the time σ(n) = T0 + · · ·+Tn of his arrival. Thus on the
figure, W0 = W1 = W4 = 0 and W2 > 0, W3 > 0. For other aspects, see
the Problems.

There are two points worth noting when concentrating interest around
these processes: (a) the processes or functionals of interest are not always
of one of these three types, but have frequently very close relations; (b)
it depends very much on the practical situation whether it is the queue
length, the actual or the virtual waiting time or some other functionals
that are of interest.

An obvious example of (a) is the sojourn time of customer n, i.e. the
total time he spends in the system. This is the waiting time followed by
the service time, i.e. Wn + Un, and since Wn, Un are clearly independent,
the sojourn time distribution is a simple functional of the waiting time
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distribution, namely the convolution with the service time distribution B.
Another example is busy and idle times, which in GI/G/1 can be described
by the time intervals where Qt > 0 (or equivalently Vt > 0) and Qt = Vt =
0, respectively. We also mention that the interest in {Vt} is due to a large

Figure 1.4
(a) Input of service times and interarrival times; (b) the corresponding single–

server queue length process; (c) the single–server workload (virtual waiting time)

process; (d) the two–server queue length process; (e) the two–server workload

process.
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extent to the reinterpretations of this process within the areas of storage,
dams and insurance risk; see Chapter XIV.

For (b), note that, for example, sometimes the interest centres around
the workload put on the system itself, in other cases around the inconve-
nience caused to the customers by exceedingly long waiting times (more
typically, the aim is to balance these points of view). A typical example
would be the design problem for the cash system in a supermarket: say for
simplicity that we have m identical servers and want to choose the best
value of m. If m is large, we expect the system to be idle for a considerable
amount of time and thereby be insufficiently utilized compared to the cost
of running. If, on the other hand, m is small, then we expect long wait-
ing times for the customers, which will encourage them to use instead a
less congested competing shop nearby. The quantitative evaluation of this
effect of discouragement is of course a matter of management judgement
and not mathematics. However, once this has been settled we need to say
something about both idle times and waiting times for a given arrival rate.
Possibly the discouragement could be an effect of the visible queue length
and not the related but unobservable waiting time. Therefore, the queue
length is also of potential interest here. It is certainly so in other situations
such as telephone exchanges with a limited number K of lines, where queue
lengths ≥ K mean the possibility of calls being lost.

1e Measures of Performance. The Traffic Intensity

Seen from a practical point of view, the purpose of theoretical analysis is
to shed some light on the queueing situation in question. The meaning of
this may be rather vague and, for example, it may be argued that just
formulating a simplified mathematical model is helpful since it necessitates
thinking through and properly clarifying which features of the system are
the basic ones. Having passed this point, however, interest centers on eval-
uating the performance of a given system (and possibly some related ones,
for the purpose of assessing the effect of a change). That is, the first step
is to define some appropriate measures of performance.

In rather general terms, we want to describe the properties of the basic
processes of queue length and waiting times. A main step in that direction
is the study of one–dimensional distributions, say for example P(Wn ≤ t).
Now this is difficult to compute in most situations and the dependence on t
is a complicating factor for the sake of comparisons (so is the dependence on
n, but we defer the discussion of this to Section 1f). Therefore, it becomes
appropriate to consider some simple characteristics of a distribution F on
[0,∞), and some of the main ones that are usually considered relevant are
the following:

(i) The mean µ =
∫∞
0

xF (dx), measuring the average values.

(ii) Possibly some of the higher order moments µ(k) =
∫∞
0 xk F (dx).
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(iii) The variance σ2 = µ(2) − µ2, measuring the dispersion around the
mean; possibly also some higher order cumulants.

(iv) The squared coefficient of variation σ2/µ2, giving a scale invariant
measure of dispersion.

(v) The tail characteristics describing the asymptotic behaviour of the
tail F (x) = 1 − F (x). For example, the relation F (x) ∼ Ce−γx

holds for many distributions in queueing theory (cf. XIII.5), and
appropriate tail characteristics are then C and (in particular) γ.

Which of these characteristics is appropriate depends on the situation.
There is, however, one measure of performance of a queueing system that

is of universal interest. This is the so–called traffic intensity ρ, which we
define here for GI/G/m by

ρ =
EUk

mETk
=

∫∞
0

xB(dx)
m
∫∞
0

xA(dx)
(1.1)

(there are appropriate generalizations for most other queueing systems)
and the interpretation is as follows. Suppose that for a very large amount
of time t the system is working at full capacity, i.e. that all servers are
busy. Then by the LLN there will be about t/ETk arrivals and a total of
about mt/EUk services (t/EUk for each server). Thus ρ is about the ratio,
i.e. when ρ > 1 the number of arrivals exceeds the number of services so
that we expect the queue to grow indefinitely. In contrast, when ρ < 1 then
eventually even a very long initial queue will be cleared (in the sense that
not all servers are busy; after that the queue may build up again, but will
again be cleared up for the same reason, and so on, the system evolving in
cycles). Thus the behaviour should be like transience when ρ > 1, and like
recurrence when ρ < 1. This will be made more precise later in the various
models. Also, results will be shown stating that the behaviour for ρ = 1 is
like null recurrence.

1f Steady State Theory versus Time–Dependence

The notion of steady state is within setting of Markov processes just what
so far has been called stationarity: a Markov chain or Markov jump process
is in steady state if it is ergodic and stationary (another common term is
equilibrium, inspired from statistical mechanics).

The results developed in Chapters I and II state that after a long period
of time an ergodic process attains the steady state (settles in equilibrium).
A similar behaviour is, on intuitive grounds, to be expected far beyond
the Markovian setting: if the capacity of the queueing system is sufficient
to deal with the arriving workload, say the traffic intensity is less than 1,
one expects the system to alternate between being busy and idle, and that
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the initial conditions will be smoothed away by the stochastic variation in
the length of the cycles. Thus, under appropriate conditions there should
exist limiting distributions of Qt, Vt as t → ∞ and of Wn as n → ∞, and
there is then an apparent possibility of studying the characteristics of the
queueing system by means of these limiting distributions. More generally,
when studying functionals of the whole process such as departure processes,
one could restrict attention to a stationary, i.e. steady–state, version. This
will be represented either by a governing probability distribution Pe (e for
equilibrium) or by notation like W to denote a random variable having
the limiting steady–state waiting–time distribution). Thus, for an ergodic
Markov chain {Xn} with stationary distribution π, we have

πj = Pe(Xn = j) = P(X = j) = lim
n→∞ Pi(Xn = j),

and Pe is the same as the Pπ of Chapter I.
The idea of passing from the study of say P(Wn ≤ x), n = 0, 1, 2, . . .,

to Pe(Wn ≤ x) = P(W ≤ x) is clearly convenient, if nothing else, by
eliminating the dependence on n. The motivations are in fact deeper than
just this, with the two following points as the cornerstones: (1) a queueing
system will frequently be operating for such long periods of time that the
steady state is entered rather early in that period; (2) in addition to its
limiting interpretation, Pe also describes the long–term behaviour in terms
of time averages. For example, one has for a Markovian queue in continuous
time that subject to suitable conditions T−1

∫ T

0 Qt dt ≈ EeQ (cf. II.4), and
this average is frequently an appropriate characteristic of the whole segment
{Qt}0≤t≤T .

The overwhelming majority of queueing theory (and also the material
presented in this book) is concerned with the steady–state properties of the
systems rather than finding time–dependent quantities like pn

ij in a Markov
chain (instead of time–dependent, frequently the somewhat unfortunate
term “transient” is used). The reasons for this are most often motivated
by (1) and (2) above. However, without any doubt the fact that time–
dependent solutions are exceedingly more difficult to come by than the
steady–state ones also plays an important role in practice. Thus, it seems
clear that in many situations it is not clear a priori what a long time period
in (1) means. Hence it is necessary to have at least some estimate on the rate
of convergence to the steady state, i.e. some ideas on the time–dependent
behaviour. Also, it is clear that in other situations such as the presence of a
rushhour where the queue suddenly builds up after having behaved stably,
the steady–state point of view is not adequate at all.

1g Queueing Theory in This Book

A particular practical problem will usually exhibit a considerable number
of the great variety of aspects presented so far, and most likely some further
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specific ones. Comprehensive mathematical models will therefore tend to
be complicated and usually intractable: possibly the existence of a limiting
steady state can be proved, but the derivation of its properties in a form
suitable for numerical calculations is usually out of the question. Therefore
the practitioner may have to use either empirical or semi–empirical methods
such as simulation, approximations or bounds, or to trust that solutions of
greatly simplified models have something to say about his problem as well.

It is not our aim here to present queueing theory in a form ready for
practical implementation, but rather to study some of the basic mathe-
matical problems and techniques. In this and the next chapter, a rather
broad class of problems are studied within the Markovian setting, and af-
ter having developed the necessary mathematical tools in Part B, we then
deal with a more narrow class of problems in Part C, assuming either gen-
eral distributions of interarrival times and service times or, as is in fact
better motivated, Markovdependence.

The Markovian assumptions greatly simplify the modelling and solu-
tion. They are therefore also frequently the first step when faced with a
new type of problem, and they will be used here to look into phenom-
ena requiring considerable effort in more general settings. Examples are
queueing networks, time dependence, the busy–period distribution, the ef-
fect of queue disciplines other than the FIFO one and also some finite
models (clearly, many important models are not touched upon at all). The
Markovian set–up has its drawbacks, however. One is that queue lengths
as discrete variables are more naturally incorporated than the continuous
waiting and sojourn times. For example, in a network we can study the
length of the various waiting lines, but not the presumably more inter-
esting total sojourn time of a customer. Another deficit is the reliance on
assumptions such as Poisson arrivals and (probably more seriously) expo-
nential service times. The phase method (to be developed in Section 4)
presents a partial solution by extending the Markovian set–up to a class of
models that is in a certain sense dense.

Finally, we mention that one of the classical topics in Markovian queue-
ing theory, imbedded Markov chains, has been deferred to X.5. A Markov
chain is imbedded in a (typically non–Markovian) queue if it is obtained
by observing the queue length at certain random times. Main examples are
M/G/1 just after departure times and GI/M/1 just before arrival times.
However, in M/G/1 in particular, the imbedded Markov chain is only of
limited intrinsic interest, and it requires the more advanced tools of Part B
to relate it to the queue length in continuous time and the waiting times.

Problems

1.1 Consider the LIFO single–server queue. Show that the waiting times corre-
sponding to the input in Fig. 1.4(a) are the same as for the FIFO case, and draw
a different figure where this is not the case.
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1.2 Draw a figure of the PS single–server queue length process corresponding to
the input in Fig. 1.4(a). Find (graphically) the sojourn times of the customers.
1.3 Find (graphically) the waiting times of the customers in the GI/G/2 case
of Fig. 1.4(a).
1.4 Consider GI/G/1 with ρ < 1. Show heuristically that the server is idle or
busy in an average proportion ρ, resp. 1 − ρ, of the time.
1.5 Consider GI/G/1 with ρ < 1. Show by heuristic time–average considerations
Little’s formula  = λw. Here , w denote the steady–state mean of the queue
length and the sojourn time, and λ = 1/ETk the average arrival rate. [Hint:

Evaluate
∫ T

0
Qt dt in terms of the sojourn times of the customers that arrived

in [0, T ], neglecting boundary effects; a formal proof is in X.4.] Is the FIFO
assumption essential?

Notes Queueing theory as a whole is an enormous area. Most of the standard
textbooks are listed in the Bibliography, and for the current development of re-
search in the area, some of the main journals to consult are the Advances in
Applied Probability, Annals of Applied Probability, Journal of Applied Probabil-
ity, Mathematics of Operations Research, Operations Research, Probability in the
Engineering and Information Sciences, Queueing Systems, Stochastic Models and
Stochastic Processes and Their Applications.

Obviously, it is not possible to cover all special models in a single book. Of
topics not treated, we mention in particular polling systems (a single server
switches between several queues), fork–join or split–and–match queues (applied
in manufacturing), negative customers (see Chao et al, 1999, for references), join–
the–shortest–queue disciplines (e.g. Foley and McDonald, 2001), retrial queues
(Falin and Templeton, 1997; Artalejo, 1999) and queues with vacations (the server
is temporalily unavailable). All of these areas are currently active, and the reader
interested in one or more is advised to perform a database search for references.

2 General Birth–Death Processes

By a birth–death process we understand a Markov jump process {Xt}t≥0

on E = N which is skip–free, i.e. from state n it can only move to n − 1 or
n + 1 (from 0 even only to 1). That is, the intensity matrix is of the form

Λ =

⎛⎜⎜⎜⎝
−β0 β0 0 0 . . .
δ1 −β1 − δ1 β1 0 . . .
0 δ2 −β2 − δ2 β2 . . .
...

. . .

⎞⎟⎟⎟⎠ .

We denote the βn as birth intensities and the δn as death intensities. In
this terminology, one thinks of the process as the total size of a population
and the most well–known example is the linear birth–death process βn =
nβ, δn = nδ which corresponds to the individuals giving birth and dying
independently of one another, with rates independent of the population
size. In our applications we interpret instead Xt as the number of customers
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in a queue at time t: a jump upward corresponds to a customer arriving at
the queue and a jump downward to a customer having completed service
and leaving the system. Thus in this generality the arrival rate βn and
the service rate δn depend in an unspecified manner on the number n of
customers present. For example βn could be decreasing in n, corresponding
to customers being discouraged by long queues, (balking or reneging) and
δn increasing, corresponding to the server working more rapidly when faced
with a long queue. However, the main interest in birth–death processes is
due to the more concrete interpretation of the models associated with the
specific choices of βn, δn to be presented in Sections 3a–3g. We proceed
here to develop the general theory.

The jump chain {Yn} is clearly skip–free as well and may be viewed as a
state–dependent Bernoulli random walk (i.e. the increments are ±1), with
reflection at zero. The transition matrix is

Q =

⎛⎜⎜⎜⎝
0 1 0 0 . . .
q1 0 p1 0 . . .
0 q2 0 p2 . . .
...

. . .
...

⎞⎟⎟⎟⎠
where pn = βn/(βn+δn), qn = 1−pn = δn/(βn+δn). We assume for a while
that no pn can take the values 0 or 1. This obviously implies irreducibility.

Proposition 2.1 Recurrence of {Xt}t≥0 or equivalently {Yn} is equivalent
to

∞∑
n=1

δ1 · · · δn

β1 · · ·βn
=

∞∑
n=1

q1 · · · qn

p1 · · · pn
= ∞. (2.1)

Proof. We apply the transience criterion I.5.2 with i = 0 to {Yn} and have
to look for h(k), k ≥ 1, satisfying h(j) =

∑
k �=0 qjkh(k), j 
= 0, i.e.

h(1) = p1h(2),
h(2) = q2h(1) + p2h(3),

...
h(n) = qnh(n − 1) + pnh(n + 1),

...

If on the l.h.s. we write h(n) = (pn + qn)h(n) and solve for h(n)−h(n−1),
we get

h(2) − h(1) = q1h(1)/p1,

h(n + 1) − h(n) =
qn

pn

(
h(n) − h(n − 1)

)
= · · ·

=
qnqn−1 · · · q2

pnpn−1 · · · p2

(
h(2) − h(1)

)
=

qn · · · q1

pn · · · p1
h(1),
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and it is clear that there is one, and up to proportionality only one, nonzero
solution that is bounded if and only if

sup
n

h(n) = h(1) +
∞∑

n=1

[
h(n + 1) − h(n)

]
= h(1)

{
1 +

∞∑
n=1

qn · · · q1

pn · · · p1

}
is finite. Thus transience is equivalent to (2.1) to fail. �

The criterion (2.1) states loosely that the qn in some average sense should
be as large as the pn, i.e. that there is no drift to infinity. Assume, for
example, some smooth behaviour such as the existence of σ = lim pn/qn.
Then if σ < 1, (2.1) is infinite and we have recurrence, whereas (2.1) is
finite for σ > 1 and we have transience (for σ = 1 both possibilities may
occur, cf. Problem 2.2).

Proposition 2.2 A birth–death process is nonexplosive if and only if R <
∞ where

R =
∞∑

n=1

rn, rn =
n∑

k=0

δk+1 · · · δn

βk · · ·βn
.

Proof. We apply Reuter’s condition II.3.3, which states that the process
is nonexplosive if and only if any nonnegative solution x = (xn)n∈N to
Λx = x is trivial, x = 0. Equations 0 and n ≥ 1 of Λx = x are

−β0x0 + β0x1 = x0, δnxn−1 − (βn + δn)xn + βnxn+1 = xn,

which, letting ∆n = xn − xn−1, fn = 1/βn, gn = δn/βn, can be rewritten
as

∆1 = f0x0, ∆n+1 = fnxn + gn∆n.

This shows that the solution with x0 = 0 is x = 0 and that the solution
with x0 > 0 (say x0 = 1) is strictly increasing. Iterating and noting that
rn =

∑n
0 fkgk+1 · · · gn yields

∆n+1 =
n∑

k=0

fkgk+1 · · · gnxk

{ ≥ rnx0

≤ rnxn
.

Summing and using the lower bound shows that R < ∞ is necessary for x
to be bounded. The upper bound yields

xn+1 ≤ (1 + rn)xn ≤ · · · ≤
n∏

k=0

(1 + rk),

so that if conversely R < ∞ and hence
∏∞

0 (1 + rk) < ∞, then x is
bounded. �
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Lemma 2.3 Irrespective of recurrence or transience, there is one, and up
to proportionality only one, solution ν = (νn)n∈N to νΛ = 0, given by

νn =
β0 · · ·βn−1

δ1 · · · δn
ν0. (2.2)

Proof. That νΛ = 0 means

β0ν0 = δ1ν1, (βn + δn)νn = βn−1νn−1 + δn+1νn+1, n ≥ 1.

It is clear that given ν0, these equations uniquely determine ν, and insertion
shows that (2.2) is indeed a solution. �

Corollary 2.4 In the recurrent case, the stationary measure µ = (µn)n∈N

for {Yn} is given by

µn =
p1 · · · pn−1

q1 · · · qn
µ0, n = 1, 2 · · · . (2.3)

Proof. Take µ as in II.4.2(ii),(iii), µn = νnλ(n). Then µ0 = ν0β0 and for
n = 1, 2, . . .

µn = νnλ(n) =
β0 · · ·βn−1

δ1 · · · δn
(βn + δn)ν0

=
p1 · · · pn−1

q1 · · · qn

β0qn

δn
(βn + δn)ν0 =

p1 · · · pn−1

q1 · · · qn
µ0.

�

Now define

S = 1 +
∞∑

n=1

β0 · · ·βn−1

δ1 · · · δn
.

Corollary 2.5 {Xt}t≥0 is ergodic if and only if (2.1) holds and S < ∞,
in which case the ergodic distribution π = (πn)n∈N is given by

π0 =
1
S

, πn =
1
S

β0 · · ·βn−1

δ1 · · · δn
, n = 1, 2, . . . . (2.4)

Proof. Recurrence is equivalent to (2.1), and in that case the total mass
of (2.2) is |ν| = Sν0 so that according to II.4.3 ergodicity is equivalent to
S < ∞. In that case, π = ν/|ν|. �

We conclude with some formulas for the case of a finite state space
{0, . . . , K}. This occurs if βK = 0 since then {0, . . . , K} is a closed set.
Irreducibility and hence ergodicity will hold if

β0 > 0, . . . , βK−1 > 0, βK = 0, δ1 > 0, . . . , δK > 0, (2.5)

and in just the same manner as in Lemma 2.3 and Corollary 2.5 one obtains
the stationary distribution as

π0 =
1
S

, πn =
1
S

β0 · · ·βn−1

δ1 · · · δn
, n = 1, . . . , K (2.6)
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where S = 1 +
∑K

1 (β0 · · ·βn−1)/(δ1 · · · δn).

Remark 2.6 In many examples, the finite case arises as a modification of
an infinite model by letting some βK = 0. If the stationary distributions are
π and π(K), respectively, it is seen from (2.6) that π(K) is simply obtained
by conditioning (or truncation) of π to {0, . . . , K}, π

(K)
n = πn/(π0 + · · · +

πK), n ≤ K. Compare also I.3.9 (or rather the continuous–time analogue),
and see further XIV.3. �

Problems

2.1 Show that recurrence holds if βn ≤ δn for all large n.
2.2 Suppose βn = 1, δn = (1−1/2n)γ where γ ≥ 0. Show that there is transience
for γ > 2 and null recurrence for γ ≤ 2.
2.3 Suppose βn = 1, δn = (1+1/n)γ where γ ≥ 0. Show that there is ergodicity
for γ > 1 and null recurrence for γ ≤ 1.
2.4 Show that there is transience if δn = 1 for all n, β2k = k, βn = 1 for all
other n.
2.5 Consider for k = 0, 1, 2 . . . birth–death processes with β

(0)
n = 1, δ

(0)
n = 2 and,

for k ≥ 1, δ
(k)
n = 2, β

(k)
k = 2k, all other β

(k)
n = 1. Show that there is ergodicity

for k ≥ 0, that β
(k)
n → β(0), δ

(k)
n → δ(0) as k → ∞ but that π(k) → π fails.

2.6 Let π be a distribution on N satisfying πn > 0 for all n. Show that there
exists an ergodic birth–death process with π as stationary distribution. Are the
βn, δn unique? Are they unique up to proportionality?

Notes The more refined theory of birth–death processes owes much to a series

of papers by Karlin and McGregor in the 1950s; see Anderson (1991). For further

examples of results beyond the present (standard) ones, see Keilson (1979), van

Doorn (1980) and Ball and Stefanov (2001).

3 Birth–Death Processes as Queueing Models

3a. The M/M/1 Queue
3b. The M/M/∞ Queue
3c. The M/M/m Queue
3d. The M/M/1 Queue with Finite Waiting Room
3e. Erlang’s Loss System
3f. Engseth’s Loss System
3g. Palm’s Machine Repair Problem

3a The M/M/1 Queue

The M/M/1 queue length process as defined in Section 1d clearly corre-
sponds to a birth–death process with βn = β and δn = δ independent of
n. This is by far the conceptually most simple queueing system, the one
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of the greatest analytical tractability (at least for an infinite state space),
and therefore it plays a prominent role in the literature.

The traffic intensity as defined in Section 1e is ρ = β/δ. Thus the
recurrence criterion (2.1) becomes

∑∞
0 ρ−n = ∞ and we have at once:

Proposition 3.1 The M/M/1 queue with traffic intensity ρ is recurrent
if and only if ρ ≤ 1.

This is intuitively reasonable, at least if ρ ≤ 1, by recalling the interpreta-
tion of ρ as the ratio (1.1), and will be seen to hold for more general queues
(e.g. GI/G/m). Similary, the ergodicity conditions come out immediately
from Corollary 2.5. We get S =

∑∞
0 ρ−n = (1 − ρ)−1 for ρ ≤ 1 and thus:

Proposition 3.2 The M/M/1 queue with traffic intensity ρ is ergodic if
and only if ρ < 1. In that case, the steady state distribution π of the queue
length is geometric, πn = Pe(Xt = n) = (1 − ρ)ρn, n = 0, 1, 2, . . ..

This permits us immediately to calculate a number of interesting quantities.
For example, the probability that the server is idle or busy in steady state
is

Pe(Xt = 0) = π0 = 1 − ρ, resp. Pe(Xt > 0) = 1 − π0 = ρ, (3.1)

whereas by standard formulas for the geometric distribution we have

EeXt =
ρ

1 − ρ
, VareXt =

ρ

(1 − ρ)2
, Pe(Xt ≥ N) = ρN . (3.2)

These formulas show among other things that as ρ ↑ 1, then (not unex-
pectedly) with high probability ρ the server is busy and the mean queue
length ρ/(1− ρ) is large. Again, these properties are qualitatively (but not
quantitatively) typical of more general queues, cf. X.7.

3b The M/M/∞ Queue

This corresponds clearly to the case βn = β, δn = nδ. We may think of
each customer being handled by his own server so that his sojourn time in
the system is exponential with intensity δ and independent of all other cus-
tomers. A different interpretation is therefore an immigration–death process
with immigration according to a Poisson process and each individual dying
after an exponential time.

The definition (1.1) of the traffic intensity yields ρ = 0. Instead, the
interesting parameter is η = β/δ and we get

∞∑
n=1

δ1 · · · δn

β1 · · ·βn
=

∞∑
n=1

n!
1
ηn

= ∞, S = 1 +
∞∑

n=1

ηn

n!
= eη.

Thus Corollary 2.4 yields:



3. Birth–Death Processes as Queueing Models 77

Proposition 3.3 The M/M/∞ queue is ergodic for all values of η. The
steady state distribution π is Poisson with mean η, πn = e−ηηn/n!.

Notes For more advanced aspects of M/M/∞, see Robert (2000) and Preater

(2002). A different case of a Poisson π is in Problem 3.1.

3c The M/M/m Queue

Here βn = β and δn = m(n)δ, where m(n) is the number of busy servers in
state n, i.e. m(n) = m ∧ n. The traffic intensity is ρ = β/mδ and we have
βn/δn = ρ, n ≥ m. Thus, as in the case m = 1, (2.1) and recurrence hold
if and only if

∑
ρ−n = ∞, i.e. ρ ≤ 1. Similarly, with η = β/δ

S = 1+
∞∑

n=1

β0 · · ·βn−1

δ1 · · · δn
=

m−1∑
n=0

ηn

n!
+

ηm

m!

∞∑
n=0

ρn =
m−1∑
n=0

ηn

n!
+

ηm

m!
(1−ρ)−1

is finite if and only if ρ < 1, and we get

Proposition 3.4 The M/M/m queue with traffic intensity ρ is ergodic if
and only if ρ < 1. In that case the ergodic distribution π is given by

πn =
1
S

ηn

n!
, n = 0, . . . , m, πn =

1
S

ηm

m!
ρn−m, n = m, m + 1, . . . .

This solution is analytically slightly more complicated than those encoun-
tered so far since the functional form of πn is not the same for n < m
and n > m, and also S is more complicated. The probabilistic interpre-
tation is, however, quite interesting: π is a combination of the M/M/∞
solution and the M/M/1 solution, with the M/M/∞ solution on the states
{0, . . . , m} with full server availability (no customers awaiting service) and
the M/M/1 solution on the states {m, m + 1, . . .} where some customers
must await service.

Again it is straightforward to evaluate functionals. For example, the
probability that all servers are busy and the mean queue length are

Pe(Xt ≥ m) = πm + πm+1 + · · · =
1
S

ηm

m!
1

1 − ρ
, resp.

EeXt =
∞∑

n=0

nπn =
1
S

{
m−1∑
n=1

ηn

(n − 1)!
+

ηm

m!

[
ρ

(1 − ρ)2
+

m

1 − ρ

]}
.

3d The M/M/1 Queue with Finite Waiting Room

So far we have had the infinite state space {0, 1, 2, . . .} in all examples.
However, clearly in many practical situations there is a limited capacity of
the system so that the queue may not be arbitrarily long, and examples of
this will now be given here and in the following subsections.
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A simple basic case is the M/M/1 queue with waiting room of size K.
That is, at most K customers at a time can be present in the system
(including the one being served) and customers arriving to a full system
are lost. Thus βn = β, n < K, βK = 0, δn = δ, n = 1, . . . , K. Referring
to Remark 2.6, we get for ρ = β/δ < 1 the stationary distribution by
conditioning (or truncation) of the geometric M/M/1 solution,

πn =
ρn

1 + ρ + · · · + ρK
=

1 − ρ

1 − ρK+1
ρn, n = 0, . . . , K.

It can be immediately checked from (2.6) that this also holds for ρ > 1,
whereas all πn = (1 + K)−1 when ρ = 1.

3e Erlang’s Loss System

A well–known and historically important example was considered by Erlang
in connection with design problems for telephone exchanges. Suppose we
have an exchange of K lines, that calls arrive at rate β and have exponential
durations with rate δ, and that calls arriving while all lines are busy are
lost. Let η = β/δ. What is (in steady state) EK(η), the fraction of calls
that are lost?

To solve this problem, we may model the number of busy lines as a birth–
death process on {0, . . . , K} with β0 = · · · = βK−1 = β, δk = kδ, k =
1, . . . , K. This corresponds to letting βK = 0 in a M/M/∞ (or M/M/K)
queue so that by Remark 2.6 the stationary distribution is conditional
Poisson,

πn =
ηn/n!

1 + η + · · · + ηK/K!
, n = 0, . . . , K.

The probability of a particular call being lost in equilibrium is now simply
the probability πK of arriving at a full system so that

EK(η) =
ηK/K!

1 + η + · · · + ηK/K!
. (3.3)

This is the well–known Erlang’s loss formula (also referred to as Erlang’s
first formula or Erlang’s B–formula) and of considerable interest in tele-
traffic theory. The formula is insensitive to the distribution of the duration
of calls, i.e. it holds also in a M/G/1 setting with δ−1 replaced by the mean
duration of a call, see IV.3.

3f Engseth’s Loss System

All examples considered so far have Poisson arrivals, i.e. βn = β. This is
adequate if we have a finite but large population of customers. Here “large”
also means large compared to the sizes of the queues building up, so that
even with queues of rather unlikely lengths the proportion of customers in
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the system is vanishing, i.e. the intensity of the source does not decrease
significantly. Clearly this is not the case in all practical situations, and
here and in Section 3g we shall consider two of the models that have been
suggested in specific situations.

The first example is a teletraffic model considered by Engseth, essen-
tially by just modifying Erlang’s loss system to a finite population of N
subscribers. Let K be the total number of lines and Xt the number of busy
lines at time t. Any call is assumed to involve only one subscriber. Assum-
ing that N > K, we then have a birth–death process on {0, . . . , K} with
βn = (N −n)β, δn = nδ. Thus β0 · · ·βn−1 = N (n)βn (descending factorial),
δ1 · · · δn = n!δn, and letting η = β/δ we obtain the stationary distribution
as

πn =

(
N
n

)
ηn

1 + Nη + · · · +
(

N
K

)
ηK

, n = 0, . . . , K.

Choosing p ∈ (0, 1) such that p/(1−p) = η (i.e. p = η/(1+η) = β/(β +δ)),
we see that this is the binomial distribution with parameters (N, p) condi-
tioned to be in {0, . . . , K}, i.e. a truncated binomial or Engseth distribution.

3g Palm’s Machine Repair Problem

Consider a population of K machines that each break down with intensity
β and is immediately taken care of by one of N repairmen working at rate
δ, as soon as one becomes available. Thus if Xt is the number of machines
under repair or awaiting repair, we have

βn = (K − n)β, n = 0, . . . , K − 1, δn = (N ∧ n)δ, n = 1, . . . , K.

One might wish to study the way in which the production loss due to stop-
pages and repairs depend on N , for the purpose of allocating the optimal
number N of servers. To this end we need the wage expenses per unit time
which are N times a known constant, and the average number of stopped
machines per unit time, i.e. the equilibrium mean

∑K
0 nπn. Obviously π

can be immediately computed by means of (2.6). We shall not spell out
the formulas, but mention only an important reinterpretation in the case
N = 1. Considering the number X̃t = K −Xt of working machines instead
of Xt, the intensities change to

β̃n = δK−n = δ, n = 0, . . . , K − 1, δ̃n = βK−n = nβ, n = 1, . . . , K.

This is of the same form as for Erlang’s loss system, and we conclude
immediately that π̃ is truncated Poisson in equilibrium.

This model has recently received renewed attention due to a computer
system interpretation, where one thinks of the customers as terminals and
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the repairman as the computer handling requests from the terminals (with
or without processor sharing). Thus each terminal generates requests with
intensity β, and Xt is the number of requests being presently handled by
the computer.

Problems

3.1 Consider the case βn = β/(n+1), δn = δ of the customers being discouraged
by long queue lengths (reneging). Show that the ergodic distribution exists and
is Poisson.
3.2 Show the recursion formula EK+1(η) = ηEK(η)/[K +1+ ηEK(η)]; cf. (3.3).
3.3 Let βn = β(N + n), δn = nδ. Show that there is ergodicity for β/δ < 1 and
that π is negative binomial,

πn =

( −N
n

)
(−ρn)(1 − ρ)N .

Give a demographic interpretation of the model.
3.4 Consider Erlang’s loss system and let H(k) denote the probability that k
lines are busy. Show the Palm–Jacobæus formula H(k) = EK(η)/EK−k(η).
3.5 Consider the same model as in Engseth’s loss system except that now N ≤
K. Show that π is binomial (N, p) where p = β/(β + δ).
3.6 Consider the M/M/2 queue with heterogeneous servers, i.e. servers 1, 2 have
intensities δ(1) > δ(2). There are many ways to model the system behaviour if
one or both servers are idle, but we assume here that if server 1 becomes idle,
the customer served by 2 switches to 1. Explain that this corresponds to βn = β,
δ1 = δ(1), δn = δ(1) + δ(2), n = 2, 3, . . .. Show that there is ergodicity if and only
if β < δ(1) + δ(2) and find the stationary distribution.
3.7 Same questions as in Problem 3.6, but the model is now modified such that
the customers cannot switch to 1 and an arriving customer always joins 1 if the
system is idle. [Hint: Look first at the system restricted to {2, 3, . . .} as a birth–
death process, and next split state 1 into two states indicating which server is
busy.]

4 The Phase Method

The amenability of Markovian models to analysis should by now have be-
come apparent, and further examples are given in the following sections and
Chapter IV. However, the Markovian set–up puts some restriction on the
modelling and one of the most serious ones is that whereas it will frequently
be very reasonable to assume that interarrival times are exponential (i.e.
we have Poisson arrivals), then this is not the case for service times.

The first idea on how to overcome this apparent difficulty was the so–
called method of stages due to Erlang. The idea is to think of the customer
as being composed of k stages each having an exponential service time, say
with intensity δ. The stages are then served one at a time, and the customer
completes service when all stages are served. That is, the service time of
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the customer himself is the Erlang distribution with k stages, namely a
convolution of k exponentials with the same intensity δ so that the density
is

δk xk−1

(k − 1)!
e−δx, x > 0. (4.1)

The point is now that if we count stages instead of customers and the arrival
process is say Poisson, then we get a Markov process {Xt}t≥0. Indeed, since
the arrival of a customer corresponds to the arrival of k stages, the nonzero
off–diagonal intensities are λ(n, n + k) = β, λ(n, n − 1) = δ, n ≥ 1. The
queue length process {Qt} is then obtained simply by summing the stages
out. For example, if we want to determine Pe(Qt = n), we solve for the
stationary distribution π for {Xt} and have

Pe(Qt = n) = π(n−1)k+1 + π(n−1)k+2 + · · · + πnk.

Apparently what we have just described is, in the Kendall notation, the
queueing system M/Ek/1. It should be stressed that this way of imbedding
an apparently non–Markovian queue into a Markovian set–up is essentially
an artifice: the stages themselves usually can be given no physical interpre-
tation. The gain is the greater flexibility in the choice of the service time
distribution.

A related classical idea is to use instead a service time distribution
that is a mixture of exponentials corresponding to a density of the form∑k

1 αrδre−δrx, x > 0, where 0 < αr < 1,
∑k

1 αr = 1; such a distribution is
denoted by Hk, the hyperexponential distribution with k parallel channels.
The state space of the Markov process describing the M/Hk/1 queue is
N × {1, . . . , k}, the first component describing the number in system and
the second the channel in which the server is currently operating (will serve
the next customer when the system is idle), and the nontrivial intensities
are

λ(nr, (n + 1)r) = β, λ(nr, (n − 1)s) = δrαs.

In Fig. 4.1, some examples of Ek– and Hk densities are given. The plots
illustrate among other things the behaviour of the squared coefficient of
variation (s.c.v.) η. This is 1/k for Ek, i.e. η ∈ (0, 1] with 1 attained for the
exponential distribution E1 and 0 in the limit k → ∞ (i.e. Ek approaches
D). For Hk, always η > 1 (provided at least two δr are different) and the
range is (1,∞) for all k. To derive these properties, use for Ek either stan-
dard moment formulas for the gamma distribution or the representation as
a sum Sk of i.i.d. exponentials Y1, . . . , Yk, yielding

η =
VarSk

(ESk)2
=

kVarY1

(kEY1)2
=

k/δ2

(k/δ)2
=

1
k
.
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Figure 4.1(a)

η = 1 (exp. distr.)

η = 9 (δ
1
 = 0.1, δ

2
 = 1.8, θ = 0.047)

η = 14.5 (δ
1
 = 0.1, δ

2
 = 4, θ = 0.077)

1

1

Figure 4.1(b)

For Hk, we may use the representation Yτ where P(τ = r) = αr, Yr

has density δre
−δrx (i.e. mean µr = δ−1

r and variance σ2
r = δ−2

r ) and is
independent of τ . Then conditioning upon τ we get

η =
VarYτ

(EYτ )2
=

Varµτ + Eσ2
τ

(Eµτ )2
=

Eµ2
τ − (Eµτ )2 + Eµ2

τ

(Eµτ )2
=

2Eµ2
τ

(Eµτ )2
− 1

which is > 1 provided Varµτ > 0, i.e. at least two δr are different.
In early literature, the discussion sometimes stopped at this point, the

argument being that for a given distribution one can always choose an
appropriate Hk or Ek with a good fit to the s.c.v. However, not only is this
point of view very rigid (two densities with the same s.c.v. may be very
different), but in fact it turns out that usually no additional difficulties
arise when working with general phase–type distributions and that in fact
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these approximate any distribution arbitrarily well. Such a distribution F
is defined in terms of a Markov jump process {Jt}t≥0 with finite state
space E ∪ {∆}, such that ∆ is absorbing and the states in E transient,
and an initial distribution α, such that F is the distribution of the time
ζ = inf {t > 0 : Jt = ∆} to absorption, F (t) = Pα(ζ ≤ t). It is usually
assumed that α has mass 0 at ∆ such that we can write α as an E–vector.
Further, the intensity matrix Q partitioned according to states in E, resp.
the single state ∆, must have the form

Q =
(

T t
0 0

)
(4.2)

(the form of the last row follows from ∆ being absorbing) where t = −T1
with 1 = (1 . . . 1)T since the rows sum to 0. We refer to the E × E matrix
T as the phase generator, to the E–column vector t as the exit vector, to
(E, α, T ) or sometimes just (α, T ) as the representation of F and write
F ∈ PH.

Proposition 4.1 Let F ∈ PH have representation (E, α, T ). Then:
(i) For x ≥ 0, the c.d.f. is F (x) = 1 − αeT x1 and the density is f(x) =
αeT xt.
(ii) The nth moment is (−1)nn!αT−n1.
(iii) The Laplace transform F̂ [s] =

∫∞
0

e−sxf(x) dx is F̂ [s] = α(sI−T )−1t
and is rational [a ratio between two polynomials].

Proof. It follows easily by induction from (4.2) that the upper left corner
of Qn is T n. Hence the upper left corner of eQx is eT x and therefore

1 − F (x) = Pα(ζ > x) = Pα(Jx ∈ E) = αeT x1,

f(x) = − d
dx

αeT x1 = −αeT xT1 = αeT xt.

For (iii), note that according to II.4d all eigenvalues λ for T have negative
real part. Hence so is the case for A = −sI + T when �(s) ≥ 0, and the
matrix analogue of the formula

∫∞
0 eax dx = −1/a, �(a) < 0, then yields

F̂ [s] = α

(∫ ∞

0

e−sxeT x dx

)
t = α

(∫ ∞

0

eAx dx

)
t = −αA−1t;

that F̂ [s] is rational then follows since all elements of (sI − T )−1 are so
because the determinant and all subdeterminants of sI−T are polynomials.

Part (ii) follows by differentiating the m.g.f., which yields the nth
moment as

dn

dsn
α(−sI − T )−1t

∣∣∣
s=0

= (−1)n+1n!α(sI + T )−n−1t
∣∣∣
s=0

= (−1)n+1n!αT−n−1t = (−1)nn!αT−n−1T1 = (−1)nn!αT−n1 .

�
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A major property of the class PH is that any distribution F on [0,∞)
can be approximated arbitrarily well by a phase–type distribution. In the
proof of this fact, we will employ the class PHME of (finite) mixtures of
Erlang distributions with the same intensity, i.e. with densities of the form

k∑
i=1

αiδ
n(i)+1 xn(i)

n(i)!
e−δx, x > 0, (4.3)

where n(i) ∈ N, αi > 0 for all i and
∑k

1 αi = 1; this class is obviously a
subclass of the class PHS/P of exponential distributions in series and/or
parallel, that is, with a phase representation as in Fig. 4.2 or equivalently
with a Laplace transform of the form

k∑
i=1

αi

n(i)∏
j=1

δij

δij + s
. (4.4)

Clearly, PHME corresponds to δir ≡ δ and PHS/P ⊆ PH.

Figure 4.2

Theorem 4.2 The class PH is dense (in the sense of weak convergence)
in the set P of all probability distributions on (0,∞). More generally, to
any F ∈ P with finite pth moment µ

(p)
F there are Fk ∈ PH with Fk

w→ F

and µ
(q)
Fk

→ µ
(q)
F for all q ≤ p.

Proof. Let d be a metric for weak convergence in P and define

dp(F, G) = d(F, G) +
∣∣µ(p)

F − µ
(p)
G

∣∣, p ≥ 0

(so that d0 = d). Since Fk
w→ F and µ

(p)
Fk

→ µ
(p)
F implies µ

(q)
Fk

→ µ
(q)
F

for q ≤ p (uniform integrability!), it is sufficient to show that PHME is
dense w.r.t. dp in Pp =

{
P ∈ P : µ

(p)
F < ∞}

. Letting FA be F truncated
at A (i.e FA(x) = F (x ∧ A)/F (A)), it is easily seen that dp(F, FA) → 0
as A → ∞. Hence if P(A) is the set of distributions supported by (0, A],

∪A<∞P(A) is dense in P. Further, it is standard that the subset P̃
(A)

of
P(A) consisting of distributions with a finite support is dense w.r.t. d, and

hence w.r.t. dp since d, dp are equivalent on P(A). Now let G ∈ P̃
(A)

have
atoms t1, . . . , tk with weights α1, . . . , αk. For each i, choose integers nm,i

such that nm,i/m → ti, m → ∞. Consider the Erlang distribution Gm,i
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with nm,i stages and intensity δm = m. The mean is nm,i/m and the s.c.v.
is n−1

m,i, hence the weak limit as m → ∞ is the distribution degenerate at ti.
Thus with Gm =

∑k
1 αiGm,i we have d(Gm,i, G) → 0. An easy calculation

shows that also all moments converge. In particular, dp(Gm,i, G) → 0 so

that PHME ⊇ P̃
(A)

. Taking first the union over A and next the closure
shows that PHME is dense in Pp. Hence PH is so. �

The denseness of PH is illustrated in Fig. 4.3, where it is shown how fits
Fp ∈ PH with p phases (produced by maximum likelihood for p = 2, 3 and
6) provide a convergent sequence of approximations of a given distribution
F (in this case an inverse Gaussian having density XIII.(4.3) with ξ = 1,
c = 2).

Inverse Gaussian

Fitted PH(2)

Fitted PH(3)

Fitted PH(6)

1

0.25

Figure 4.3

Figure 4.4

In much of the older literature, one works within the class RLT of distri-
butions with rational Laplace transforms. In addition to the special classes
of phase–type distributions discussed above, the class PHC of Coxian dis-
tributions is also frequently encountered. This is defined by a representation
as in Fig. 4.4 or equivalently by a Laplace transform of the form

n∑
k=1

q1 . . . qk−1pk

k∏
i=1

δi

δi + s
(4.5)

where qk = 1 − pk. One has:

Theorem 4.3 PHME ⊂ PHC = PHS/P ⊂ PH ⊂ RLT.
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Proof. Assume w.l.o.g. that n(i) = i − 1 in (4.3) (take some αi = 0). Then
letting n = n(k), δi = δ, p1 = α1, p2 = α2/(1−α1), p3 = α3/(1−α1 −α2),
. . . in Fig. 4.4 shows that PHME ⊆ PHC (that the inclusion is strict
is obvious; e.g. PHC contains the convolution of two exponentials with
different intensities which is clearly not in PHME). That PHC ⊆ PHS/P

follows (say) from the expressions (4.5), (4.4) for the Laplace transforms.

Figure 4.5

Figure 4.6

For the converse, consider G ∈ PHS/P represented as in Fig. 4.2. We may
clearly assume that δi1 ≥ δi2 ≥ · · · for all i, and define λ1 as the largest
δi1. Now for any β < λ1 a simple calculation shows that the distribution in
Fig. 4.5(a) is simply the exponential distribution with intensity β. Applying
this to a channel with β = δi1 < λ1 yields the representation in Fig. 4.5(b),
and altogether we may represent G as in Fig. 4.6(a) where G1 has the same
intensities as G, except that λ1 has been removed. In any case, the maximal
number of occurences of λ1 in any channel has been reduced by 1, and
continuing in this manner we end up with the situation in Fig. 4.6(b) where
Gr has a representation with possibly many channels but only one intensity.
That is, Gr is an exponential distribution so that indeed G ∈ PHC. That
PHS/P ⊆ PH is trivial; that the inclusion is strict is shown in Problem
4.6. Finally, PH ⊆ RLT follows from Proposition 4.1(iii), and the strict
inclusion from Problem 4.7. �

Noting that the proof of Theorem 4.2 only used the class PHME, we
get:

Corollary 4.4 The conclusion of Theorem 4.2 holds true if PH is
replaced by any of the classes PHME, PHC, PHS/P or RLT.

When faced with a queueing problem on say M/G/1, we may now ap-
proximate (say by maximum likelihood) the service time distribution B by
some B̃ ∈ PH and think of the server as moving in E in the same way
as {Jt} during services and being restarted according to α at each service
completion. Exactly as for M/Ek/1 or M/Hk/1, this yields a Markovian
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representation of the approximating queue, and the steady–state solution
may then be used as an approximation to the steady–state solution of the
given M/G/1 queue. However:

1. From the theoretical point of view, it must be proved that approxi-
mation of B with B̃ also implies approximation of the corresponding
steady–state characteristics of the queue. This is a question of so–
called continuity or robustness, and far from trivial or without pitfalls;
see Problem 2.5 and X.6.

2. From the practical point of view, a good approximation of B may for
certain types of distributions require a large E (note the slow conver-
gence to 1 in Fig. 4.1(a)!), so that the solution of the approximating
M/PH/1 queue will be computationally demanding.

3. Modelling by a Markov jump process is not the only way to exploit
phase–type distributions in queueing theory. Another is to use the
probabilistic interpretation to provide solutions to certain fundamen-
tal random walk problems; see further VIII.5. Still another point of
view is taken in the literature based upon transform methods, where
the class RLT is exploited in a purely analytical way.

Problems

4.1 Write up the appropriate state space and intensities for some queueing
system such as Hk/E�/1, M/Hk/c, etc.
4.2 Show that the s.c.v. in H2 can attain any value in (1,∞).
4.3 Let F1, F2 ∈ PH. Show that the convolution F1 ∗ F2 and a convex
combination θF1 + (1 − θ)F2 are again in PH.
4.4 Show that if X has distribution F ∈ PH with representation (α, T ), then
the overshoot distribution F (z) (the distribution of X − z given X > z, i.e.

F
(z)

(y) = F (y + z)/F (z)) is phase–type with representation (α(z), T ) for some
α(z), and give an expression for α(z).
4.5 Give an alternative derivation of the form of the mean of F ∈ PH by
deriving equations for the Eiζ by conditioning upon the first jump. Do the same
for the Laplace transform.
4.6 Show that (a) if F ∈ PHS/P has the Laplace transform Q/R with Q, R
polynomials without common roots, then R cannot have complex roots; (b) if
F = (1 − θ)

∑∞
1 θn−1G∗n with G ∈ PH, then F ∈ PH; (c) if G = E3 in (b),

then F �∈ PHS/P.
4.7 Show that (a) the density f(x) of F ∈ PH satisfies f(x) > 0, x > 0. [Hint:
F contains a component of exponentials in series.] Show that (b) the distribution
with density proportional to (1 + sin x)e−x is in RLT \PH.

Notes The modern revival of the class PH is due to a large extent to M.F.

Neuts, a main source being his 1981 book; some later textbooks with more ex-

tensive treatments are Wolff (1989), Rolski et al. (1999) and Asmussen (2000).

Statistical fitting is treated via maximum likelihood in Asmussen et al. (1996)
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and via a Bayesian Markov chain Monte Carlo approach in Bladt et al. (2003).

A survey of the class RLT is in Asmussen and O’Cinneide (1999); there is also

much discussion, in part at the more heuristical level, in Lipsky (1992).

5 Renewal Theory for Phase–Type Distributions

We consider a point process on [0,∞) with epochs 0 = S0 < S1 < S2

such that the interarrival times Yk = Sk − Sk−1 are i.i.d. with common
distribution F of phase–type, say with representation (E, α, T ).

The key idea in studying such a process is to piece together the phase pro-
cesses governing the individual Yk to a Markov process {Xt}t≥0. Namely,

assume given i.i.d. Markov processes
{
J

(1)
t

}
,
{
J

(2)
t

}
, . . . on E ∪ {

∆
}

with
the same distribution as

{
Jt

}
in Section 4. We can then represent Yk as

the absorbtion time of
{
J

(k)
t

}
and define Xt = J

(1)
t , 0 ≤ t < Y1, Xt = J

(2)
t ,

Y1 ≤ t < Y1 + Y2 and so on; cf. Fig. 5.1 where there are two Markov states
1 =thin, 2 =thick.

J
(1)
t Y1

Y2

Y3

Y4

Y1 Y1 + Y2 Y1 + Y2 + Y3

�
Xt

Figure 5.1

Proposition 5.1 {Xt} is Markov on E with intensity matrix Λ = T +tα.

Proof. Let i, j ∈ E, i 
= j. Then a jump from i to j occurs if the
{
J

(k)
t

}
cur-

rently in operation is in state i and either makes a jump to j (the intensity
is tij), or if it jumps to the absorbing state (intensity ti) and J

(k+1)
0 = j

which occurs w.p. αj . Hence the intensity is tij + tiαj independently of the
past, which shows the Markov property and that the off–diagonal elements
of Λ are as asserted. It only remains to check that the rows sum to zero,
which follows since α1 = 1 implies (T + tα)1 = −t + t = 0. �

We define as in I.2 the forward recurrence time Bt as the waiting time
until the next renewal, i.e. Bt = Sn − t if Sn−1 ≤ t < Sn. The renewal
density u(t) is defined as the density of the intensity measure of the renewal
point process

{
Sn

}
(cf. A3).

Corollary 5.2 (a) The distribution of Bt is phase–type with representation
(αt, T ) where αt = αe(T+tα)t; (b) the renewal density exists and is given
by u(t) = αtt = αe(T+tα)tt.
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Proof. Since {Xt} has initial distribution α and intensity matrix T + tα,
αt is simply the distribution of Xt. Part (a) is then immediately clear from
the probabilistic interpretation. For (b), just note that u(t) must be the
same as the density of Bt at 0, which is αteT ·0t = αtt. �

Corollary 5.3 Assume that Λ is irreducible. Then the stationary distri-
bution of {Xt} is π = −αT−1/µF where µF = −αT−11 is the mean
of F . Further, Bt has a limiting distribution that is phase–type with
representation (π, T ).

Proof. The expression for µF (Proposition 4.1(ii)) shows immediately that
π1 = 1, so that stationarity follows from

µF πΛ = −αT−1(T + tα) = −α + α1α = −α + α = 0.

The last statement follows since by ergodicity αt → π. �

Remark 5.4 Since eΛt → 1π, it follows that

u(t) → α1πt = πt = µ−1
F (−αT−1)(−T1) = µ−1

F α1 = µ−1
F .

This is a continuous time and nonlattice version of I.2.2, and the general-
ization to a completely general (rather than phase–type) distribution F is
equivalent (in the absolutely continuous case) to the renewal theorem to be
presented in V.4. But note that this generalization has no easy proof using
the denseness of phase–type distributions. �

Example 5.5 Consider the case of two phases where

Λ = T + tα =
(

t11 + t1α1 t12 + t1α2

t12 + t2α1 t22 + t2α2

)
=

( −λ1 λ1

λ2 −λ2

)
(say).

Here π = (π1 π2) = (λ2/(λ1 +λ2) λ1/(λ1 +λ2)). The nonzero eigenvalue of
Λ is λ = −λ1 − λ2, and by standard diagonalization techniques (see II.3.6
for details) we get the renewal density as

u(t) = αeΛtt = (α1 α2)
{(

π1 π2

π1 π2

)
+ eλt

(
π2 −π2

−π1 π1

)}(
t1
t2

)
= (π1 π2)

(
t1
t2

)
+ eλt (α1 α2)

(
π2(t1 − t2)
π1(t2 − t1)

)
= π1t1 + π2t2 + eλt (α1π2 − α2π1) (t1 − t2)

=
1

µF
+ eλt (α1π2 − α2π1) (t1 − t2)

�
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Example 5.6 Consider the Erlang distribution with n stages and, w.l.o.g.,
mean n, i.e. δ = 1. Here Λ = T + tα is the matrix⎛

⎜⎜⎜⎜⎜⎝

−1 1 0 · · · 0 0
0 −1 1 0 0
...

. . .
...

0 0 0 · · · −1 1
0 0 0 · · · 0 −1

⎞
⎟⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎝

0
0
...
0
1

⎞
⎟⎟⎟⎟⎟⎠
(
1 0 0 · · · 0 0

)

=

⎛
⎜⎜⎜⎜⎜⎝

−1 1 0 · · · 0 0
0 −1 1 0 0
...

. . .
...

0 0 0 · · · −1 1
1 0 0 · · · 0 −1

⎞
⎟⎟⎟⎟⎟⎠

(this form of Λ is also probabilistically obvious since {Xt} is cyclic). The
characteristic equation of this matrix is (1+λ)n = 1, with roots λk = θk−1,
k = 0, . . . , n−1, where θ = ei2π/n is the nth root of unity. The corresponding
left and right eigenvectors are

lk =
(

θ−k θ−2k θ−3k · · · θ−(n−1)k θ−nk
)
, rk =

1
n

⎛⎜⎜⎜⎜⎜⎜⎜⎝

θk

θ2k

θ3k

...
θ(n−1)k

θnk

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(here θ−nk = θnk = 1) where 1/n occurs to obtain lkrk = 1. Thus

Λ =
n−1∑
k=0

λkrklk, eΛx =
n−1∑
k=0

eλkxrklk,

u(x) = αeΛxt =
n−1∑
k=0

eλkx(αrk) · (lkt) =
n−1∑
k=0

eλkx θk

n
· 1

=
1
n

n−1∑
k=0

exp
{(

cos
2πk

n
− 1

)
x + i

(
sin

2πk

n
x +

2πk

n

)}

=
1
n

n−1∑
k=0

exp
{
−
(
1 − cos

2πk

n

)
x

}
cos

(
sin

2πk

n
x +

2πk

n

)
(using u(x) ∈ R in the last step). �

Returning to the general theory, consider a doubly infinite stationary
version {Xt}−∞<t<∞ of {Xt}. Let

{
X̃t

}
denote the time–reversed process

(X̃t = X−t−) and Λ̃ its intensity matrix with rsth element πsλ(s, r)/πr ,
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and define

α̃r = µF trπr, t̃rs =
πstsr

πr
, t̃r =

αr

µF πr
.

Then α̃ is a probability vector since

α̃1 = µF πt = (−αT−1)(−T1) = α1 = 1.

Further, just the same argument as in II.5.2 shows that transitions s → r
of {Xt} not taking place at a renewal epoch (i.e. governed by the T –part
of Λ) correspond to transitions r → s of

{
X̃t

}
governed by T̃ . Since

λ̃(r, s) =
πs

πr
(tsr + tsαr) = t̃rs + t̃rα̃s,

it follows that transitions s → r (r = s is included) of {Xt} at renewal
epochs (i.e., governed by the tα–part of Λ) correspond to transitions r → s

of
{
X̃t

}
governed by t̃α̃. Thus the time–reversed renewal point process

must be a phase–type renewal process with representation (α̃, T̃ ) of the
interarrival distribution. However, the long–run distribution of interarrival
times is the same no matter whether time is read forward or backward, and
hence:

Proposition 5.7 Let F be phase–type with representation (α, T ), and as-
sume that T + tα is irreducible. Then (α̃, T̃ ) is again a representation of
F .

For an algebraic proof, let ∆ be the diagonal matrix with the πr on the
diagonal. Then

α̃e˜T tt̃ = (µF ∆t)Te∆
−1T T∆t(α∆−1/µF )T

= (tT∆)(∆−1eT Tt∆)(∆−1αT)

= tTeT TtαT = (αeT tt)T = αeT tt

(any 1 × 1 matrix is symmetric!) shows that the two representations lead
to the same density.

For obvious reasons, we refer to (α̃, T̃ ) as the time–reversed representa-
tion of F . It becomes important in IV.3–4.

Problems

5.1 Doublecheck using Examples 5.5, 5.6 that the renewal density for E2 with
density δ2xe−δx is u(t) = δ

2

(
1 − e−2δt

)
.

5.2 Show that the renewal density for H2 with density α1e
−δ1x + α2e

−δ2x is

u(t) =
δ1δ2

δ1α2 + δ2α1
+ e−(δ1α2+δ2α1)t (δ1 − δ2)

2α1α2

δ1α2 + δ2α1
.

5.3 Let F be phase–type. Show that deleting states r ∈ E such that Pα(Jt =
r for some t < ζ) = 0 leads to a representation with T + tα irreducible.
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5.4 Verify algebraically that t̃ = −T̃ 1.

Notes For an additional explicit example in renewal theory, see V.2.8;

references to the area can be found in Asmussen and Bladt (1996).

6 Lindley Processes

By a Lindley process, we understand a discrete time process of the form

W0 = w, Wn+1 = (Wn + Xn)+, n = 0, 1, . . . , (6.1)

(x+ means max(x, 0)) where w ≥ 0 and X0, X1, . . . are i.i.d. (in general
having both positive and negative values), say with common distribution F .
Equivalently, the process may be described as a Markov chain on E = [0,∞)
with transition kernel given by

P (w, [0, m]) = P
(
W1 ≤ m

∣∣W0 = w
)

= P
(
(w + X0)+ ≤ m

)
= P(w + X0 ≤ m) = F (m − w), w, m ≥ 0. (6.2)

If F is lattice concentrated on {0,±h,±2h, . . .} and we consider only ini-
tial values of the form w = kh, then the state space may be reduced to
{0, h, 2h, . . .}.

The interest in the Lindley process stems classically from the way it
comes up in the GI/G/1 queue (see the basic Example 6.1 below), but it
is quite common that in a particular queueing model one or more of the
processes of interest may be related to a process that is Lindley or at least
of a somewhat similar structure. One example has already been given in
I.5.7, one more follows below in Example 6.2, and further examples are in
the Problems and (in continuous time) Section 7.

Example 6.1 Consider the GI/G/1 queue and let as in Section 1d Wn

be the waiting time of customer n = 0, 1, . . .. What is the sample path
relation between Wn, Wn+1? Say that customer n arrives at time t and
customer n+1 at t+Tn. The residual work in the system is Wn just before
t, Wn + Un just after t (recall that Un is the service time of n) and Wn+1

just before t+Tn. Since the residual work decreases at a unit linear rate in
between arrivals so long as it is positive, Wn+1 will be Wn + Un −Tn when
this quantity is ≥ 0 and 0 when it is ≤ 0 (a graphical illustration of the
argument is contained in Fig. 1.4(c) with n = 2). Hence (6.1) holds with
Xn = Un − Tn and clearly the Xn are i.i.d. For example in the M/M/1
case P(Un > u) = e−δu, P(Tn > t) = e−βt, it is readily seen that F is the
doubly exponential or Laplace distribution with density

f(x) =

⎧⎨⎩
βδ

β+δ e−δx x ≥ 0

βδ
β+δ eβx x ≤ 0

. �
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Example 6.2 This is the embedded Markov chain in GI/M/1 mentioned
in Section 1d, i.e. Wn is the number of customers just before the arrival
of customer n. Let A denote the interarrival distibution and δ the service
intensity. We may think of service events being given in terms of a Pois-
son process with intensity δ, such that an event in the Poisson process
corresponds to a customer being served if the queue is nonempty and is
just dummy otherwise. To describe the relation between Wn and Wn+1,
let Kn be the number of Poisson events in the interval between arrivals of
customers n and n + 1, and define

qk = P(Kn = k) =
∫ ∞

0

e−δt (δt)k

k!
A(dt). (6.3)

Then clearly Wn + 1 customers are present just after the arrival of n and
Wn+1 = (Wn + 1 − Kn)+ just before the arrival of n + 1. Thus (6.1) holds
with Xn = 1 − Kn (clearly, the Xn are i.i.d.). We have E = N, and letting
rn = qn+1 + qn+2 + · · ·, the transition matrix of {Wn} is easily seen to be⎛⎜⎜⎜⎝

r0 q0 0 0 . . .
r1 q1 q0 0
r2 q2 q1 q0

...
. . .

⎞⎟⎟⎟⎠ . (6.4)

�

Figure 6.1

Now define S0 = 0, Sn = X0 + · · · + Xn−1. Then (6.1) reflects that the
Lindley process {Wn} has the same transition mechanism as the random
walk {Sn} except when the random walk crosses from positive to negative
values (the Lindley process then stays at 0). The relation is illustrated
in Fig. 6.1. It is actually typical for many queueing processes that they
are nonnegative but can be described by modifications at (or near) 0 of
a process on the whole line (the netput process) with some basic simple
structure (such modifications may well be more complex than in the present
case).

Exploiting the relation between the paths of {Wn} and {Sn} even further
yields:
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Proposition 6.3 Wn = max
(
W0 + Sn, Sn − S1, . . . , Sn − Sn−1, 0

)
.

Proof. By (6.1), the increments of {Wn} are at least those of {Sn} so that

Wn − Wn−k ≥ Sn − Sn−k, k = 0, . . . , n. (6.5)

Letting k = n yields Wn ≥ W0 + Sn and using Wn−k ≥ 0 we get Wn ≥
Sn − Sn−k, proving Wn ≥ max(. . .). For the converse, we shall show that
either Wn = W0 +Sn or Wn = Sn −Sn−k for some k. The first case occurs
apparently if W0 +Sk ≥ 0 for all k ≤ n. Otherwise, W� = 0 for some � ≤ n,
and letting k be the last such �, (6.1) yields Wn = Sn − Sn−k; see Fig. 6.1.

�

Now define Mn = max0≤k≤n Sk, M = max0≤k<∞ Sk. Since the distribu-
tion of

(
Sn, Sn − S1, . . . , Sn − Sn−1, 0

)
is the same as the distribution of(

Sn, Sn−1, . . . , S1, S0 = 0
)
, we get:

Corollary 6.4 Wn
D= max(W0 + Sn, Mn−1). In particular, if W0 = 0,

then Wn
D= Mn.

It should be noted that this holds in the sense of one–dimensional distri-
butions only and not processes. For example in the case W0 = 0, the paths
of {Mn} are nondecreasing, those of {Wn} not.

Suppose now E|Xn| < ∞ and write µ = EXn.

Corollary 6.5 If µ < 0, then M < ∞ a.s. and Wn
D→ M (and in t.v.).

Proof. From Sn/n
a.s.→ µ we have Sn

a.s.→ −∞. This implies in particular
M < ∞. Also W0 + Sn

a.s.→ −∞ and Mn ↑ M a.s. and in distribution. Thus
max(W0 + Sn, Mn−1) = Mn−1 eventually and Wn

D→ M follows. �

For the limiting behaviour for µ ≥ 0, see Problem 6.6.

Corollary 6.6 If µ < 0, then M
D= (M + X)+, where X is independent

of M with distribution F . Furthermore H(m) = P(M ≤ m) is the unique
distribution function on [0,∞) which solves Lindley’s integral equation

H(m) =
∫ m

−∞
H(m − x)F (dx), m ≥ 0. (6.6)

Proof. The first statement can be proved by a limiting argument or from

(M + X)+ = max(0, M + X) = max
(
0, X, X + X0, X + X0 + X1, . . .

)
D= max

(
0, X0, X0 + X1, X0 + X1 + X2, . . .

)
= M.

Furthermore the r.h.s. of (6.6) is just P(M +X ≤ m) = P
(
(M +X)+ ≤ m

)
evaluated by conditioning upon X = x. Thus (6.6) is equivalent to M

D=
(M + X)+, i.e. H being stationary for {Wn}. Thus if H1, H2 both solve
(6.6), we may consider the two stationary chains with initial distributions
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H1, resp. H2. From the fact that they both converge in distribution to M
we conclude that H1 = H2. �

It is nontrivial even in such simple models as Example 6.2 or the doubly
exponential M/M/1 case in Example 6.1 to derive the distribution H of
M , and this is in fact the subject of the detailed investigations in VIII.5
(of course, given a trial solution H , one can just check whether H solves
Lindley’s integral equation).

Problems

6.1 Let {An}∞0 , {Bn}∞0 be independent sequences of i.i.d. r.v.’s and define W0 =
B0, Wn+1 = (Wn − An)+ + Bn+1. Show that {Wn − Bn} is a Lindley process
corresponding to Xn = Bn − An. Show that if EBn < EAn, then in the limit
Wn is distributed as M + B where M = sup Sn and B is an independent r.v.
distributed as Bn.
6.2 Consider the fixed–cycle traffic light, with the cycles divided into the green
period where customers (say cars or pedestrians) can pass and the red period
where they cannot. Let W G

n be the number of customers just after the start of
the nth green period and BG

n the number of customers arriving during the nth
green period (similar conventions define W R

n , BG
n ). Assuming that the maximal

number of customers which can pass during a green period is some fixed number
p, show that

W R
n+1 =

(
W R

n + BG
n+1 + BR

n − p
)+

, W G
n+1 =

(
W G

n + BG
n − p

)+
+ BR

n .

6.3 Consider the M/G/1 queue and let Wn be the queue length just after the nth
departure, Bn the number of customers arriving during the nth service period.
Show that Wn+1 = (Wn − 1)+ + Bn+1, and find the distribution of Bn in terms
of a formula similar to (6.3). Show also in the M/M/1 case with ρ < 1 that the
stationary distribution of {Wn} is given by πn = (1 − ρ)ρn.
6.4 Assume that F has negative mean and density pδe−δx on (0,∞) (clearly,
p = F (0)). Let γ satisfy

∫∞
−∞ eγxF (dx) = 1. Show by direct calculation that

H(m) = 1− (1− γ/δ)e−γm is the unique solution to Lindley’s integral equation.
Show hereby that the steady–state GI/M/1 waiting time distribution is of this
form.
6.5 Compute the matrix (6.4) for the M/M/1 case and show that πn = (1−ρ)ρn

is stationary when ρ < 1.
6.6 Consider a Lindley process with µ > 0. Show that Wn/n

a.s.→ µ. Show also
that the process is a null recurrent Markov chain in the lattice case with µ =
0. [Hint: Let τ = inf {n : Sn ≤ 0} and show that Eτ < ∞ contradicts Wald’s
identity.]

Notes Among textbooks with systematic discussion of Lindley processes, we
mention in particular Feller (1971,VI.9) and Borovkov (1976). A Lindley process
is most naturally viewed as a reflected random walk, and we return to a more
systematic study of reflection allowing also for dependence in IX.2 (a preliminary
discussion of the continuous time case is in the next section).
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Lindley’s integral equation is of Wiener–Hopf type,; see further the Notes to
VIII.3.

The Laplace distribution in Example 6.1 has received considerable attention
outside of queueing theory; see Kotz et al. (2001).

7 A First Look at Reflected Lévy Processes

A natural way to define a random walk in continuous time is as a process
{St}t≥0 with S0 = 0 and with stationary independent increments. We will
return to a study of such processes, usually referred to as Lévy processes, in
IX.1. In this chapter, it will suffice to note that basic examples are a linear
deterministic drift (St = θt), standard Brownian motion and a compound
Poisson process, and independent sums of such processes. If the mean is
well defined, it must be linear, ESt = µt.

How to define a reflected version {Vt}t≥0 of {St} in continuous time is less
obvious than in discrete time. Also this topic is studied more systematically
later; see IX.2. The definition used there is the continuous–time analogue
of Proposition 6.3,

Vt = (V0 + St) ∨ max
0≤s≤t

(St − Ss) ; (7.1)

when x = V0 is of importance, we will write Vt = Vt(x). The following
results are obtained as special cases of results to be shown in IX.2 (for
the strong Markov property in Proposition 7.1, combine with I.8.3). Define
MT = sup0≤t≤T St, M = sup0≤t<∞ St.

Proposition 7.1 {Vt} is a strong Markov process.

Corollary 7.2 VT
D= (V0+ST )∧MT . If µ < 0, then M < ∞ and VT → M

in total variation.

Proposition 7.3 Define ω = inf {t > 0 : V0 + St ≤ 0}. Then also ω =
inf {t > 0 : Vt = 0}, and Vt = V0 + St for t < ω.

The content of this last result is that {Vt} evolves as {St} until the first
hitting time of 0, so that in examples the crux is to describe the behaviour
starting from V0 = 0 or, equivalently, in Markov state x = 0.

Example 7.4 Consider a compound Poisson process of the form St =
N

(β)
t −N

(δ)
t where

{
N

(β)
t

}
,
{
N

(δ)
t

}
are independent Poisson processes with

intensities β, resp. δ. The reflection then means that jumps of
{
N

(δ)
t

}
are ignored when Vt = 0. Thus, {Vt} is a Markov process on N where
the only nonzero off–diagonal intensities are λ(i, i − 1) = δ, i = 1, 2, . . .,
λ(i, i + 1) = β, i = 0, 1, . . ., and we recognize {Vt} as the M/M/1 queue
length process in Section 3a. �
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Example 7.5 Consider a compound Poisson process with only positive
jumps and a negative drift, St =

∑Nt

1 Ui − t where {Nt} is a Poisson
process with intensity β, and U1, U2, . . . are i.i.d. with common distribution
B (concentrated on (0,∞)) and independent of {Nt}. The reflection then
means that the downward drift at unit rate is cut off when Vt = 0. Thus,
{Vt} has the same upward jumps as {St} and a downward drift at unit rate
in states x > 0 so that we recognize {Vt} as the M/G/1 workload process.

�

In the next example as well as at other places in the book, we shall need:

Proposition 7.6 If {St} is standard Brownian motion, then the joint
distribution of St and Mt is given by

P(St ≤ x − y, Mt ≥ x) = P(St ≥ x + y) (7.2)

for x, y ≥ 0. Also Mt
D= |St|.

Proof. Define τ(x) = inf {t > 0 : St ≥ x}. Since Mt ≥ x is equivalent to
τ(x) ≤ t and is automatic if St ≥ x + y, we may rewrite (7.2) as

P(St ≤ x − y, τ(x) ≤ t) = P(St ≥ x + y, τ(x) ≤ t).

The truth of this follows by the reflection principle, which states that Brow-
nian motion, being symmetric (St

D= −St), is equally likely to proceed from
Sτ(x) = x to levels ≥ x + y or ≤ x− y within s = t− τ(x) time units (here
we have also used the strong Markov property). We then get

P(Mt ≥ x) = P(St ≤ x ≤ Mt) + P(St ≥ x) = P(St ≥ x) + P(St > x)
= 2P(St ≥ x) = P(|St| ≥ x),

using (7.2) in the second step. �

Example 7.7 Assume that {St} is Brownian motion with zero drift and
unit variance. Then

{
Vt(x)

}
is reflected standard Brownian motion starting

from x and has the same distribution as
{|x + St|

}
. In fact, since both

processes are strong Markov and evolve as {x + St} until the first hitting
time of 0, it suffices to show that the transition functions starting from
x = 0 are the same, i.e. that VT (0) D= |ST |. However, VT (0) D= MT by
Corollary 7.2 and MT

D= |ST | by Proposition 7.6. �

Problems

7.1 Show that the number of stages in M/Ek/1 is a reflected Lévy process.

Notes We return to reflected Lévy processes in IX.2. Aspects of the topic are

closely related to dams and storage processes; see Chapter XIV, Prabhu (1980)

and references therein.
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8 Time–Dependent Properties of M/M/1

8a. The Doubly Infinite Queue and Its Maximum
8b. The Transition Probabilities
8c. The Busy Period Distribution
8d. Transform Methods
8e. The Relaxation Time

8a The Doubly Infinite Queue and Its Maximum

The key to our more refined study of the M/M/1 queue length process
{Xt}t≥0 is the Lindley process representation in Example 7.4. Combining
with Corollary 7.2, we have:

Proposition 8.1 The distribution of the M/M/1 queue length Xt at time
t given X0 = i is that of max(i+St, Mt) where St = Bt−Dt is the difference
between two independent Poisson processes with intensities β and δ, and
Mt = sup0≤v≤t Sv.

The process {St}t≥0 is frequently denoted as the doubly infinite queue. It
models, for example, a queueing situation with taxis and passengers in front
of a railway station, with Bt, Dt denoting the number of passengers, resp.
taxis arriving before t. Thus if St > 0 at time t, there is a queue of length
St of passengers, whereas if St < 0 there is a queue of length −St of taxis.

Letting M = sup0≤t<∞ St, the following simple observation will be useful
in the following:

Proposition 8.2 Let ρ = β/δ. Then a.s.: (i) St → −∞, M < ∞ when
ρ < 1; (ii) St → +∞, M = ∞ when ρ > 1; (iii) limt→∞St = +∞,
limt→∞St = −∞ when ρ = 1.

Proof. Let Tn be the value of St just after the nth jump, T0 = 0. Then
{Tn} is a Bernoulli random walk with

p =
β

β + δ
=

ρ

1 + ρ
, q =

δ

β + δ
=

1
1 + ρ

.

Hence if ρ < 1, ET1 = p − q < 0 and by the LLN Tn/n
a.s.→ p − q, implying

Tn
a.s.→ −∞, St

a.s.→ −∞ and hence M < ∞. The case ρ > 1 is treated
similarly. The case ρ = 1 is slightly more intricate and can be treated
either by appealing to a general random walk result given in VIII.2.4 or by
a direct argument (see Problem 8.1). �

Despite the simple relation to the Poisson distribution, the explicit form
of the point probabilities of Sn is not elementary. Define the modified Bessel
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function of integer order n ∈ Z by

In(x) =
∞∑

k=0

(x/2)n+2k

k!(n + k)!
, I−n(x) = In(x), n ∈ N,

and let µ =
√

βδ, ρ = β/δ. The argument of In will be x = 2µt throughout,
so unless otherwise stated In just denotes In(2µt), and we shall let ιn =
e−(β+δ)tρn/2In, n ∈ Z, so that

ι−n = ρ−nιn, n ∈ Z. (8.1)

As a technical tool (a particular case of the change of measure technique
studied in Chapter XIII), we shall use a process with β, δ both replaced
by µ. This is denoted by P0 and has traffic intensity 1 and the same value
of µ, and we have

P(Bt = �, Dt = k) = e−(β+δ)t (βt)�

�!
(δt)k

k!
= e(2µ−β−δ)tρ(�−k)/2P0(Bt = �, Dt = k). (8.2)

Proposition 8.3 P(St = n) = e(2µ−β−δ)tρn/2P0(St = n) = ιn, n ∈ Z.

Proof. For n ≥ 0 we get

P(St = n) =
∞∑

k=0

P(Bt = n + k, Dt = k) = e(2µ−β−δ)tρn/2P0(St = n)

= e(2µ−β−δ)tρn/2
∞∑

k=0

e−µt (µt)n+k

(n + k)!
e−µt (µt)k

k!
= e−(β+δ)tρn/2In = ιn.

The case n ≤ 0 is treated similarly or by a symmetry argument (when
passing from St to −St, the arrival and service intensities are interchanged
and ρ changed to ρ−1). �

As a corollary, which will be used in formula manipulations in the
following, we note the identity

1 =
∞∑

n=−∞
ιn . (8.3)

In order to apply Proposition 8.1, we have more generally to find the
joint distribution of St and Mt:

Lemma 8.4 For n + m ≥ 0, m ≥ 0

P(St = n, Mt ≥ n + m) = ρ−mιn+2m, (8.4)
P(St = n, Mt = n + m) = ρ−m(ιn+2m − ρ−1ιn+2m+2). (8.5)
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Figure 8.1 The path - - - has the same Bt and Dt as ---- but a different Mt.

The path · · · is obtained by reflection after n + m has been reached.

Proof. Let F = {St = n, Mt ≥ n + m}, Gk = {Bt = n + k, Dt = k}. Then
conditionally upon Gk it depends solely on the order of the n+k increments
of St and the k decrements whether or not F occurs; cf. Fig. 8.1. But by
well–known properties of the Poisson process, this ordering is determined
by two independent samples of sizes n+ k, k from the uniform distribution
on [0, t]. Hence P(F |Gk) is independent of the intensities and in particular,
P(F |Gk) = P0(F |Gk) so that using (8.2) we get

PF =
∑

k≥0: n+k≥0

P(FGk) =
∑

k≥0: n+k≥0

PGk

P0Gk
P0(FGk)

= e(2µ−β−δ)tρn/2P0F.

Now since the P0–process is symmetric, it follows by the reflection principle
just as for Brownian motion in Proposition 7.6 (cf. also Fig. 8.1) that

P0F = P0(St = n + 2m) = e−2µtIn+2m.

Hence

PF = e(2µ−β−δ)tρn/2e−2µtIn+2m = ρ−mιn+2m

and (8.4) follows. Finally (8.5) is a consequence of (8.4). �

8b The Transition Probabilities

Proposition 8.1 and Lemma 8.4 solve in principle the problem of evaluating

pt
ij = P(Xt = j |X0 = i) = PF where F = {max(i + St, Mt) = j} ,

and it only remains to collect terms. Now F is the disjoint union of

F1 = {St = j − i ≤ Mt ≤ j} and F2 = {St < j − i, Mt = j}
But

PF1 =
i∑

m=0

P(St = j − i, Mt = j − i + m)
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=
i∑

m=0

ρ−m(ιj−i+2m − ρ−1ιj−i+2m+2)

= ιj−i − ρ−i−1ιj+i+2 = ιj−i − ρj+1ι−j−i−2,

PF2 =
j−i−1∑
n=−∞

ρn−j(ιn+2(j−n) − ρ−1ιn+2(j−n)+2)

= ρj

−j−i−1∑
n=−∞

ιn − ρj+1

−j−i−1∑
n=−∞

ιn−2

= ρ−i−1ιi+j+1 + ρj

−j−i−2∑
n=−∞

ιn − ρj+1

−j−i−3∑
n=−∞

ιn

where we have used (8.1) repeatedly. Adding these two expressions, we
obtain:

Theorem 8.5 In the M/M/1 queue with 0 < ρ < ∞, pt
ij = P(Xt =

j |X0 = i) is given by

ιj−i + ρ−i−1ιi+j+1 + (1 − ρ)ρj

−j−i−2∑
n=−∞

ιn. (8.6)

Analytical manipulations or alternative derivations provide a number of
alternative expressions for pt

ij , for example

pt
ij = (1 − ρ)ρj + ιj−i − ρ(j−i)/2J1 (8.7)

= (1 − ρ)ρjI(ρ < 1) + J2 (8.8)

where

J1 =
∫ ∞

t

e−(β+δ)s
[
Ii+j(2µs) − 2ρ1/2Ii+j+1(2µs) + βIi+j+2(2µs)

]
ds,

J2 =
2e−(β+δ)tρ(j−i)/2

π

∫ π

0

e2µt cos θ

1 − 2ρ1/2 cos θ + ρ
gi(θ)gj(θ) dθ

with gi(θ) = sin iθ − ρ1/2 sin(i + 1)θ (see Cohen, 1982, p. 178, for (8.7) and
Takács, 1962, p. 23, for (8.8)). That trigonometric functions are involved
may be understood from the standard analytical identity

In(t) =
1
π

∫ π

0

et cos θ cosnθ dθ.

The message of these formulas, as well as those for the busy–period
distribution to be derived shortly, is perhaps not so much their particular
form, but rather that they are extremely complicated. The M/M/1 queue
being the very simplest queueing system, this probably suggests that time–
dependent explicit solutions are in general not possible and indeed this is
the case. Even the numerical evaluation on a computer requires some care
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and the most feasible approach may be to apply numerical integration of
formulas such as (8.8), thereby avoiding manipulation of infinite sums or
integrals of Bessel functions of high order.

8c The Busy Period Distribution

We first prove:

Proposition 8.6 The first passage time τ = inf {t > 0 : St = 1} of the
doubly infinite queue from 0 to 1 has density

f(t) = βe−(β+δ)t[I0(2µt) − I2(2µt)] =
ρ1/2

t
e−(β+δ)tI1(2µt). (8.9)

Note that if ρ < 1, then by Proposition 8.2 St drifts to −∞ and hence
(8.9) is defective,

∫
f = P(τ < ∞) < 1. More precisely, from P(τ < ∞) =

P(M ≥ 1) = Pe(Xt ≥ 1) it follows that
∫
f = ρ.

Proof. Using (8.5) we get

P(τ > t) = P(Mt = 0) =
0∑

n=−∞
P(St = n, Mt = 0)

=
0∑

n=−∞
ρn(ι−n − ρ−1ι2−n) = C0(t) − ρC2(t)

where

CN (t) =
∞∑

n=N

e−(β+δ)tρ−n/2In(2µt).

Hence f(t) = ρC ′
2(t) − C ′

0(t) and to evaluate the derivatives, we need the
formulas

I ′0(t) = I1(t), I ′n(t) =
1
2
[In−1(t) + In+1(t)], n = 1, 2, . . . , (8.10)

In−1(t) − In+1(t) =
2n

t
In(t), n = 1, 2, . . . , (8.11)

which may easily be seen from the power series definition of In. Using
(8.10), we get for N ≥ 1 that

C′
N (t) = −(β + δ)CN (t) +

∞∑
n=N

e−(β+δ)tρ−n/2µ(In−1 + In+1)

= −(β + δ)CN (t) + δCN−1(t) + βCN+1(t)
= e−(β+δ)t[δρ−(N−1)/2IN−1 − βρ−N/2IN ].

Hence

f(t) = ρC ′
2(t) − C ′

1(t) −
d
dt

[
e−(β+δ)tI0(2µt)

]
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= e−(β+δ)t
[
δρ1/2I1 − βI2 − δI0 + βρ−1/2I1 + (β + δ)I0 − 2µI1

]
= e−(β+δ)tβ[I0 − I2],

and combining with (8.11), the proof is complete. �

Figure 8.2

We understand the busy period G of the queue to be the time from when
a customer enters an empty system until the system is empty again. The
busy period is followed by an interval of length H where the system is
empty, the idle period, and G + H constitute the busy cycle; see Fig. 8.2
(the notation G, H is used only at this place). In the M/M/1 case, it is
clear that G and H are independent and H exponentially distributed with
intensity β. Furthermore, we may identify G with the time of passage of
the doubly infinite queue from 0 to −1. The distribution of this follows
by a symmetry argument since we just have to interchange β and δ in
Proposition 8.6, and thus:

Corollary 8.7 The busy–period distribution of the M/M/1 queue is given
by the density

g(t) = δe−(β+δ)t[I0(2µt) − I2(2µt)] =
ρ−1/2

t
e−(β+δ)tI1(2µt). (8.12)

As above, g is defective for ρ > 1. Moments will be derived shortly.

8d Transform Methods

In some cases, where quantities such as the pt
ij cannot be derived in closed

analytical form, it may still be possible to find explicit expressions for
transforms or double (bivariate) transforms. As an example, we quote for
the present M/M/1 case the formula (Problem IX.3.4 or Prabhu, 1965,
Chapter 1.2a)∫ ∞

0

e−θt
∞∑

j=0

sjpt
ij dt =

si+1 − (1 − s)ξi+1/(1 − ξ)
β(s − ξ)(η − s)

, (8.13)

where ξ = ξ(θ), η = η(θ) are the two roots of

βz2 − (β + δ + θ)z + δ = 0, (8.14)
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with ξ ≤ η, i.e.

ξ =
β + δ + θ − R(θ)

2β
, η =

β + δ + θ + R(θ)
2β

, (8.15)

where R(θ) =
√

(β + δ + θ)2 − 4βδ. Classically this is proved, for exam-
ple, by careful manipulation of the differential equations for the pt

ij (but
see IX.3 for a more elegant approach). Though more generally applicable,
this method has serious drawbacks, however. In more complex cases, the
expressions are even less transparent than (8.13) and their derivation may
require much ingenuity. Also, even in the present case, the inversion of
(8.13) is not easy no matter whether the purpose is to derive formulas like
(8.6)–(8.8) or numerical computation.

We shall consider only one example where the transform calculations
work out in a quite elegant fashion, namely the distribution of the busy
period G and its moments. We first note that since {Bt}, {Dt} are (inde-
pendent) Lévy processes with the so–called Lévy exponents (see further
IX.1) log EeαB1 , log EeαD1 given by β(eα − 1), resp. δ(eα − 1), then also
{St} = {Bt − Dt} is a Lévy process with Lévy exponent

κ(α) = log EeαS1 = log
[
EeαB1 · Ee−αD1

]
= β(eα−1)+δ(e−α−1), (8.16)

and we have:

Lemma 8.8 For any α, {Yt} =
{
eαSt−tκ(α)

}
is a continuous–time mar-

tingale, and we have for ρ ≤ 1 and κ′(α) ≤ 0 (i.e. α ≤ − log ρ/2)
that

1 = EY0 = EYG = e−αEe−Gκ(α) (8.17)

Proof. The martingale property follows from

E
[
exp {αSt+v − (t + v)κ(α)} ∣∣ (Su)0≤u≤t

]
= exp {αSt − tκ(α)}E

[
exp {α(St+v − St) − vκ(α)} ∣∣ (Su)0≤u≤t

]
= exp {αSt − tκ(α)}E exp {αSv − vκ(α)} = exp {αSt − tκ(α)} .

Now G, being the first passage time from 0 to −1 of {St}, is clearly a
stopping time and the assumption ρ ≤ 1 ensures G < ∞ a.s. Since clearly
Y0 = 1 and SG = −1, the formula (8.17) thus follows by verifying the
conditions of a suitable version of the optional stopping theorem given in
XIII.4.2(b) (the discussion there also explains why the condition κ′(α) ≤ 0
is involved). �

Remark 8.9 It is clear that the proof of Lemma 8.8 shows that {Yt} is
a martingale for any Lévy process. This martingale is known as the Wald
martingale and will be used at a number of later occasions. Its analogue
for a discrete time random walk {Sn} is Yn = eαSn/F̂ [α]n where F̂ [α] =
EeαS1 . �
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Proposition 8.10 For ρ < 1, the Laplace transform of the M/M/1 busy
period G is given by

Ee−θG = ξ(θ) =
1
2β

(
β + δ + θ −

√
(β + δ + θ)2 − 4βδ

)
(8.18)

for θ ≥ 0, cf. (8.15). In particular, the mean and variance are given by

EG = −ξ′(0) =
1

δ(1 − ρ)
, Var G = ξ′′(0)− ξ′(0)2 =

1 + ρ

δ2(1 − ρ)3
. (8.19)

Proof. Let ξ̃(θ) = Ee−θG. It follows readily from (8.16) that κ(α) decreases
monotonically from ∞ to 0 on (−∞, 0]. Hence for θ ≥ 0 we may find α ≤ 0
such that κ(α) = θ, and (8.17) then yields ξ̃(θ) = eα. Now letting ξ̃ = eα

in (8.16) we get θ = β(ξ̃ − 1) + δ(ξ̃−1 − 1) which after some algebra shows
that ξ̃ solves the quadratic (8.14). But in (8.15) we have η(θ) > 1, θ > 0,
hence ξ̃ = ξ since ξ̃ < 1. Finally (8.19) follows by some more algebra from
R(0) = δ − β, R′(θ) = (β + δ + θ)/R(θ) and

ξ′(θ) =
1
2β

(
1 − β + δ + θ

R(θ)

)
, ξ′′(θ) =

(β + δ + θ)2 − R(θ)2

2βR(θ)3
. �

Distributional properties of the busy cycle follow easily as a corollary,
since we just have to convolve the busy–period distribution with the dis-
tribution of the idle period, which is exponential with intensity β. For
example, the mean busy cycle is

EG + EH =
1

δ(1 − ρ)
+

1
β

=
1

β(1 − ρ)
.

8e The Relaxation Time

Suppose ρ < 1. We shall consider the question on the rate of convergence
of pt

ij , as given by the formulas of Section 8b, to its limiting value (1−ρ)ρj .
To this end, we need the asymptotic properties of the Bessel functions:

Lemma 8.11 As t → ∞,

In(t) =
et

√
2π

{
t−1/2 − t−3/2 4n2 − 1

8

}
+ n4t−3/2eto(1) ,

where the o(1) terms here and in the proof are uniform in n.

Proof. Letting β = δ = µ = 1/2 for the moment, we shall appeal to
the interpretation In(t) = etP(St = n), cf. Proposition 8.3, and apply
the higher–order expansion in the local CLT for lattice distributions (see
Bhattacharya and Rao, 1976, p. 231, or Gnedenko and Kolmogorov, 1954,
p. 241; the result is stated there for discrete time random walks but is also
valid in continuous time as may be seen by the same proof or by the method
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of discrete skeletons; cf. A11). To this end we need the cumulants κr of S1,
i.e. according to (8.16)

κr = κ(r)(0) =
dr

dαr

1
2
(eα + e−α)

∣∣∣
α=0

=
{

0 r uneven
1 r even .

Hence if ϕr denotes the rth derivative of the standard normal density
evaluated at yn = n/

√
t, we have

P(St = n)

=
1√
t

{
ϕ0 − 1

6
√

t

κ3

κ
3/2
2

ϕ3 +
1

24t

[
κ4

κ2
2

ϕ4 +
κ2

3

3κ3
2

ϕ6

]}
+ t−3/2o(1)

=
1√
t

{
ϕ0 +

ϕ4

24t

}
+ t−3/2o(1)

=
ϕ(yn)√

t

{
1 +

y4
n − 6y2

n + 3
24t

}
+ t−3/2o(1)

=
1 − n2/2t + n4t−2o(1)√

2πt

{
1 +

1
8t

+ n4t−2o(1)
}

+ t−3/2o(1)

=
1√
2πt

(
1 − 4n2 − 1

8t

)
+ n4t−3/2o(1).

�

We can now evaluate the desired rate of convergence. Using (8.6), (8.3)
and Lemma 8.11 we get

(1 − ρ)ρj − pt
ij = (1 − ρ)ρj

∞∑
n=−j−i−1

ιn − ιj−i − ρ−i−1ιi+j+1

= e−(β+δ)t

{
(1 − ρ)ρj

∞∑
n=−j−i−1

ρn/2In

− ρ(j−i)/2Ij−i − ρ(j−i+1)/2Ii+j+1

}

=
e(2µ−β−δ)t

√
2π

{
C1(i, j) − ρ(j−i)/2 − ρ(j−i+1)/2

(2µt)1/2
+

C2(i, j)
(2µt)3/2

}
+ o(t−3/2),

where

C1(i, j) = (1 − ρ)ρj
∞∑

n=−j−i−1

ρn/2 = (1 − ρ)ρj ρ−(j+i+1)/2

1 − ρ1/2

= ρ(j−i)/2 + ρ(j−i+1)/2,

C2(i, j) = (1 − ρ)ρj
∞∑

n=−j−i−1

ρn/2 4n2 − 1
8

− ρ(j−i)/2 4(j − i)2 − 1
8

− ρ(j−i−1)/2 4(i + j + 1)2 − 1
8



8. Time–Dependent Properties of M/M/1 107

(C2 can be reduced, but we shall not carry out the tedious algebra). Hence
the t−1/2 term vanishes, and we have proved:

Theorem 8.12 If ρ < 1, then

pt
ij = (1 − ρ)ρj +

e−rt

4
√

π(βδ)3/2
t−3/2C2(i, j) + o

(
e−rt

t3/2

)

as t → ∞, where r = β + δ − 2µ = (
√

δ − √
β)2.

It is seen that the remainder term decreases essentially exponentially
at rate r no matter i, j, and for this reason r−1 (or some multiple) is
frequently denoted as the relaxation time of the system, measuring in some
appropriate sense the time needed for the initial condition X0 = i to become
unimportant and the system to relax in the steady state.

Problems

8.1 Show that if ρ = 1 in Proposition 8.2, then {Tn} is a recurrent Markov

chain by (a) explicit calculations of
∑∞

0 p
(2n)
00 , (b) test function techniques and

Ei|T1| = |i|, i �= 0.
8.2 Find asymptotic expressions for the tails P(G > t) and P(G + H > t) of the
busy period, resp. the busy cycle, in M/M/1.
8.3 Evaluate the Laplace transform (or generating function) of the number N
of customers served in a busy period. Check the formula by EN = δEG (and
explain why this is true!).
8.4 Consider M/M/1 with ρ ≥ 1 and let St =

∑Nt
1 Un − t with {Nt} the arrival

process and U1, U2, . . . the service times, and define τ (u) = inf {t > 0 : St > u},
B(u) = Sτ(u) − u. Evaluate the Lévy exponent κ(α) = log EeαS1. Explain heuris-
tically that B(u) is independent of τ (u) with P(B(u) > x) = e−δx and that
E exp

{
αSτ(u) − τ (u)κ(α)

}
= 1. Evaluate thereby the Laplace transform of τ (u).

How is τ (u) related to time–dependent properties of the workload?
8.5 Let τ = inf {t > 0 : |St| = 2} with {St} the doubly infinite queue. Evaluate
in the symmetric case β = δ the Laplace transform of τ by a similar method as
used for the busy period, and check with Proposition 4.1.

Notes What we have called time–dependent properties are often referred to

in the literature as transient properties (not a good terminology!). Textbook

treatments of the topic for queues in general and for M/M/1 in particular can

be found in (among many) Takács (1962), Cox and Smith (1961), Prabhu (1965)

and Cohen (1982), whereas a detailed study of aspects of M/M/1 is in Abate

and Whitt (1988). Cohen’s book is also a monumental treatise of the general area

of transform methods in queueing theory. For Bessel functions, see for example

Abramowitz and Stegun (1972).
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9 Waiting Times and Queue Disciplines in M/M/1

1a. Waiting Times and Workload in the FIFO Case
1b. The LIFO Case
1c. The SIRO Case
1d. The PS Sojourn Time

So far queue length processes have received considerably more attention
than the waiting times. The main reason has simply been that as discrete
state space processes they are easier to handle by Markovian methods than
the continuous waiting times, but we have now actually collected enough
results to be able to say something about waiting times. We shall concen-
trate on M/M/1 in the steady state and the effects of changing the queue
discipline.

9a Waiting Times and Workload in the FIFO Case

Theorem 9.1 Consider the M/M/1 queue in the steady state. Then the
waiting time and the workload have a common distribution that is a mixture
with weights 1 − ρ, ρ of an atom at 0 and an exponential distribution with
intensity γ = δ − β,

Pe(Wn ≤ y) = Pe(Vt ≤ y) = 1 − ρ + ρ(1 − e−γy) = 1 − ρe−γy. (9.1)

Before embarking into the proof, we stress that when talking about “the
M/M/1 queue in the steady state” we must distinguish between time and
customer stationarity. More precisely, a time–stationary version {V ∗

t }t≥0

of the workload process is not customer–stationary since, for example, the
first customer to arrive has a waiting time with distribution different from
(9.1). Indeed, his waiting time is V ∗

T1− where T1 is the first arrival time, and
obviously V ∗

T1− = (V ∗
0 − T1)+ is effectively smaller than the representative

V ∗
0 for (9.1). In different terms, the particular customer is not “sampled at

random.” We return to such phenomena in V.3 and VII.6.

Proof. The workload at time t is 0 if the system is empty which occurs w.p.
1 − ρ in the steady state. If Xt = n > 0 customers are being served, the
workload is the residual service time Y1 of the customer in service plus the
service times Y2, . . . , Yn of the ones waiting in line. But by the memoryless
property of the exponential distribution, Y1 is exponential with intensity
δ and independent of Y2, . . . , Yn. Hence Y1, . . . , Yn are i.i.d. exponentials
with intensity δ given Xt = n and thus

Pe(Vt ≤ y) = 1 − ρ +
∞∑

n=1

(1 − ρ)ρnP(Y1 + · · · + Yn ≤ y)

which reduces to the r.h.s. of (9.1); cf. II.3.2.
We shall give three different proofs that also Pe(Wn ≤ y) is as in (9.1)

(some routine calculations are omitted in (a), (b)):
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(a) Apply the uniqueness of the solution to Lindley’s integral equation (6.6)
and show directly that if F is doubly exponential as in Example 6.1, then
the r.h.s. of (9.1) is a solution (cf. also Problem 6.4).

(b) Letting M(k) = T1 + · · · + Tk−1 be the arrival time of customer k, we
have Wk = VM(k)−. Hence it suffices to show that the limiting stationary
probabilities for the Markov chain

{
XM(k)−

}
are the same as the ones

πn = (1 − ρ)ρn for {Xt} since we may then condition upon XM(k)− and
proceed as above. But

{
XM(k)−

}
is the Markov chain studied in Example

6.2. Inserting A(dt) = βe−βt dt yields qk = ρ/(1 + ρ)k+1, and it is then
immediately checked that π is stationary for the transition matrix (6.4)
(cf. Problem 6.5).

(c) We use the maximum representations of r.v.’s W , V having the steady–
state distributions, i.e.

W
D= max

{
0, U0 − T0, U0 + U1 − T0 − T1, . . .

}
, V

D= max
0≤t<∞

{
S↑

t − t
}

where S↑
t =

∑Nt

1 Uk, cf. Corollaries 6.5 and 7.2 and Examples 6.1 and
7.5. Then

{
S↑

t − t
}

increases only at times M(1), M(2), . . . so that the
maximum is attained either at time 0 or at some M(k). Now just note that
by sample path insection, S↑

M(k) −M(k) =
∑k−1

0 (Un −Tn) so that the two
maxima above are equal. �

In connection with (b), one may feel on intuitive grounds that it can
be inferred from the Poisson arrivals alone and without calculations that
the steady–state distribution of

{
XM(k)−

}
is the same as that of {Xt},

the reason being heuristically that the state of {Xt} seen by the arriving
customers is “chosen at random.” Such reasoning is obviously important
for intuition but requires some tightening which will be done in VII.6 in
the framework of PASTA (Poisson Arrivals See Time Averages).

Note also that the proof of (c) immediately yields:

Corollary 9.2 The steady–state workload and the steady–state waiting
time in the FIFO M/G/1 queue have the same distribution.

9b The LIFO Case

The basic observation is that passing from FIFO to (nonpreemptive) LIFO
discipline neither changes the distribution of the queue length at a fixed
time t nor prior to an arrival. Hence exactly as above, we may evaluate
Pe(Wk ≤ y) by conditioning upon the events

{
XM(k)− = n

}
having prob-

abilities (1− ρ)ρn. Now clearly Wk = 0 if n = 0. If n > 0, customer k must
wait for the server to finish the customer presently in front of him and to
clear customers arriving later than customer k. Thus his service can start
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at time

M(k) + W (k) = inf
{
t ≥ M(k) : Xt = n − 1

}
.

But this shows that independently of n ≥ 1 Wk is distributed as the time
of first passage of the doubly infinite queue from 0 to −1, or equivalently
as the busy period; cf. Section 8c. Hence by Corollary 8.7:

Corollary 9.3 Consider the nonpreemptive LIFO M/M/1 queue in the
steady state. Then

Pe(Wn ≤ y) = 1 − ρ + ρ1/2

∫ y

0

1
t
e−(β+δ)tI1(2µt) dt. (9.2)

9c The SIRO Case

We say that a customer is of type n if he meets n other customers in the
system upon arrival (this occurs in the steady state w.p. πn = (1 − ρ)ρn,
cf. proof (b) of Theorem 9.1; obviously the queue length has the same
distribution for both the FIFO and SIRO cases).

Considering the steady–state SIRO case, let Hn(y) denote the probability
that the waiting time of a customer of type n strictly exceeeds y ≥ 0. Then

Pe(Wn > y) =
∞∑

n=0

πnHn(y) = (1 − ρ)
∞∑

n=0

ρnHn(y) (9.3)

(here obviously H0(y) = 0, y ≥ 0).
Consider a n–type customer (n ≥ 1) arriving at time 0 and let u be the

time of first exit from state n. If u is a departure time, then the customer
is selected for service w.p. 1/n. That is, he continues to wait w.p. (n−1)/n
and behaves then as a type n− 1 customer who has already waited u time
units. It follows that

Hn(y + t) = e−(β+δ)tHn(y)

+
∫ t

0

{
βHn+1(y + t − u) + δHn−1(y + t − u)

n − 1
n

}
e−(β+δ)u du.

Hence up to o(h) terms

Hn(y)+H ′
n(y)h =

(
1− (β + δ)h

)
Hn(y)+βHn+1(y)h+ δHn−1(y)

n − 1
n

h,

H ′
n(y) = δHn−1(y)

n − 1
n

− (β + δ)Hn(y) + βHn+1(y) (9.4)

It follows by induction from (9.4) that Hn is C∞ on [0,∞) with
∣∣H(k)

n (y)
∣∣

≤ (β + δ)k. This is sufficient to ensure the validity of the series expansions

Hn(y) =
∞∑

k=0

h(k)
n

yk

k!
, Pe(Wn > y) =

∞∑
k=0

h(k) yk

k!
, (9.5)
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where h(k) =
∑∞

0 πnh
(k)
n and

h(k)
n = H(k)

n (0) = δh
(k−1)
n−1

n − 1
n

− (β + δ)h(k−1)
n + βh

(k−1)
n+1 , (9.6)

h
(k)
0 = 0, h(0)

n = 1 (9.7)

(note for (9.7) that H0(y) = 0 and Hn(0) = 1 for n ≥ 1). In summary:

Theorem 9.4 The steady–state M/M/1 SIRO waiting time distribution
is given by (9.5) with the h

(k)
n recursively determined by (9.6) and (9.7).

Notes Flatto (1997) gave the complete form of the SIRO waiting time
distribution:

Pe(Wn > y) =
2(1 − ρ)

ρ

∫ π

0

e(2ξ(θ)−θ) cot θ−βη(θ)y

(eπ cot θ + 1)η(θ)2
sin θ dθ (9.8)

where ξ(θ) = arctan
(
sin θ/[cos θ − 1/

√
ρ]
)
, η(θ) = 1 − 2 cos θ/

√
ρ + 1/ρ. In

particular, this implies the intriguing asymptotics

Pe(Wn > y) ∼ c1(βy)5/6e−c2βy−c3(βy)1/3
, y → ∞, (9.9)

where c2 = (1/
√

ρ − 1)2, c2 = 3(π/2)2/3ρ−1/6,

c1 = 22/33−1/2π5/6ρ17/12 1 +
√

ρ

(1 −√
ρ)3

e(1+
√

ρ)/(1−√
ρ).

9d The PS Sojourn Time

In PS, the waiting time cannot be given a similar sense as for FIFO, LIFO
and SIRO (or at least it is then always 0) since a customer k starts service
as soon as he arrives (though in general at a reduced rate). Instead we shall
be interested in his sojourn time W ∗

k . We always have W ∗
k ≥ Uk where Uk

is the service time, and so Wk = W ∗
k −Uk may be interpreted as the delay

caused by the possible presence of other customers.
A type n customer is defined as for SIRO and we let Kn(y) denote the

steady–state probability that his sojourn time strictly exceeds y ≥ 0. A
service event within h time units after arrival of a type n customer will
terminate the sojourn of any particular customer w.p. 1/(n + 1) + o(h).
Letting K−1(y) = 0, it follows that up to o(h) terms

Kn(y + h) = (1 − (β + δ)h)Kn(y) + βKn+1(y)h + δKn−1(y)
n

n + 1
h,

K ′
n(y) = δKn−1(y)

n

n + 1
− (β + δ)Kn(y) + βKn+1(y). (9.10)

This means that H̃0 = K−1, H̃1 = K0, H̃2 = K1 satisfy exactly the same
set of equations (9.4), (9.6), (9.7) as H0, H1, H2, . . . in the SIRO case. The
solution being unique, we get:
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Theorem 9.5 The distribution of the steady–state M/M/1 PS sojourn
time W ∗

k is given by

Pe(W ∗
k > y) =

∞∑
n=0

πnKn(y) =
∞∑

n=0

πnHn+1(y)

= (1 − ρ)
∞∑

k=0

yk

k!

∞∑
n=0

ρnh
(k)
n+1.

In particular, ρPe(W ∗
k > y) = Pe(W SIRO

k > y) where W SIRO
k is the SIRO

waiting time from Section 9c.

It is also of interest to ask for the conditional distribution of the sojourn
time W ∗

k given the service time Uk. For example in a time–sharing com-
puter, Uk represents the size of the job (ideal execution time) and W ∗

k the
actual execution time. At the intutitive level, the following result states
that PS (and therefore presumably also RR with a small quantum) is fair
in the sense that the average sojourn time is proportionally dependent on
Uk:

Theorem 9.6 Ee[W ∗
k |Uk] = Uk/(1 − ρ).

Proof. We let mn(u) denote the conditional expectation of the sojourn time
of a type n customer with service time u and write m(u) =

∑∞
0 πnmn(u)

so that we have to show m(u) = u/(1 − ρ). Now if no services or arrivals
occur within t time units after the arrival of a type n customer with service
time u, he will have attained t/(n + 1) units of service and hence behave
like a type n customer with service time u − t/(n + 1). Also the sojourn
time has increased by t unless the customer has been served. For small t,
this service event occurs with intensity δ/(n + 1) and other service events
with intensity nδ/(n + 1). Letting t = h, we get up to o(h) terms that

mn(u) = h
(
1 − δ

1
n + 1

h
)

+ mn

(
u − h

n + 1

){
1 − βh − δ

n

n + 1
h
}

+ βmn+1(u)h + δmn−1(u)
n

n + 1
h

= h + mn(u) − m′
n(u)

h

n + 1
− βmn(u)h − δmn(u)

n

n + 1
h

+ βmn+1(u)h + δmn−1(u)
n

n + 1
h,

m′
n = n+1 −β(n+1)mn− nδmn+β(n+1)mn+1+ δnmn−1, (9.11)

m′ =
∞∑

n=0

πnm′
n

=
∞∑

n=0

(n + 1)πn − β

∞∑
n=0

(n + 1)πnmn − δ

∞∑
n=0

nπnmn
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+ β

∞∑
n=1

nπn−1mn + δ

∞∑
n=0

(n + 1)πn+1mn. (9.12)

Using πn+1 = ρπn,
∑

nπn = ρ/(1 − ρ), this reduces to

ρ

1 − ρ
+ 1 − β

∞∑
n=0

nπnmn − βm − δ

∞∑
n=0

nπnmn

+
β

ρ

∞∑
n=0

nπnmn + ρδ
∞∑

n=0

nπnmn + ρδm

=
1

1 − ρ
+

∞∑
n=0

nπnmn

{
−β − δ +

β

ρ
+ ρδ

}
+ m {−β + ρδ} .

But since ρ = β/δ, the two {·} are 0. Thus m′(u) = 1/(1 − ρ) and since
clearly m(0) = 0, we have m(u) = u/(1 − ρ) as desired. �

It should be noted that some technical details (not coming up in the proof
of Theorem 9.5) have been omitted. For example, to differentiate under the
sum sign in (9.12) we need some bound on the m′

n (or equivalently the mn;
cf. (9.11)).

Notes The proof of Theorem 9.6 carries over also to find the Laplace trans-
form of W ∗

n given Un = u. For references to this and other early work on PS,
see the surveys by Yashkov (1987, 1992) (where also a relation to branching pro-
cesses is discussed). For more on the connection to SIRO, see Borst et al. (2003).
Other recent contributions include Zwart and Boxma (2000) and Jelenkovic and
Momcilovic (2003) who derive heavy–tailed asymptotics.

Generalized processor sharing is a queueing discipline for r > 1 customer classes

where class i receives service at rate φi (φ1+· · ·+φr = 1) and the service discipline

within each class is FIFO. See, for example, Dupuis and Ramanan (1998) and

Jelenkovic and Momcilovic (2002).



IV
Queueing Networks and Insensitivity

1 Poisson Departure Processes and
Series of Queues

We start by noting:

Proposition 1.1 Any ergodic birth–death process is time reversible.

Proof. We must check the conditions πiλ(i, j) = πjλ(j, i) of detailed balance
in II.5.3. If |i − j| > 1, then by the skip–free property both sides are zero
so we can suppose |i − j| = 1, say i = n, j = n + 1, where the condition
reduces to πnβn = πn+1δn+1 which is clear from III.(2.4). It is instructive
to indicate how alternatively the proof can be carried out without first
computing π: in equilibrium, the flow from {0, . . . , n} to {n, n + 1, . . .}
must balance the flow the other way. But the only possible transition the
first way is from n to n+1 so the flow is πnβn. Similarly, the flow the other
way is πn+1δn+1. �

Consider now a doubly infinite stationary version {Xt}−∞<t<∞ and
define X̃t = X−t− = lims↑−t Xs. Then a departure for {Xt} at time s

corresponds to an arrival for
{
X̃t

}
at time −s. Considering the case of

Poisson arrivals, βn = β, the collection of such instants −s form a Poisson
process with intensity β by reversibility. Hence the instants s do so too,
and we have proved:
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Corollary 1.2 The departure process of an ergodic birth–death queue with
Poisson arrivals with intensity β is itself a Poisson process with intensity
β.

This is the first in a series of results in this and the next section that may
be argued to be contrary to intuition or at least surprising. A discussion of
this is deferred to Section 2d.

A main application of the Poisson departure property is to series of K
queues, where customers enter queue 1 according to a Poisson process with
intensity β, after being served proceed to queue 2, from there to queue 3
and so on (the system with K = 2 is called a tandem queue). Suppose
that queue k has exponential services with intensity δ

(k)
n at queue length

n. Then queue 1 is a birth–death queue with Poisson arrivals, hence has a
Poisson departure process in equilibrium. But this process is just the arrival
process to queue 2 so that this is a birth–death queue with Poisson arrivals
which hence delivers Poisson input to queue 3 and so on. It follows that in
equilibrium the number of customers at queue k and their waiting times
have the same characteristics as if the queue was considered in isolation
and subject to Poisson arrivals. We generalize below this reasoning to the
simultaneous behaviour of the queues, but first we shall give one more of
the classical examples of a Poisson departure process.

Theorem 1.3 The stationary M/G/∞ queue {Xt}−∞<t<∞ with doubly
infinite time has a Poisson departure process.

Proof. The departure process M has epochs {σ(n) + Un}n∈Z where
{σ(n)}n∈Z are the epochs of of the arrival process N and {U0, U±1, , U±2, . . .}
the sequence of service times. It is a general fact about the Poisson process
that such an i.i.d. translation is Poisson with the same intensity (say β)
as N but here is a self–contained proof. The idea is to observe that this is
trivial if the Un are discrete, and next to apply a discrete approximation:
Suppose first that the Un can assume only the values 0,±δ,±2δ, . . . and let
pk = P(Un = kδ), k ∈ Z. Then, by standard properties of Poisson thinning,
the σ(n) with Un = kδ form a Poisson process N (k) with intensity βpk,
and the N (k) are independent. Letting M (k) denote N (k) translated by kδ,
M (k) is Poisson with intensity βpk and the M (k) are independent. Hence
M =

∑
k∈Z M (k) is Poisson with intensity β as asserted.

To deal with the general case, let U
(δ)
n = kδ, kδ ≤ Un < (k + 1)δ, and

let Mδ have epochs
{
σ(n) + U

(δ)
n

}
n∈Z

. If I1, . . . , IR are disjoint intervals,

then Mδ(Ir)
a.s.→ M(Ir) for all r as δ ↓ 0 since U

(δ)
n

a.s.→ Un and the probabil-
ity of an epoch of M at a boundary point of Ir is zero. Hence {Mδ(Ir)}R

1
D→ {M(Ir)}R

1 . But by what has just been proved, Mδ is Poisson with in-
tensity β. Hence the joint distribution of the M(Ir) is the common joint
distribution of the Mδ(Ir) so that M

D= Mδ. �
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Preparing for a more thorough study of series of queues, we start by
noting:

Proposition 1.4 Consider the equilibrium version {Xt}−∞<t<∞ of an
ergodic birth–death process with Poisson arrivals at rate β. Then the
departure process prior to t is Poisson at rate β and independent of Xt.

Proof. It only remains to check the independence. The argument is a slight
variant of the proof of Corollary 1.2: the departure process prior to t is the
arrival process after −t of the time–reversed process and hence independent
of its queue length X̃−t which a.s. coincides with Xt. �

Corollary 1.5 Consider a series of K queues in series where the arrivals
to the first are Poisson at rate β and the K servers work independently,
with rate δ

(k)
n for server k at queue length n. Suppose that for each k the

birth–death queue with βn = β, δn = δ
(k)
n is ergodic, and let π(k) denote

its stationary distribution, π
(k)
n = S−1

k βn/
(
δ
(k)
1 · · · δ(k)

n

)
. Then the series

system is also ergodic and the steady state is described by the queue lengths
X

(1)
t , . . . , X

(K)
t being independent with X

(k)
t governed by π(k),

Pe

(
X

(1)
t = n(1), . . . , X(K)

t = n(K)
)

= π
(1)
n(1) . . . π

(K)
n(K). (1.1)

Proof. Letting π = π(1) ⊗ · · · ⊗ π(K) be the distribution (1.1), we pro-
ceed by showing πP t = π for any fixed t (an alternative proof involving
πΛ = 0 is in Problem 1.2). Suppose thus that the X

(k)
0 has been assigned

initial joint distribution π and let N (k) be the departure process from
queue k in [0, t]. The conclusion will follow if we can show that for each
k, X

(1)
t , . . . , X

(k)
t , N (k) are independent, governed by π(1), . . . ,π(K) and

the distribution of the Poisson process respectively. The case k = 1 is just
Proposition 1.4. Suppose the assertion holds for k. Both X

(k+1)
t and N (k+1)

depend on N (k), X
(k+1)
0 and the action of server k + 1 only, hence the set(

X
(k+1)
t , N (k+1)

)
is independent of X

(1)
t , . . . , X

(k)
t , N (k). But since N (k) is

Poisson and X
(k)
0 governed by π(k), it follows by applying Proposition 1.4

once more that the joint distribution of X
(k+1)
t , N (k+1) is as asserted. �

The simplest case is of course that of M/M/1 queues in series, δ(k)
n = δ(k).

Then ρk = β/δ(k) is the traffic intensity at queue k and

πn(1)...n(K) =
K∏

k=1

π
(k)
n(k) =

K∏
k=1

(1 − ρk)ρn(k)
k .

Problems

1.1 Consider the case K = 3, but assume that customers leaving queue 1 do not
necessarily go to 2 but choose between 2 and 3 with probabilities p, resp. q =
1− p. Show that if queue 1 has Poisson input and is ergodic, then in equilibrium
the input to 2, 3 are independent Poisson processes. Formulate the criterion for
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ergodicity of the whole system and show that the stationary distribution is of
product form as in (1.1).

1.2 Check that (1.1) satisfies πΛ = 0 and that {(X(1)
t , . . . , X

(k)
t )} is

nonexplosive.

Notes References and discussion covering the whole of this chapter IV (except

Section 3) are given at the end of the chapter.

2 Jackson Networks

2a. Model and Examples
2b. Ergodic Theory for Open Networks
2c. Ergodic Theory for Closed Networks
2d. Pitfalls for Intuition

2a Model and Examples

One of the simplest examples of a queueing network, queues in series, has
already been encountered in the preceding section. It imposes, however,
together with simple generalizations as in Problem 1.1, the restriction that
customers can only move along a feed–forward path.

We consider now more generally a queueing network where there is a
finite number K of individual queues, the nodes of the network, at which
customers arrive from external sources according to independent Poisson
processes with intensities α1, . . . , αK . A customer having completed service
at node k goes to node � w.p. γk� and leaves the system with w.p. γk0 =
1−∑K

1 pk� (external drain). A graphical illustration is given in Fig. 2.1(a),
an arrow from k to � denoting γk� > 0 and arrows to and from the external
world (node 0) denoting γk0 > 0 and αk > 0, respectively.

In this section, we consider the case of a single exponential server at
each node (one then talks frequently about Jackson networks), and we
denote the corresponding service rates by δ1, . . . , δk. Two main types are
considered, open networks where external input is received and external
output is delivered by customers entering and leaving the system, and closed
networks where the customers can only move internally in the system. Thus
a closed network has all αk = 0 and all γk0 = 0, and the total number of
customers in the system does not vary with time. In an open network some
αk > 0 and some γk0 > 0, and the number in system is a nondegenerate
stochastic process.

Networks of this type come up in a great variety of problems, the
most important of which are of rather recent date and associated with
data communication systems and the internal organization of time–sharing
computers. Also, colonies of biological individuals with migration between
colonies have been modelled in this way. We shall give two examples, one
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of an open and one of a closed network, with the reservation that it should
be stressed that the above model does not pretend to be anything but a
crude first approximation. For example, there would frequently be a strong
positive correlation between the service times of a customer at the different
nodes. In other cases the choice of the customer of the path along the nodes
could depend on the length of the waiting lines.

Figure 2.1

Fig. 2.1(b) depicts a communication network, say connecting three
branches A, B, D, of a bank, or three computers via a transmission station
C. Messages are sent by the directed channels 1, 2, 3, 4, 5 and if a channel
is busy, a queue may be formed. Thus if we reinterpret channels as nodes
and messages as customers, we arrive at the network in Fig. 2.1(a). This
is open since new messages are created currently and a message leaves the
system after having reached its destination.

Figure 2.2

Consider next jobs (customers) circulating in a time–sharing computer
as in Fig. 2.2. The nodes are the CPU and input/output facilities, the
allowance of feedback at the CPU corresponding to some sort of PS or
RR. At first glance this looks like an open network. However, the number
of steps taken by each job is typically very large and thus within time
intervals of moderate length, the number of jobs is fixed and a description
by a closed network may be more appropriate.

Now let X
(k)
t denote the number of customers at node k at time t and let

Xt =
(
X

(1)
t , . . . , X

(K)
t

)
. The state space is NK and the states are denoted

n = n1 . . . nK . We write n
(+)
k for the state obtained by increasing nk by 1,
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n
(−)
k for the state (defined only when nk > 0) obtained by decreasing nk by

1, and nk,� for the state (defined only when nk > 0) obtained by decreasing
nk by 1 and increasing n� by 1. It follows that the possible transitions are

n

↗ nk,� δkγk�

→ n
(−)
k δkγk0

↘ n
(+)
k αk

(2.1)

with the right column giving the intensities; the first row corresponds to
a customer going to node � after being served at node k, the second to a
customer leaving the system after being served at node k and the last to an
arrival at node k. Thus only the first type of transition occurs in a closed
network.

We first need to make an appropriate definition of the throughput rate
βk at node k, that is, the common rate of the input and output processes
(these need not be Poisson but the rate should exist in terms of long–term
averages). The input rate is the sum of the rate αk of external arrivals and
the rate of internal arrivals from nodes � 
= k. But customers leave node �
at rate β� and go then to k with probability γ�k, so that we should have
the traffic equations

βk = αk +
K∑

�=1

β�γ�k, k = 1, . . . , K. (2.2)

2b Ergodic Theory for Open Networks

We shall assume that each node k may both receive external input and
deliver external output (possibly via other nodes), i.e. for each k (i) ei-
ther αk > 0 or some α�1γ�1�2 . . . γ�rk > 0, and (ii) either γk0 or some
γkk1γk1k2 . . . γkn0 > 0. This is easily seen to imply irreducibility of {X t}t≥0.

Proposition 2.1 The traffic equations (2.2) have a unique nonnegative
solution (β1, . . . , βK). It satisfies 0 < βk < ∞.

Proof. Consider a Markov jump process on {0, . . . , K} with off–diagonal
intensities λ(k, �) = γk�, k 
= 0, λ(0, k) = αk. Our assumptions apply irre-
ducibility and hence the existence of a stationary distribution ν, uniquely
given by νΛ = 0, which amounts to the K + 1 linear equations

νk = ν0αk +
K∑

�=1

ν�γ�k, k = 1, . . . , K, (2.3)

ν0

K∑
k=1

αk =
K∑

�=1

ν�γ�0 . (2.4)

It is therefore clear from (2.3) that βk = νk/ν0 solves (2.2). Suppose con-
versely (β1, . . . , βK) is a solution and define β0 = 1, ν∗

k = βk/
∑K

0 β�. Then
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(2.3) holds for ν∗ and (2.4) is a consequence of (2.3), as is seen by summing
over k = 1, . . . , K and performing some algebra. Thus ν∗

k = νk, i.e.
∑K

0 β�

= 1/ν0, βk = νk/ν0, proving uniqueness. �

Theorem 2.2 Assume that ρk = βk/δk < 1 for all k = 1, . . . , K. Then
{Xt} is ergodic with stationary distribution π given by

πn = πn1...nK =
K∏

k=1

(1 − ρk)ρnk

k .

Proof. The intensities are bounded, cf. (2.1), and hence it suffices to show
that πΛ = 0, cf. II.4.4, which by (2.1) amounts to

πn

K∑
k=1

{
αk + δkI(nk > 0)

}
=

K∑
k=1

{
π

n
(−)
k

αkI(nk > 0) + π
n

(+)
k

δkγk0

}
+

K∑
k,�=1

πnk,�
δ�γ�kI(nk > 0). (2.5)

Now π
n

(+)
k

= ρkπn, πnk,�
= ρ−1

k ρ�πn. Hence using (2.2) we get

K∑
k=1

π
n

(+)
k

δkγk0 = πn

K∑
k=1

βkγk0 = πn

K∑
k=1

βk

(
1 −

K∑
�=1

γk�

)

= πn

K∑
�=1

(
β� −

K∑
k=1

βkγk�

)
= πn

K∑
�=1

α�,

π
n

(−)
k

αk +
K∑

�=1

πnk,�
δ�γ�k = πnρ−1

k

{
αk +

K∑
�=1

β�γ�k

}
= πnρ−1

k βk = πnδk, nk > 0,

and (2.5) follows. �

2c Ergodic Theory for Closed Networks

For a closed network, clearly EN =
{
n :

∑K
1 nk = N

}
is a closed set, and

to discuss irreducibility and ergodicity, we therefore have to restrict the
state space of {X t} to EN . The traffic equations (2.2) reduce in matrix
notation to β = βΓ where Γ = (γk�)1≤k,�≤K , and since γk0 = 0, Γ is
a transition matrix. We shall assume that Γ is irreducible on {1, . . . , K}.
This implies the existence of a β (unique up to a constant) which satisfies
β = βΓ, and also, as is readily seen, that {X t} is irreducible on EN and
hence ergodic since EN is finite.
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Theorem 2.3 Under the above assumptions, {X t} is ergodic on EN with
stationary distribution π = π(N) given by

πn = πn1...nk
= CN

K∏
k=1

ρnk

k .

where ρk = βk/δk and CN is a normalization constant ensuring |π| = 1.

Proof. In the same way as for (2.5), we have to check that

πn

K∑
k=1

δkI(nk > 0) =
K∑

k,�=1

πnk,�
δ�γ�kI(nk > 0) (2.6)

But since πnk,�
= ρ−1

k ρ�πn, we get for nk > 0 that

K∑
�=1

πnk,�
δ�γ�k = πnρ−1

k

K∑
�=1

β�γ�k = πnρ−1
k βk = πnδk,

which implies the truth of (2.6). �

Theorem 2.3 will now be shown to have as a consequence a bottleneck
type of system behaviour: if N is large, then with high probability most of
the N customers will be in the waiting line at the node with the highest
ρk. Such a knowledge could be useful say for design purposes, since it
would in some situations suggest an allocation of the total service capacity
δ1 + · · · + δK such that max ρk is minimized.

To illustrate this effect, we shall assume that one ρk, say ρ1, is effectively
largest and we may then choose the scale of β such that

ρ1 = 1, ρ2 < 1, . . . , ρK < 1. (2.7)

Consider the marginal steady–state distributions η(N), θ(N) of
{
X

(1)
t

}
,

resp.
{
(X(2)

t , . . . , X
(K)
t )

}
,

η(N)
n = Pe

(
X

(1)
t = n

)
=

∑
n2+···+nK=N−n

πnn2...nK ,

θ(N)
n2...nK

= Pe

(
X

(2)
t = n2, . . . , X

(K)
t = nK

)
= πn1n2...nK ,

where n1 = N − n2 − · · · − nK . Then in the limit N → ∞, η(N) becomes
degenerate at ∞, whereas θ(N) has a proper limit of the same form as the
steady–state solution of an open network:

Corollary 2.4 As N → ∞, η
(N)
n → 0 for all n and

θ(N)
n2...nK

→
K∏

k=2

(1 − ρk)ρnk

k .
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Proof. Since ρ1 = 1, we have

C−1
N =

∑
n1+···+nK=N

K∏
k=1

ρnk

k =
∑

n2+···+nK≤N

K∏
k=2

ρnk

k

→
∞∑

n(2)=0

· · ·
∞∑

nk=0

K∏
k=2

ρnk

k =
K∏

k=2

(1 − ρk)−1 = D (say).

Here 0 < D < ∞ and hence if ρk < δ < 1, k = 2, . . . , K, we get

η(N)
n = CN

∑
n2+···+nK=N−n

K∏
k=2

ρnk

k

< CN

(
K + N − n − 2

N − n

)
δN−n → 0,

θ(N)
n2...nK

= CN

K∏
k=2

ρnk

k →
K∏

k=2

(1 − ρk)ρnk

k .

�

2d Pitfalls for Intuition

We have now given rigorous mathematical proofs of a number of results on
queues delivering Poisson output, and queues in series or networks that be-
have in a certain sense as if they were totally independent and each subject
to Poisson arrivals. Many of these results may be difficult to understand
on more intuitive grounds. For example, one may ask:

(i) How can even such a simple queue as M/M/1 deliver Poisson output
at rate β? The server has idle periods with no output and busy periods
where departures are Poisson at rate δ. Also, observing the output
alone, we can tell the value of β but not δ.

(ii) How can the departure process M→t prior to t be independent of the
departures M t→ after t? Observation of M→t should tell us some-
thing on {Xs}s≤t (e.g. if there are few departures just before t, we
expect Xt = 0 with greater probability than the average 1 − ρ), and
conditionally upon Xt, M→t is certainly not Poisson.

(iii) In a network rather than a series, the arrivals to node k are not in
general Poisson. Why then is this not reflected in the behaviour of
X

(k)
t ?

(iv) How can X
(k)
t and X

(�)
t in a network be independent? If X

(k)
t is large

and γk� > 0, then node � should have received more input prior to t

than on the average, hence also X
(�)
t should be large.
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Of course, the mathematical proofs tell that such reasoning has to have gaps
or errors, and it is not difficult either to elaborate further on the intuitive
reasoning to deduce that important aspects have been ignored (e.g. the
independence in a network refers only to a fixed instant of time and not the
time evolution). Our point here is merely to stress that intuitive reasoning,
though an indispensable part of applied probability, has its pitfalls and that
care has to be taken that it can be followed up with a more rigorous proof.

Problems

2.1 Show that the timereverse of a (open or closed) Jackson network is again a
Jackson network, with routing probabilities given by γ̃�k = βkγkl/β�.

3 Insensitivity in Erlang’s Loss System

We consider Erlang’s loss system as in III.3e with K lines and intensity β for
arrivals of calls, but assume now that the duration of a call follows a phase–
type distribution B, say with p phases, initial vector α and phase generator
T (the exit rate vector is t = −T1). The system can then be modelled as
Markov process {Xt} whose state space E consists of all i = n1 . . . np with
nk = 0, . . . , K, |i| = n1 + · · · + np ≤ K, such that nk gives the number of
lines where the call is currently being handled in phase k. We write i

(+)
r

for the state (defined only when |i| < K) obtained by increasing nr by 1,
i
(−)
r for the state (defined only when nr > 0) obtained by decreasing nr by

1, and ir,s for the state (defined only when nr > 0) obtained by decreasing
nr by 1 and increasing ns by 1. It follows that the possible transitions are

i

↗ ir,s nrtrs

→ i
(−)
r nrtr

↘ i
(+)
r βαr

(3.1)

with the right column giving the intensities; the first row correspond to a
phase change of some call, the second to a call being completed and the
last to an arrival of customer.

The loss probability is then

EK =
∑

n1+···+np=K

πn1...np ,

where π is the stationary distribution, and we will show:

Theorem 3.1 Let µB = −αT−11 denote the mean of B and let η = βµB.
Then

EK =
ηK/K!

1 + η + · · · + ηK/K!
. (3.2)
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Proof. We will undertake the program of Kelly’s lemma II.5.4, i.e. come up
with trials πi, λ̃(i, j) for the stationary probabilities and the intensities of
the reversed process, and verify πiλ(i, j) = πj λ̃(j, i).

Let ν = −αT−1/µB. Since (cf. III.5) ν is the stationary distribution
of a renewal process with interarrival distribution B, we can interpret νr

as the probability that the current phase of a randomly selected call is r.
Therefore a plausible candidate for the stationary distribution is

πi = E|i|

( |i|
n1 . . . np

)
νn1
1 · · · νnp

p , (3.3)

where Ek = (ηk/k!)/(1 + η + · · ·+ ηK/K!) (note that everything following
E|i| is just the probability of getting n1 . . . np by multinomial sampling
of |i| objects with probabilities ν1, . . . , νp). Once (3.3) is verified to be the
correct πi, we get

∑
|i|=k πi = Ek, and taking k = K, the proof is complete.

A plausible guess for the time–reversed system is another loss system
with the same K and β, but with the given phase–type representation
replaced by the time–reversed one, which according to III.5.7 is given by

α̃r = µBtrνr, t̃rs =
νstsr

νr
, t̃r =

αr

µBνr
.

That then indeed πiλ(i, j) = πj λ̃(j, i) is now obtained as follows. First

πiλ
(
i, i

(+)
r

)
π

i
(+)
r

λ̃
(
i
(+)
r , i

) =
E|i|(nr + 1)λ

(
i, i

(+)
r

)
E|i|+1(|i| + 1)νrλ̃

(
i
(+)
r , i

) =
(nr + 1)βαr

ηνr(nr + 1)t̃r

=
βαr

βµBνr(αr/µBνr)
= 1.

That πiλ(i, i(−)
r ) = π

i
(−)
r

λ̃(i(−)
r , i) then follows by a symmetry argument.

Finally,

πiλ(i, irs)

πirs λ̃(irs, i)
=

νrnsλ(i, irs)

νsnrλ̃(irs, i)
=

νrnsnrtrs

νsnrnst̃sr

=
νrtrs

νs(νrtrs/νs)
= 1. �

Notes The fact that the loss probability depends on the service time distri-
bution only through its mean µB is referred to as insensitivity. Some further
examples will be given in the next section where it is shown that the station-
ary queue length distributions in the preemptive LCFS M/G/1 queue and the
PS M/G/1 queue are insensitive (the same as the geometric distribution in the
M/M/1 queue with the same traffic intensity). Some general treatments of insen-
sitivity are in Whittle (1986) and Miyazawa (1993), where references to earlier
work can also be found.

Kelly (1991) is a standard reference for loss systems.
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4 Quasi–Reversibility and Single–Node
Symmetric Queues

We consider a simple queue with multiple customer classes c ∈ C (the
set C of classes is assumed finite or countable). A simple example is sev-
eral types of customers with each their service requirements, say cars or
trucks that arrive at a gas station. However, a main motivation that first
becomes apparent when we proceed to networks is non–Markovian routing;
cf. Example 5.1.

We assume that the time evolution of the queue can be modelled by an
ergodic Markov process {Xt}t≥0 with a finite or countable state space E.
We assume given subsets Ac, Dc, c ∈ C, of E × E such that i 
= j when
ij ∈ Ac or ij ∈ Dc and that Ac ∩ Dc = ∅. Most often, the interpretation
is that Xt− = i, Xt = j corresponds to an arrival of a customer of class c
when ij ∈ Ac and to a departure when ij ∈ Dc, and one has ij ∈ Ac ⇐⇒
ji ∈ Dc (but see Problem 4.2).

Example 4.1 For a simple example, let customers of class c have Poisson
arrivals at rate βc and exponential services of rate δc, and let the queueing
discipline be FIFO with no priorities among classes. Then we can take

E = {i = c1c2 . . . cn : n ∈ N, c1, . . . , cn∈ C} ,

with Xt = c1c2 . . . cn indicating that there are n customers in the system,
with the one currently being served of class c1, the next waiting in line
of class c2 and so on (the empty word corresponding to n = 0 is the idle
state). Then ij ∈ Ac precisely when i, j are of the form i = c1c2 . . . cn, j =
c1c2 . . . cnc, and ij ∈ Dc precisely when i, j are of the form i = cc1 . . . cn,
j = c1 . . . cn. We will see more complicated examples later on, say with
phase–type service times where E also contains information on phases. �

The random sets N
(+)
c (t) =

{
s ≥ t : (Xs−Xs) ∈ Ac

}
, N

(−)
c (t) ={

0 ≤ s ≤ t : (Xs−Xs) ∈ Dc

}
represent the arrival process of class c cus-

tomers after t, resp. the departure process prior to t (they can be viewed
as measurable elements of the space of counting measures on the appropri-
ate intervals). The queue is called quasi–reversible if Xt and all N

(+)
c (t),

N
(−)
c (t), c ∈ C, are independent in the steady state for any t ≥ 0 .

Proposition 4.2 For a stationary quasi–reversible queue, the arrival pro-
cesses N

(+)
c (0), c ∈ C, are independent Poisson processes, and so are the

departure processes N
(−)
c (∞), c ∈ C.

Proof. It is clear by stationarity that N
(+)
c (0) has stationary increments

so to see that it is Poisson, it suffices to show that the increments, say
I1, . . . , In, over intervals [t0, t1), [t1, t2), . . . , [tn−1, tn) with 0 < t0 < t1 <
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· · · < tn are independent. However,

E
[
f1(I1) · · · fn(In)

]
= E E

[
f1(I1) · · · fn(In)

∣∣Ft1

]
= E

{
f1(I1) E

[
f2(I2) · · · fn(In)

∣∣Ft1

]}
= E

{
f1(I1) E

[
f2(I2) · · · fn(In)

∣∣Xt1

]}
= Ef1(I1) E

[
f2(I2) · · · fn(In)

]
,

where we used the Markov property in the third step and quasi–reversibility
in the last. Proceeding in the same way, the expectation becomes factor-
ized as Ef1(I1) · · ·Ef2(I2), proving independence. The independence for
different c follows in just the same way, as does the case of the departure
processes. �

The definition of quasi–reversibility immediately implies:

Corollary 4.3 The timereverse
{
X̃t

}
of a quasi–reversible queue is itself

quasi–reversible corresponding to Ãc = {ij : ji ∈ Dc}, D̃c = {ij : ji ∈ Ac}.
Write Λ =

(
λ(i, j)

)
for the intensity matrix of {Xt} and π = (πi) for

the stationary distribution.

Corollary 4.4 For a stationary quasi–reversible queue, the rates µ
(+)
c , µ

(−)
c

of N
(+)
c (0), N

(−)
c (∞) are given by

µ(+)
c =

∑
j: ij∈Ac

λ(i, j), (4.4)

µ(−)
c =

1
πj

∑
i: ij∈Dc

πiλ(i, j). (4.5)

In particular, (4.4) does not depend on i and (4.5) not on j.

Proof. The naive way to compute µ
(+)
c is of course as

∑
ij∈Ac

πiλ(i, j) (con-
dition upon the state i just before the arrival). That the stronger (4.4) holds
follows by quasi–reversibility implying independence of i. Corollary 4.3 then
yields independence of

∑
i: ji∈ ˜Ac

λ̃(j, i) of j, but this sum is just the r.h.s.
of (4.5). �

Conversely:

Proposition 4.5 If the r.h.s. of (4.4) does not depend on i and the r.h.s.
of (4.5) not on j, then the queue is quasi–reversible.

Proof. Clearly, N
(+)
c (t) is a Poisson process with stochastic intensity∑

j: Xs−j∈Ac
λ(Xs−, j), s > t. However, by assumption this intensity does

not depend on s, in particular it is unaffected by Xt and therefore N
(+)
c (t)

is independent of Xt. Similarly, the whole set (N (+)
c (t))c∈C is indepen-

dent of Xt, and considering the time–reversed process shows that the
same is true for (N (−)

c (t))c∈C. To complete the proof, just observe that
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the independence of Xt,
(
N

(+)
c (t)

)
c∈C,

(
N

(−)
c (t)

)
c∈C then follows from(

N
(+)
c (t)

)
c∈C,

(
N

(−)
c (t)

)
c∈C being conditionally independent given Xt (the

Markov property). �

Example 4.6 Consider first a single class queue modelled as a standard
birth–death process {Xt} with birth rate βk in state k = 0, 1, . . . and death
rate δk in state k = 1, 2, . . .. We take A = {01, 12, . . .}, D = {10, 21, . . .}.
For quasi–reversibility, the arrival process must be Poisson, i.e. βn = β,
and this is in fact also a sufficient condition. To see this, use Proposition
4.5. The r.h.s. of (4.4) is βi, which we assumed independent of i. The r.h.s.
of (4.5) is π−1

j πj+1δj+1, which according to the local balance equations
πjβj = πj+1δj+1 is βj , again assumed to be independent of j. See also the
proof of Proposition 1.1. �

Example 4.7 (multiclass M/M/1 queues) Consider the model of Ex-
ample 4.1. Let β =

∑
c∈C βc denote the overall arrival rate and assume

that β < ∞ (e.g. that C is finite) and that the service intensity δ = δc is
independent of c. Denote by pc = βc/β the probability that an arriving
customer is of class c. The traffic intensity is ρ = β/δ.

Our candidate for the stationary distribution is

πc1...cn = (1 − ρ)ρnpc1 . . . pcn ,

and we first verify that this is indeed the correct one by means of Kelly’s
lemma. Since the possible transitions of {Xt} out of state (word) c1 . . . cn

are to either the state obtaining by deleting the first letter c1 in the word
or to a state obtained by adding a letter in the end, the possible transitions
of the time–reversed process out of state c1 . . . cn are to the state obtaining
by deleting the last letter cn in the word or to a state obtained by adding a
letter at the beginning. That is, informally the queueing system is similar
except that cn now is the customer being currently served, etc., and thus
the trial candidate for the nonzero off-diagonal time–reversed intensities
are

λ̃(c1 . . . cn, c1 . . . cn−1) = δ, λ̃(c1 . . . cn, cc1 . . . cn) = βc.

In this setting, we must verify πiλ(i, j) = πj λ̃(j, i) for i 
= j. The only
cases where not both sides are 0 are (1) i = c1 . . . cn, j = c1 . . . cnc and (2)
i = c1 . . . cn, j = c2 . . . cn. In case (1),

πiλ(i, j)

πj λ̃(j, i)
=

πiβc

πjδ
=

(1 − ρ)ρnpc1 . . . pcnβc

(1 − ρ)ρn+1pc1 . . . pcnpcδ
=

βc

ρpcδ
=

β

ρδ
= 1,

and in case (2),

πiλ(i, j)

πj λ̃(j, i)
=

πiδ

πjβc1

=
(1 − ρ)ρnpc1 . . . pcnδ

(1 − ρ)ρn−1pc2 . . . pcnβc1

=
ρpc1δ

βc1

=
ρδ

β
= 1.
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It follows that for j = c1 . . . cn,
1
πj

∑
i: ij∈Dc

πiλ(i, j) =
1

(1 − ρ)ρnpc1 . . . pcn

∑
c∈C

(1 − ρ)ρn+1pcpc1 . . . pcnδ

= ρδ
∑
c∈C

pc = ρδ = β

is independent of j, whereas trivially
∑

j: ij∈Ac
λ(i, j) equals β for all i.

Hence the system is quasi–reversible by Proposition 4.5. �

In most cases, of course µ
(+)
c = µ

(−)
c (but see Problem 4.1). Proposition

4.4 immediately gives:

Corollary 4.8 For a quasi–reversible queue with µ
(+)
c = µ

(−)
c for all c ∈ C,

the stationary distribution satisfies

πi

∑
j: ij∈Ac

λ(i, j) =
∑

j: ji∈Dc

πjλ(j, i). (4.6)

We now introduce a general framework for the study of quasi–reversibility
(and insensitivity), having the advantage that in many examples one can
deal with general (or rather phase–type) service times, the so–called sym-
metric queues (more precisely, the system we consider could be called a
symmetric multiclass M/PH/· queue). Different customer classes have in-
dependent Poisson arrivals with rate βc for class c. Let β =

∑
c∈C βc denote

the overall arrival rate and assume β < ∞. We further assume that class c
customers have a phase–type service time distribution Bc, say with initial
vector αc = (αcr)r=1,...,pc and phase generator T c = (tcrs). The exit rate
vector is tc = −T c1 = (tcr), the mean service time is mc = −αcT

−1
c 1 and

the overall traffic intensity is ρ =
∑

c∈C ρc where ρc = βcmc. Let further

νc = (νcr) = −αcT
−1
c

mc
, pcr =

βcmc

ρ
νcr;

νc is the equilibrium distribution of the phase of service of a class c customer
and pcr is the probability that a randomly selected customer in service is
of class c and in phase r of service. This is an important intuition behind
the formula (4.8) for the stationary distribution given below.

We think of the customers as ordered in positions k = 1, 2, . . . in front
of the server (only finitely many are present at a given time) and refer for
brevity to the customer in position k as just customer k. A state of the
system has the form i = c1r1 . . . cnrn and indicates that there are n = n(i)
customers, such that customer k is of class ck and has current phase rk of
service. The server works at rate φ(n) when there are n customers in the
systems and then devotes the fraction ω(n, k) of his capacity to customer
k (thus

(
ω(n, k)

)n

k=1
is a probability vector for each n ≥ 1). Further, it

is assumed that a customer arriving to a system with n customers takes
position k = 1, . . . , n + 1 w.p. ω(n + 1, k) independently of his class.
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Note that the ω function has a double interpretation: it is the same for
position allocation as for service (hence the term symmetric). The “current
phase” of a class c customer is chosen according to αc upon arrival, even
if the customer may not physically start service at once. If he has been
interrupted in service, the “current phase” is the one in which interruption
occured.

To describe intensities and transitions, denote by i(k) the state obtained
by deleting the customer k = 1, . . . , n(i) (thus customers 1, . . . , k−1 main-
tain their position and customers k + 1, . . . , n(i) move up one position).
Similarly, i(k, c, r) is the state where a customer of class c and in phase
r of service is added at position k (thus customers 1, . . . , k − 1 maintain
their position and customers k, . . . , n(i) move down one position). Finally,
i(k, s) is the state where customer k (of class ck) has changed the phase of
service from rk to s.

It follows that the possible transitions are

i = c1r1c2r2 . . . cnrn

↗ i(k, s) φ(n)ω(n, k)tckrks

→ i(k) φ(n)ω(n, k)tckrk

↘ i(k, c, r) βcω(n + 1, k)αcr

(4.7)

with the right column giving the intensities, and we can take

Ac =
{
ij : j = i(k, c, r) for some k, c, r

}
,

Dc =
{
ij : j = i(k) for some k

}
.

Theorem 4.9 Let

Φ(n) =
n∏

k=1

φ(k), δ =
∞∑

n=0

ρn

Φ(n)
.

If δ < ∞, then the symmetric multiclass M/PH/· queue is ergodic and the
stationary distribution is given by

πi = πc1r1...cnrn = δ−1 ρn

Φ(n)

n∏
k=1

pckrk
. (4.8)

Further the queue is quasi–reversible with µ
(+)
c = µ

(−)
c .

Proof. Since
∑

ckrk
pckrk

= 1, we have

∑
n, c1r1...cnrn

ρn

Φ(k)
·

n∏
k=1

pckrk
= δ.

Thus indeed (4.8) is a probability distribution when δ < ∞, and since
the process is nonexplosive by Problem II.2.4, we are again in a position
to apply Kelly’s lemma II.5.4. As in Section 3 our trial candidate for the
time–reversed system is the given system with the phase representations
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reversed. That is, the changed parameters are

α̃cr = mctcrνcr, t̃crs =
νcstcsr

νcr
, t̃cr =

αcr

mcνcr
.

With this trial system (for the intensities, just add tildes in the right column
of (4.7)), we must verify πiλ(i, j) = πj λ̃(j, i) for i 
= j.

Let first j = i(k, s). Then πi/πj = νckrk
/νcks so that (4.7) yields

πi

πj
· λ(i, j)

λ̃(j, i)
=

νckrk

νcks
· tckrks

t̃cksrk

=
νckrk

νcks
· tckrks

νckrk
tckrks/νcks

= 1.

If j = i(k), then i = j(k, ck, rk) and we get

πi

πj
· λ(i, j)

λ̃(j, i)
=

ρck
νckrk

φ(n)
· φ(n)ω(n, k)tckrk

βck
ω(n, k)α̃ckrk

=
ρck

νckrk
tckrk

βck
mck

tckrk
νckrk

= 1.

Finally, the case j = i(k, c, r) follows from the case j = i(k) by
interchanging the given system and the tilded one.

To verify quasi–reversibility, we have∑
j: ij∈Ac

λ(i, j) =
∑
k,c,s

λ
(
i, i(k, c, s)

)
=

∑
k,c,s

βcω(n + 1, k)αc,s

=
∑
c,s

βcαc,s =
∑

c

βc = β.

This is independent of i so that (4.4) does not depend on i. Therefore by
symmetry, also (4.4) holds for the tilded system which is the same as saying
that (4.5) holds for the given system. �

Example 4.10 (multiclass preemptive LCFS M/PH/1 queues)
This corresponds to φ(n) = 1, ω(n, 1) = 1, all other ω(n, k) = 1. �

Example 4.11 (multiclass PS M/PH/1 queues) This corresponds
to φ(n) = 1, and all ω(n, k) = 1/n. �

Example 4.12 (multiclass M/PH/∞ queues) This corresponds to
φ(n) = n, and all ω(n, k) = 1/n. �

Corollary 4.13 The queue length distributions in the multiclass M/PH/·
queues in Examples 4.10–4.12 are insensitive in the sense that the steady–
state distributions only depend on the Bc through their means mc.

Proof. The probability of queue length n is ρn/δΦ(n), and here ρ, δ depend
only on the Bc through the mc. �

Problems

4.1 Consider the M/M/1 queue with two customer types 0,1 arriving with inten-
sities β0, β1. The state of the system is n0 if n customers are present and the last
arrival was of type 0, and similarly for n1. Interpreting both types to be of a sin-
gle class, take D = {((n + 1)i, ni) : i = 0, 1} and A = {(ni, (n + 1)0) : i = 0, 1}.
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Show that the queue is quasi–reversible but that the arrival and departure rates
are not the same.
4.2 Consider a finite birth–death process on {0, 1, . . . , L} with death rates δk

and birth rate β = βk independent of k = 0, . . . , L − 1. (a) Show that the naive
definition of A, D, etc. does not lead to quasi–stationarity. (b) Splitting state L
into two, let E = {0, 1, . . . , L − 1, L0, L1} and let an (dummy) arrival in state L0

trigger a transition (flip) to L1 and similarly for arrivals in state L1. Show that
appropriate definitions of A, D, etc. lead to quasi–stationarity.

5 Quasi–Reversibility in Networks

We now consider a queueing network of K nodes. Let a state space E(k) be
associated with the kth, and let A

(k)
c , D

(k)
c be disjoint classes of transitions

that we think of as arrivals, resp. departures. The set C of classes is the
same for all nodes and it is assumed that class c customers arrive at node
k according to a Poisson process with intensity αkc, and that these Poisson
processes are independent for different kc. The routing is Markovian in the
sense that if a transition ik → jk with ikjk ∈ D

(k)
c occurs at node k at

time t, then a node � and and a possibly different class d is selected with
probability γkc,�d, such that a class d arrival occurs at node � at the same
time; γkc,0 = 1 −∑

�c γkc,�d then gives the probability of a departure from
the network.

Example 5.1 A major restriction of Jackson networks as treated in Sec-
tion 2 is that of Markovian routing: the node � to which a customer goes
after leaving node k is chosen with a probability depending only on the
current node k visited and not on which nodes were earlier visited and how
many times. However, in a number of applications the routing is not Marko-
vian and incorporating this is indeed a major motivation of the multiclass
set–up.

A particular case that is often met is that a customer selects among a
set R1, R2, . . . of possible routes w.p. say q(Rr) for Rr (each route R is
a finite string k1 . . . kt of nodes). The set C of classes is then the set of
similar finite strings c = �1 . . . �t, such that �1, . . . , �t gives the remaining
set of nodes (including the current one) to be visited by the customer,
which upon leaving node �1 becomes a �2 . . . �t customer; thus, γkc,�d = 1
when c = �1 . . . �t, d = �2 . . . �t, k = �1, � = �2, and otherwise γkc,�d = 0.

Markovian routing as for a Jackson network corresponds to

qk1...kt =
αk1∑K
1 αki

γk1k2 · · · γkt−1ktγkt0.

Note that here indeed C is countable rather than finite. �
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As for a Jackson network we arrive at the traffic (throughput) equations

βkc = αkc +
∑
�d

β�dγ�d,kc, k = 1, . . . , K, c ∈ C. (5.1)

In the following, we let (βkc)k=1,...,K, c∈C be some fixed solution (assuming
existence; uniqueness is not essential).

The basic assumption about node k is now loosely that it is quasi–
reversible when operating in isolation with Poisson input. The precise
content of this is that we assume given an ergodic intensity matrix(
λ(k)(i, j)

)
i,j∈E(k) with stationary distribution say (π(k)

i )i∈E(k) , such that

the corresponding Markov process on E(k) is quasi–reversible when the
common input and output rates are given by (5.1); according to (4.4),
(4.5), this means

βkc =
∑

jk: ikjk∈A
(k)
c

λ(k)(ik, jk) =
1

π
(k)
jk

∑
ik: ikjk∈D

(k)
c

π
(k)
i λ(k)(ik, jk) . (5.2)

The network has state space E =
∏K

1 E(k), a typical state being denoted
i = (ik)k=1,...,K in the following, and for the Markov process {X t} describ-
ing the network, we write similarly Xt = (X(1)

t , . . . , X
(K)
t ). The nonzero

off–diagonal intensities are defined as follows:

(a) λ(i, j) =
αkcλ

(k)(ik, jk)
βkc

if i, j differ only at node k and ikjk ∈ A
(k)
c ;

(b) λ(i, j) = λ(k)(ik, jk)γkc,0 if i, j differ only at node k and ikjk ∈ D
(k)
c ;

(c) λ(i, j) = λ(k)(ik, jk) if i, j differ only at node k and ikjk do not belong
to any A

(k)
c or D

(k)
c ;

(d) λ(i, j) = λ(k)(ik, jk)γkc,�d
λ(�)(i�, j�)

β�d
if i, j differ only at nodes k, � and

ikjk ∈ D
(k)
c , i�j� ∈ A

(k)
c .

Note in (a) that λ(k)(ik, jk)/βkc is the probability (in node k in isolation
or in the network) that a class c customer arriving to node k and seeing state
ik will trigger a transition to state jk, and analogously for λ(�)(i�, j�)/β�d in
(d); that these probabilities should coincide for the nodes in isolation and
in the network is the crux in how to build the nodes together to a network.

The main results follows: as for a Jackson network, the stationary
distribution is of product–form.

Theorem 5.2 The network of quasi–reversible nodes is ergodic with
stationary distribution of product form, i.e.

πi = πi1...iK = π
(1)
i1

. . . π
(K)
iK

(5.3)

Proof. We will provide trial values λ̃(i, j) of the time–reversed inten-
sities and verify that πiλ(i, j) = πj λ̃(j, i) for all i, j. The trial is
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another network of quasi–reversible nodes, with A
(k)
c replaced by Ã

(k)
c

=
{
ikjk : jkik ∈ D

(k)
c

}
, D

(k)
c by D̃

(k)
c =

{
ikjk : jkik ∈ A

(k)
c

}
, λ(k)(ik, jk)

by λ̃(k)(ik, jk) = π
(k)
jk

λ(k)(jk, ik)/π
(k)
ik

and arrival intensities and routing
probabilities by

α̃kc = βkcγkc,0, γ̃kc,�d =
β�dγ�d,kc

βkc
, γ̃kc,0 =

αkc

βkc
.

To see that these are reasonable guesses, note for example that the flow of
�d customers to kc customers is β�dγ�d,kc and must coincide with the flow
β̃kcγ̃kc,�d of kc customers to �d customers in the time–reversed network;
however, since the input and output rate of class c customers at node k
were assumed equal, we must have β̃kc = βkc. Note also that 1 = γ̃kc,0 +∑

�d γ̃kc,�d is a consequence of the throughput equations (5.1).
To verify πiλ(i, j) = πj λ̃(j, i), let first i, j be as in (a) above. Then a

transition from j to i in the tilded system corresponds to a departure from
node k accompanied of a transition from jk to ik. The intensity is given by
(b) with tildes added and hence

πiλ(i, j)

πj λ̃(j, i)
=

π
(k)
ik

αkcλ
(k)(ik, jk)/βkc

π
(k)
jk

λ̃(k)(jk, ik)γ̃kc,0

=
αkc/βkc

γ̃kc,0
= 1.

Case (b) is symmetric, whereas (c) follows trivially once one notices that
ikjk 
∈ A

(k)
c ∪ D

(k)
c if and only if jkik 
∈ Ã

(k)
c ∪ D̃

(k)
c . Finally in (d),

πiλ(i, j)

πj λ̃(j, i)
=

π
(k)
ik

π
(�)
i�

λ(k)(ik, jk)γkc,�dλ
(�)(i�, j�)/β�d

π
(k)
jk

π
(�)
j�

λ̃(�)(j�, i�)γ̃�d,kcλ̃(k)(jk, ik)/βkc

=
γkc,�d/β�d

γ̃�d,kc/βkc
= 1.

�

6 The Arrival Theorem

In a single–node queue with Poisson arrivals, the PASTA property to be
formalized in VII.6 implies that the steady–state distribution of the state
of the queue seen by a customer just before his arrival is the same as the
steady–state distribution of the state of the queue at an arbitrary point
of time. We will show here that results of rather similar form hold for
networks.

In the network we have considered, a customer going to node � after being
served at node k does so instantaneously. However, we may imagine that he
observes the state of the rest of the network during the infinitesimal interval
where the transition takes place. Typically, these transition instants do not
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form a Poisson process so PASTA does not apply. Nevertheless, we will
show here that results of rather similar form hold. First:

Theorem 6.1 In the model of Section 5, the steady–state distribution
ηkc,�d of the state seen by a customer in transition from node k as a class c
customer to node � as a class d customer coincides with the time–stationary
distribution π.

Proof. Clearly, the rate of a kc customer making a transition to a �d cus-
tomer is βkcγkc,�d. To determine ηkc,�d

j , we note that if the state seen during
the transition is j, then the state i just before the transition must be in
the set Ekc,�d

j of states with im = jm, m 
= k, and ikjk ∈ D
(k)
c . Thus

ηkc,�d
j =

1
βkcγkc,�d

∑
i∈Ekc,�d

j

πiλ(i, j)γkc,�d

=
1

βkc

∏
m �=k

π
(m)
jm

·
∑

ik: ikjk∈D
(k)
c

π
(k)
ik

λ(k)(ik, jk)

=
1

βkc

∏
m �=k

π
(m)
jm

· π
(k)
jk

βkc =
K∏

m=1

π
(m)
jm

= πj ,

using (5.2) in the third step. �

Corollary 6.2 Let H = {kc}, K = {�d} be arbitrary subsets of
{0, . . . , K} × C. Then the steady–state distribution of a H customer in
transition to become a K customer is π.

Proof. Letting θkc,�d denote the probability that a H customer in transition
to become a K customer is a kc customer just before the transition and a
�d customer just after, the distribution in question has point mass∑

kc∈H, �d∈K

θkc,�d ηkc,�d
j =

∑
kc∈H, �d∈K

θkc,�d πj = πj

at j (note that the case k = 0 is covered by PASTA). �

Remark 6.3 If K = {�} × C, H = {0, . . . , K} × C, then the statement
of Corollary 6.2 means that a customer arriving at node � (as an external
arrival or from some other node k) sees distribution π just at the arrival
instant (in the above sense of being in transition). Similarly, taking H =
{k}×C, K = {0, . . . , K}×C, shows that a customer departing node k sees
distribution π just at the departure instant. �

The arrival theorem takes a striking form for closed Jackson networks.
In the notation of Theorem 2.3:

Theorem 6.4 For a closed Jackson network with N customers, the
steady–state distribution η(N ;k,�) of the state seen by a customer in transi-
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tion from node k to node � coincides with the time–stationary distribution
π(N−1) of the network with one customer removed. That is, η

(N ;k,�)
n =

CN−1

∏K
m=1 ρnm

m when n1 + · · · + nK = N − 1.

Proof. In a closed network, the βk are only determined up to a constant
and can therefore not a priori be identified with the throughput rates, say
β∗

1 , . . . , β∗
K . Instead, we can identify β∗

k with the output rate δkθk = the
service rate δk times the probability θk of node k being busy where

θk = CN

∑
n1+···+nK=N,nk>0

K∏
�=1

ρnk

k = CNρk

∑
n1+···+nK=N−1

K∏
m=1

ρn�
m =

CNρk

CN−1

where the βm (and accordingly ρ1, . . . , ρK and CN , CN−1) are calculated
based upon some fixed solution of β = βΓ.

It follows that the rate of transitions of customers from node k to node
� is β∗

kγkl = βkγklCN/CN−1. Hence for n ∈ EN−1,

η(N ;k,�)
n =

CN−1

βkγklCN
π

n
(+)
k

δkγkl =
CN−1

βk
ρkδk

K∏
m=1

ρnm
m = CN−1

K∏
m=1

ρnm
m

when n ∈ EN−1. �

Notes Among many texts on queueing networks, we mention in particular
Kelly (1979), Walrand (1988), Serfozo (1999), Chao et al. (1999) and Chen
and Yao (2001); see also the volumes edited by Kelly and Williams (1995) and
Kelly et al. (1996). Buzacott and Shantikumar (1993) contains a large number of
applications to manufacturing system.

Extensive lists of references can be found in these texts. Some milestones in the
theory exposed in Sections 1–2 and 4–6 are Jackson (1957), Gordon and Newell
(1967), Baskett et al. (1975) and Kelly (1979). One often meets the terms BCMP
network, meaning the models of Baskett et al. (which are special cases of the
model of Section 5), and Kelly network, denoting the special case where customer
classes are the routing schemes.

Queueing networks form maybe the most active and challenging area of re-
search in queueing theory. The developments go in several directions. One is
characterization of conditions for product–form solutions and the study of non-
product form networks in a Markovian setting; see Serfozo (1999) and Chao et al.
(1999). Another is stability theory (when do ergodic limits exist?) where certain
unexpected phenomena occur. A classical example is the network in Fig. 5.1,
dicussed in length in Chen and Yao (2001).

� � �

� � �

Node 1 Node 2

Class A1

Class B1

Class A2

Class B2

βA

βB

Figure 5.1
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Here we have two arrival streams A,B, such that a type A customer enters node
1 as a class A1 customer and goes to node 2 as a class A2 customer after being
served, and a type B customer enters node 2 as a class B2 customer and goes
to node 1 as a class B1 customer after being served. Class B2 customers have
preemptive priority over class A2 customers and class A1 over class B1. With
µA1, etc. the mean service times, the natural stability is that the traffic intensity
at each station is < 1, i.e.

ρ1 = βAµA1 + βBµB1 < 1, ρ2 = βAµA2 + βBµB2 < 1. (6.1)

However, assuming (6.1), we have βAµA2 < 1 and A2 customers block B1 cus-
tomers in a fraction βAµA2 of time in a stable system. Similarly, B2 customers
block A1 customers in a fraction βBµB1 of time, so that if βAµA1 + βBµB2 > 1,
blocking occurs all the time and the number in system must build up, contradict-
ing stability (obviously there are examples where this extra inequality and (6.1)
hold at the same time).

Even just to show that ρk < 1 at each node in a generalized Jackson network
(the model of Section 2 with nonexponential service times) is sufficient for stabil-
ity presents considerable difficulties; see e.g. Baccelli and Foss (1994). A survey
of the literature on stability of queueing networks is given p. 341 of Chao et al.
(1999). An interesting direction not mentioned there is the connection between
stability and the existence of fluid limits (also called hydrodynamical limits) (LLN
type limits approximating, e.g., the netput process for the M/G/1 workload by
the straight line (ρ − 1)t); see e.g. Dai (1995a,b). See also Cohen (1992), Fayolle
et al. (1995) and Fayolle et al. (1999) for further stability issues.

A further active area is heavy-traffic limit theorems. With K nodes, the limit
here is typically Brownian motion in [0,∞)K and so–called oblique reflection at
the boundary (see the Notes to IX.2 for more details). In contrast to the case
K = 1, few characteristics of this process can be found in closed form. One
reason that heavy-traffic limits are nevertheless useful is state–space collapse: the
distinction between the customers classes, say there are M of them, vanishes so
that the dimension of the state space is reduced by a factor of M . Some selected
papers in this area containing further references are Reiman (1984), Harrison and
Williams (1987, 1992), Bramson (1998) and Williams (1998).

Finally, we mention large deviations studies such as Glasserman and Kou
(1995b), Atar and Dupuis (1999), McDonald (1999), Ignatiouk–Robert (2000)
and Miyazawa (2003).



Part B:
Some General Tools and
Methods



V
Renewal Theory

1 Renewal Processes

Let 0 ≤ S0 ≤ S1 < S2 < · · · be the times of occurrences of some phe-
nomenon and Yn = Sn − Sn−1, Y0 = S0; see Fig. 1.1. Then {Sn}n∈N

is called a renewal process if Y0, Y1, Y2, . . . are independent and Y1, Y2, . . .
(but not necessarily Y0) have the same distribution.

Figure 1.1

The Sn are called the renewals or the epochs of the renewal process. The
common distribution F of Y1, Y2, . . . is the interarrival or waiting–time dis-
tribution. To avoid more than one renewal at a time we always assume
that the Yk have no mass at zero, F (0) = 0. The renewal process is pure
or zero–delayed if Y0 = S0 = 0 a.s.. Otherwise it is delayed and the delay
distribution is the distribution of Y0. One also sometimes considers termi-
nating or transient renewal processes, where the interarrival distribution is
defective, i.e. may have an atom at +∞, ‖F‖ = limt→∞ F (t) < 1 and in
which case Sn = ∞ eventually. If ‖F‖ = 1, the renewal process is proper.

A main case of a renewal process is, of course, the Poisson process, where
the interarrival distribution is exponential. For example, the Poisson pro-
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cess provides an adequate description of the emission of particles from a
radioactive source. We next list some further phenomena, which it has been
suggested can be modelled by renewal processes.

Example 1.1 Consider an item, say an electric bulb, that fails at times
S0, S1, . . . and is replaced at the time of failure by a new item of the same
sort. Then F is the distribution of the lifetime of an item. The process is
delayed if the item present at time t = 0 is not new, so that its lifetime
need not have distribution F . �

Example 1.2 Consider a road on which vehicles are driving in one direc-
tion only and all with the same constant velocity. Two interpretations are
possible: (i) the Sn are the instants when vehicles pass a certain point on
the road, (ii) the timescale [0,∞) is a map of the road and the Sn the
positions of the vehicles at a certain instant. In both cases, the form of the
interarrival distribution to be expected depends in an essential manner on
whether there is little or much traffic on the road. In the first case (say
on a rural road) F might be taken to be exponential, while in the second
case (say on a main street in a city) the vehicles would rather be equally
spaced, i.e. F concentrated at one point. �

Example 1.3 Consider a continuous–time Markov process {Xt}t≥0 or a
discrete–time Markov chain {Xn}n∈N with discrete or continuous state
space, and let i be some fixed state. Then the instants Sn of visits to i form
a renewal process (provided in continuous time that the strong Markov
property holds and that Pi(τ(i) = 0) = 0; the last requirement fails say for
Brownian motion). The process is pure if and only if X0 = i and transient
if and only if state i is visited only finitely often (which is the definition of
transience in the case of a discrete state space).

Figure 1.2

Fig. 1.2 illustrates the case of a two–state Markov jump process with i = 2.
If the exponential holding time of state k has rate λ(k), then F is the
convolution of two exponential distributions with rates λ(1) and λ(2),
respectively. �

Though the main probabilistic object describing a renewal process is
nothing but a sum of nonnegative i.i.d. random variables, the point of view
of renewal theory is somewhat different from the one usually taken when
studying such sums. In particular, rather than in the behaviour of Sn as a
function of n we are interested in the number of steps needed to reach size
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t, i.e.

Nt = # {n = 0, 1, 2, . . . : Sn ≤ t} = inf {n : Sn > t}
the number of renewals up to time t. Note that

Nt ≤ n ⇐⇒ Sn > t, (1.1)

SNt−1 ≤ t < SNt , (1.2)

{Nt = n} = {Sn−1 ≤ t < Sn} (1.3)

These equations state, loosely speaking, that t → Nt is the inverse function
of n → Sn, and suggest that classical results on {Sn}n∈N could be converted
to results on {Nt}t≥0. For example:

Proposition 1.4 Let µ = EY1 =
∫∞
0

xF (dx) be the mean of the interar-
rival distribution. Then (irrespective of the distribution of Y0 or whether
µ < ∞ or µ = ∞)

Nt/t
a.s.→ µ−1, t → ∞, (1.4)

ENt/t → µ−1, t → ∞, (1.5)

Proof. Since Sn/n
a.s.→ µ and Nt

a.s.→ ∞, it follows by dividing (1.2) by
Nt that t/Nt

a.s.→ µ, i.e. Nt/t
a.s.→ µ−1. From this also the lim ≥ part of

(1.5) follows by Fatou’s lemma. To get lim ≤, consider a renewal process{
S̃n

}
n∈N

where the interarrival times are Ỹ0 = Y0, Ỹn = Yn ∧ a, and let

Ñt, µ̃, etc. be defined in the obvious way. Now by (1.3), Ñt is a stopping
time w.r.t. Ỹ1, Ỹ2, . . . for any fixed value of Y0. Hence we may apply Wald’s
identity conditionally upon Y0 and get

E
(
Ỹ1+ · · ·+ Ỹ

˜Nt

)
= E

[
E
(
Ỹ1+ · · ·+ Ỹ

˜Nt

∣∣Y0

)]
= E

[
µ̃E(Ñt |Y0)

]
= µ̃EÑt.

Clearly, Ñt ≥ Nt and by (1.2), S̃
˜Nt

= S̃
˜Nt−1 + Ỹ

˜Nt
≤ t + a. Thus

lim
t→∞ ENt/t ≤ lim

t→∞ EÑt/t = lim
t→∞ µ̃−1E(Ỹ1 + · · · + Ỹ

˜Nt
)/t

≤ lim
t→∞ µ̃−1ES̃

˜Nt
/t ≤ µ̃−1.

Now µ̃ ↑ µ as a ↑ ∞ and (1.5) follows. �

A CLT analogue is given in Section 6.
One of the main points of renewal theory turns out to be obtaining re-

finements of (1.5). For this reason, (1.5) is sometimes called the elementary
renewal theorem.

In the same way as in I.2, we shall now define the backward recurrence
time process {At}t≥0 and the forward recurrence time process {Bt}t≥0 as-
sociated with the renewal process. In the language of Example 1.1, At is
the age of the current item and Bt its residual or excess lifetime. That is,
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At is the time elapsed since the last renewal and Bt the waiting time until
the next renewal epoch > t,

At = t − SNt−1, Bt = SNt − t

(note that B0 = Y0 on {Y0 > 0} and B0 = Y1 on {Y0 = 0}). The paths have
the form illustrated in Fig. 1.3 and are right–continuous by definition.

Figure 1.3

For a given renewal process, it is only possible to attach sense to At if
t ≥ Y0. However, for any a ≥ 0 with F (a) = 1 − F (a) > 0 we can define
a renewal process by “starting with a renewal at −a,” i.e. letting Y0 have
the conditional distribution of Y1 given Y1 > a,

P(Y0 > y) = P(Y1 > y + a |Y1 > a) =
F (a + y)

F (a)
. (1.6)

Letting At = a + t, t < Y0, we then get a version of {At} that is defined
for all t ≥ 0 and has A0 = a. In fact, we shall show:

Proposition 1.5 The processes {At}t≥0 and {Bt}t≥0 are time–homogene-
ous strong Markov processes.

Proof. The Markov property is intuitively obvious from the construction in
the same way as in discrete time in I.2: Bt decreases linearly (and deter-
ministically) until 0 is hit, then jumps to Y1, decreases linearly to 0, jumps
to Y2 and so on, and this motion clearly has the asserted properties. The
motion of At is also linear (but the jump times are not predictable). Given
{As}0≤s≤t, the evolution of the process after time t depends on the past
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only through the distribution G of the waiting time until the next jump.
But the tail G(y) is given by (1.6) with a = At, which implies the Markov
property.

For the strong Markov property for {Bt}, let f be continuous and
bounded and let g(b) = Ebf(Bs). An inspection of the paths immedi-
ately shows that g(b − t) = Ebf(Bt+s), 0 < t < b. As t ↓ 0, we have
f(Bt+s) → f(Bs) and hence by dominated convergence g(b − t) → g(b),
i.e. g is left–continuous. For u ↓ t we have Bu ↑ Bt so that g(Bu) → g(Bt).
Thus {g(Bt)} has right–continuous paths, and the strong Markov property
for {Bt} follows by I.8.3. For {At}, let h(a) = Eaf(As). Using first the
right–continuity of {At}, we get for t ↓ 0 that

h(a) = Eaf(As+t) + o(1)

=
1

F (a)

{
F (a + t)Ea+tf(As) +

∫ a+t

a+

E0f(As+t−y)F (dy)
}

+ o(1)

= Ea+tf(As) + o(1) = h(a + t) + o(1).

Therefore h(a) is right–continuous, which in view of Au ↓ At, u ↓ t, implies
the paths of {h(At)} to be so. �

We note that a number of Markov processes associated with queues and
related models (see e.g. Problems 1.3, X.3.2, XIV.1.1) have paths of a
similar shape as {At}, {Bt} and that the strong Markov property in such
cases follows by small variants of the proof of Proposition 1.5

It was remarked in Example 1.3 that the recurrence times of a point i in
a Markov process {Xt} form a renewal process. Proposition 1.5 shows that
any renewal process is of this type (with Xt = At and i = 0).

Problems

1.1 (the type I counter) The incoming particles constitute a Poisson pro-
cess, but the registrations do not, since for technical reasons the counter cannot
register the second of two particles emitted at almost the same time. Suppose
that each registered particle locks the counter for a time with distribution G,
that particles arriving in a locked period have no effect and that locking times
of different particles are independent, both mutually and of the Poisson process.
Show that the registrations constitute a renewal process and find the interarrival
distribution.
1.2 (the pedestrian delay problem) At time 0, a pedestrian arrives at a
road and wants to cross. Crossing is possible when the gap beween two cars is at
least ξ. Find the distribution of the waiting time until crossing is performed.
1.3 Show that {(At, Bt)}t≥0 has the strong Markov property. [Hint: Consider
Ea+t,b−tf(As)g(Bs).]

Notes A classical reference for renewal theory is Chapter XI of Feller (1971).

In view of the basic importance of renewal theory, it is not surprising that

several generalizations have been considered, in particular renewal theory for
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Markov chains (VII.4 and references therein), for more general dependent se-

quences (Berbee, 1979; Lalley, 1986; Alsmeyer, 1994), for random walks (surveyed

in Gut, 1988), nonlinear renewal theory (Woodroofe, 1982; Siegmund, 1985;

Zhang, 1988), multivariate renewal theory, (Carlsson and Wainger, 1984, and

references therein), and finally renewal theory with infinite mean where a recent

paper with reference to older literature is Doney (1997).

2 Renewal Equations and the Renewal Measure

The renewal equation is the convolution equation Z = z + F ∗ Z (for the
convolution notation, see the Notes at the end of this section), i.e.

Z(t) = z(t) +
∫ t

0

Z(t − u)F (du), t ≥ 0. (2.1)

Here one thinks of Z as an unknown function on [0,∞), z as a known
function on [0,∞) and F as a known nonnegative (Radon) measure on
[0,∞). It is often assumed that F is a probability, i.e. ‖F‖ = 1, in which
case (2.1) is proper. If ‖F‖ < 1, the renewal equation (2.1) is defective, but
we shall also consider the excessive case ‖F‖ > 1. We always assume that
F (0) = 0. We shall first give some examples.

Example 2.1 Consider a pure renewal process with interarrival distribu-
tion F and the recurrence times At, Bt defined as in Section 1. Let ξ ≥ 0
be fixed and define ZA(t) = P(At ≤ ξ), ZB(t) = P(Bt ≤ ξ). Then ZA, ZB

satisfy the renewal equations

ZA = zA + F ∗ ZA, zA(t) = P(At ≤ ξ, Y1 > t) = I(t ≤ ξ)F (t), (2.2)
ZB = zB + F ∗ ZB, zB(t) = P(Bt ≤ ξ, Y1 > t) = F (t + ξ) − F (t).(2.3)

The proof of this is carried out by the renewal argument, i.e. (i) conditioning
on the value u of Y1, which yields

ZA(t) = P(At ≤ ξ, Y1 > t) +
∫ t

0

P
(
At ≤ ξ

∣∣Y1 = u
)
F (du), (2.4)

and (ii) remarking that the process starts from scratch at time Y1, which
yields P(At ≤ ξ |Y1 = u) = P(At−u ≤ ξ) for u ≤ t. Thus, since At = t on
{Y1 > t}, (2.2) and (2.4) are the same equation. Equation (2.3) is derived
in a similar manner using Bt = Y1 − t on {Y1 > t}. �

Example 2.2 (lotka’s integral equation) This comes from classical
deterministic or semi–deterministic population theory associated with the
names of Sharpe and Lotka. Consider the female part of a population,
where women aged a give birth (to a single daughter) at rate λ(a) and
survive to age a + t in a proportion of tpa (in traditional demographic
notation). We are interested in Z(t), the overall birthrate at time t, which
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can be split into the rates z(t), Z0(t) of births from women born before,
resp. after, time t = 0. To determine z(t), we must know the age structure
of the population at time zero, which will be represented by its density
f0(a) (thus

∫∞
0

f0(a) da is the initial population size, not necessarily = 1).
Then women aged a at t = 0 have density f0(a)tpa at time t and are aged
a + t, and hence

z(t) =
∫ ∞

0

f0(a)tpaλ(a + t) da

Similarly, women born at time t−s provide a contribution Z(t−s)sp0λ(s) ds
to Z0(t) so that

Z(t) = z(t) +
∫ t

0

Z(t − s)sp0λ(s) ds (2.5)

and we have a renewal equation with F (ds) = sp0λ(s) ds. Note that ‖F‖ =∫∞
0 sp0λ(s) ds is the average number of daughters born to a woman, the

so–called net reproduction rate. This could have values both < 1, = 1 and
> 1, but the typical case is that of a growing population with ‖F‖ > 1,
where (2.5) is thus excessive. Note also that other quantities of interest,
such as the density {

f0(a − t)tpa−t t ≤ a
Z(t − a)ap0 t > a

of women aged a at time t and the total population size

N(t) =
∫ t

0

Z(t − a)ap0 da +
∫ ∞

0

f0(a)t−apa da (2.6)

are readily expressed in terms of Z. �

Example 2.3 (the ruin problem of insurance mathematics) As-
sume that the claims incurred by an insurance company arrive according
to a Poisson process {Nt} with intensity λ, that the sizes of the claims are
i.i.d. nonnegative random variables X1, X2, . . ., with common distribution
say G, and that the inflow of premium up to time t is ct. Thus the risk
reserve at time t is

Ut = u + ct −
Nt∑

n=1

Xn,

Figure 2.1
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with u = U0 the initial value (cf. Fig. 2.1). We are interested in the
probabilities

Z(u) = P
(
Ut ≥ 0 ∀t

∣∣U0 = u
)
, 1 − Z(u) = P

(
inf

0≤t<∞
Ut < 0

∣∣U0 = u
)
,

of ultimate survival and ultimate ruin of the company, say for the purpose
of assessing whether c has been chosen sufficiently large compared to u,
and we will see that

Z(t) = Z(0) +
λ

c

∫ t

0

Z(t − x)G(x) dx. (2.7)

This is of the form (2.1), with F (dx) = (λ/c)G(x) dx. We note that ‖F‖ =
λν/c, where

ν =
∫ ∞

0

G(x) dx =
∫ ∞

0

y G(dy)

is the mean claim size, and that λν is the mean size of the claims received
per unit time, c the inflow of premium per unit time; in practical situations,
the company will typically have chosen c > λν such that ‖F‖ < 1.

The shortest proof of (2.7) exploits one of the most basic ex-
plicit formulas in Wiener–Hopf theory, to be proved in VIII.5.7: if
σ = inf {t > 0 : Ut < u = U0}, then u − Uσ has the (defective) density
(λ/c)G(x) when λν/c < 1. From this, (2.7) follows immediately by
conditioning upon x = u − Uσ and noting that Z(0) = P(σ = ∞).

A longer and more naive (but classical!) argument uses instead condi-
tioning upon the time s of the first claim where the process renews itself,
holding the new initial fortune u + cs − X1 (terminates if X1 > u + cs).
Therefore

Z(u) =
∫ ∞

0

λe−λs ds

∫ u+cs

0

Z(u + cs − x)G(dx).

Letting t = u + cs, we get

Z(u)e−λu/c =
λ

c

∫ ∞

u

e−λt/c dt

∫ t

0

Z(t − x)G(dx).

This representation shows that Z is differentiable, and differentiating w.r.t.
u yields

e−λu/c
(
Z ′(u) − λ

c
Z(u)

)
= −λ

c
e−λu/c

∫ u

0

Z(u − x)G(dx),

Z ′(u) =
λ

c
Z(u) − λ

c

∫ u

0

Z(u − x)G(dx).

Integrating w.r.t. du from 0 to t and letting

h(y) =
∫ t−y

0

Z(u) du, 0 ≤ y ≤ t, h(y) = 0, y > t,
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yields

Z(t) − Z(0) − λ

c
h(0) = −λ

c

∫ t

0

du

∫ u

0

Z(u − x)G(dx)

= −λ

c

∫ t

0

h(x)G(dx) = −λ

c

∫ ∞

0

h(x)G(dx)

= −λ

c
h(0) − λ

c

∫ ∞

0

h′(x)G(x) dx,

which is the same as (2.7). �

We shall now study questions of existence and uniqueness of solutions.
Asymptotic estimates will be derived in Sections 4 and 5 for the case ‖F‖ =
1 and in Section 7 for ‖F‖ 
= 1.

Given F , we define the renewal measure by U(dx) =
∑∞

0 F ∗n(dx) and
the renewal function U by U(t) =

∑∞
0 F ∗n(t) (see again the Notes at the

end of this section for notation).

Theorem 2.4 (i) The renewal function U(t) is finite for all t < ∞;
(ii) if the function z in the renewal equation (2.1) is bounded on finite
intervals (i.e. sup0≤t≤T |z(t)| < ∞ for all T < ∞), then Z = U ∗ z (i.e.
Z(t) =

∫ t

0
z(t−x)U(dx)) is well defined, a solution to (2.1) and the unique

solution to (2.1) which is bounded on finite intervals;
(iii) if ‖F‖ = 1 then U(t) is the expected number ENt of renewals up to time
t in a pure renewal process with interarrival distribution F . More generally,
in any renewal process with interarrival distribution F , the expected number
of renewals in (t, t + a] is

E(Nt+a − Nt) =
∫ a

0

U(a − ξ)Gt(dξ) = Gt ∗ U(a) = U ∗ Gt(a) (2.8)

where Gt(ξ) = P(Bt ≤ ξ). Further, the expression (2.8) cannot exceed U(a).

Lemma 2.5 If F is a measure on (0,∞) with F (a) < ∞ for all a < ∞,
then for any t < ∞ and δ < 1 there exists Cδ,t < ∞ such that F ∗n(t) ≤
Cδ,tδ

n for all n.

Proof. Since F ∗n(t) does not involve the restriction of F to (t,∞), we may
put F (dx) = 0, x > t if necessary to ensure that the Laplace transform
F̂ [β] =

∫∞
0

e−βxF (dx) is finite for all β < ∞ and that F̂ [β] → 0, β → ∞.
Choose β with F̂ [β] < δ and note that

F ∗n(t) ≤ eβt

∫ t

0

e−βsF ∗n(ds) ≤ eβtF̂ [β]n. �

Proof of Theorem 2.4. (i) follows immediately by Lemma 2.5 (alternatively,
if ‖F‖ = 1, use (iii) and (1.5)). For (ii), it is now obvious that Z = U ∗ z

is well defined and bounded on finite intervals. Defining UN =
∑N

0 F ∗n,
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ZN = UN ∗ z, we have ZN+1 = z + F ∗ ZN and that Z = limZN is a
solution follows as N → ∞. Given two solutions of the type considered,
their difference V satisfies V = F ∗ V = · · · = F ∗n ∗ V so that

|V (t)| =
∣∣∣∣∫ t

0

V (t − x)F ∗n(dx)
∣∣∣∣ ≤ sup

0≤y≤t
|V (y)| · F ∗n(t),

and V (t) = 0 follows as n → ∞. For (iii), it follows from (1.1) that in a
pure renewal process with interarrival distribution F

ENt =
∞∑

n=0

P(Nt > n) =
∞∑

n=0

P(Sn ≤ t)

=
∞∑

n=0

P(Y1 + · · · + Yn ≤ t) =
∞∑

n=0

F ∗n(t) = U(t),

and the more general (2.8) then follows by conditioning on Bt = ξ and
noting that a pure renewal process starts at time t + ξ. Finally, an upper
bound for (2.8) is obtained by replacing Gt with the distribution degenerate
at zero and this yields U(a). �

Example 2.6 In many examples, the form Z = U ∗ z of the solution to
Z = z + F ∗ Z can be seen directly and sometimes this is even the most
natural approach. Consider as an example a shot–noise process

Wt =
Nt−1∑
n=0

f(t − Sn, Xn)

where X0, X1, . . . are i.i.d. and independent of the renewal process. Then
Z(t) = EWt satisfies

Z(t) =
∞∑

n=0

E
[
f(t − Sn, Xn); Sn ≤ t

]
=

∞∑
n=0

∫ t

0

z(t − u)F ∗n(du) = U ∗ z(t),

where z(t) = Ef(t, X1).
The shot–noise process is used to describe certain electrical tubes, where

primary impulses of sizes X0, X1, . . . are emitted at the epochs of a renewal
process. An impulse of size x then creates secondary effects which are of size
f(t, x) after time t. Similar phenomena occur in road traffic noise, where
the renewal process describes the passing of the cars, Xn is the noise level
of the nth car and f(t, x) is the actual noise at a distance of t. �

If U is absolute continuous on (0,∞), we call the density u(x) = dU/dx
the renewal density.
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Proposition 2.7 The renewal density u exists if and only if F has a den-
sity f . Then u =

∑∞
1 f∗n or, equivalently, u is the solution of the renewal

equation u = f + F ∗ u.

Proof. It is clear that if f exists, then so does u and is given by u =
∑∞

1 f∗n;
that this is the same as the solution U ∗ f of u = f + F ∗ u follows from
u(0) = f(0) = 0 (equivalently, u = f + F ∗ u follows at once from the
renewal argument). �

Example 2.8 The main examples where the renewal function, the renewal
density, or the distribution of At, Bt, etc. can be found explicitly are the
phase–type ones given in III.5. For an additional one, assume that F is
uniform on (0, a). Then the renewal density u(x) exists and we will show
that it is given by

u(x) =
1
a
ex/a

�x/a∑
k=0

e−k (k − x/a)k

k!
. (2.9)

To this end, let v(x) denote the r.h.s. of (2.9), and assume w.l.o.g. that
a = 1. Then the renewal equation u = f + F ∗ u for u means

u(x) = I(x < 1) +
∫ x

0

u(x − y)I(y < 1) dy = I(x < 1) +
∫ x

(x−1)+
u(y) dy

which implies

u′(x) =
{

u(x) x < 1
u(x) − u(x − 1) x > 1 .

In particular, from u(0+) = f(0+) = 1 we get u(x) = ex = v(x), x ≤ 1.
Thus the relation u(x) = v(x), n < x ≤ n + 1, holds for n = 0. Assuming
it shown for n − 1, we get

v′(x) = v(x) − ex

�x∑
k=1

e−k (k − x)k−1

(k − 1)!

= v(x) − ex−1

�x−1∑
�=0

e−� (� − x + 1)�

�!

= v(x) − v(x − 1) = v(x) − u(x − 1), n < x ≤ n + 1,

which together with v(n) = u(n) and u′(x) = u(x) − u(x − 1) implies
u(x) = v(x), n < x ≤ n + 1. Thus u(x) = v(x) for all x. �

It is clear by the same argument as in the proof of Theorem 2.4 that if the
renewal process is terminating, ‖F‖ < 1, then U(t) can still be interpreted
as the expected number of renewals in [0, t]. In particular, the expected
number of renewals within finite time is

‖U‖ = lim
t→∞ U(t) =

∞∑
n=0

‖F‖n =
1

1 − ‖F‖ , (2.10)
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cf. also I.2.4.
However, the renewal measure has a different important interpreta-

tion in the terminating case. Define the lifetime or maximum by M =
sup {Sn : Sn < ∞}. Then:

Proposition 2.9 In the zero–delayed case with ‖F‖ < 1, the distribution
of M is (1 − ‖F‖)U .

Proof. We give two arguments, (a) and (b). In (a), put σ = inf
{
n ≥ 0 : Yn+1

= ∞}
. Then

M = Y1 + · · · + Yσ, P(σ = n) =
(
1 − ‖F‖)‖F‖n,

and conditionally upon σ, we have P(Yk ≤ y |σ) = G(y) for k ≤ σ, where
G = F/‖F‖. Hence

P(M ≤ y) =
∞∑

n=0

P(σ = n)P
(
Y1 + · · · + Yn ≤ y

∣∣ σ = n
)

=
∞∑

n=0

(
1 − ‖F‖)‖F‖nG∗n(y) =

(
1 − ‖F‖) ∞∑

n=0

F ∗n(y)

=
(
1 − ‖F‖)U(y).

In (b), let Z(x) = P(M ≤ x). Now if Y1 = ∞, then M = 0 and hence
M ≤ x, whereas if 0 < Y1 = y < ∞, then for {M ≤ x} to occur we must
have y ≤ x and that the lifetime of the renewal process starting at y is at
most x − y. Hence

Z(x) = 1 − ‖F‖ +
∫ x

0

Z(x − y)F (dy),

which implies Z(x) = U ∗ (1 − ‖F‖)(x) =
(
1 − ‖F‖)U(x). �

Problems

2.1 Find a renewal equation for the joint distribution of the recurrence times
(At, Bt).
2.2 (the type II counter) As in Problem 1.1, we assume that the particles
arrive at the counter according to a Poisson process with intensity λ, but use a
different model for the locking mechanism, namely that locking times of different
particles are i.i.d. with common distribution G and that each particle arriving
at the counter cancels the aftereffects (if any) of its predecessors. Show that the
probability Z(t) of the duration of the locked period to exceed t satisfies the
renewal equation

Z(t) = G(t)e−λt +

∫ t

0

Z(t − x)G(x)λe−λx dx.

2.3 Show that Z(t) = Z(0)U(t) = 0 in the ruin problem with c ≤ λν.

2.4 Show that if the Laplace transform F̂ is well defined (e.g. if ‖F‖ < ∞) then

Û = (1 − F̂ )−1 and that in (2.2) Ẑ = ẑ/(1 − F̂ ).
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Notes Notationally, F ∗n denotes the nth convolution power of F , i.e. the
probability distribution degenerate at zero for n = 0, while for n = 0, 1, 2, . . .

F ∗(n+1)(t) =

∫ t

0

F ∗n(t − u) F (du) =

∫ t

0

F (t − u)F ∗n(du).

In particular, ‖F ∗n‖ = ‖F‖n. Further, we have used the convention that the
convolution F ∗Z of a function Z and a measure F is a function. When identifying
the measure F (dx) with the function F (t) =

∫ t

0
F (dx), this is consistent with

the usual convolution of measures; indeed, if Z itself corresponds to Z(dx), then
F ∗Z(t) =

∫ t

0
F ∗Z(dx). The proof of this is elementary as well as that of formulas

like F ∗ G = G ∗ F , F ∗ (G ∗ Z) = (F ∗ G) ∗ Z used without further notice in the
text (here G is another measure).

More material on the demographic model in Example 2.2 is in Pollard (1973)

and Preston et al. (2001). We return to ruin probabilities in XIV.5–6.

3 Stationary Renewal Processes

The definition that a renewal process (or a general point process on [0,∞))
be stationary is the obvious one: if for any t > 0 we shift the origin
to t, the distributions of the epochs should be left unchanged; formally,
{Ns+t − Nt}s≥0

D= {Ns}s≥0. Clearly, this will hold if the distribution of
the forward recurrence time Bt does not depend on t, i.e. if the Markov
process {Bt} is stationary. Conversely, this is also necessary since otherwise
the first epoch of {Ns+t − Nt} has a distribution depending on t.

The form of the stationary distribution F0 for {Bt} is easily guessed by
a level crossing argument. Namely, in a stationary situation the average
number of upcrossings of level x > 0 should be the same as the average
number of downcrossings, which in turn leads to the rate of upcrossings
being equal to the rate of downcrossings. Assume that F0 exists and has a
density f0. An upcrossing of a stationary version of {Bt} in [0, h] occurs if
B0 ∈ (0, h] and the jump out of 0 at time B0 exceeds x so that the rate
is f0(0)F (x)h + o(h). For x > h, a downcrossing occurs precisely when
B0 ∈ (x, x + h] so that the rate is f0(x)h + o(h). This shows that f0(x) =
f0(0)F (x) and from 1 =

∫
f0 = f0(0)µ, we then get f0(x) = F (x)/µ.

A similar argument for {At} is in principle possible but more complicated
(see Problem 3.1), and it is easier to note that

{Bt ≤ ξ} =
{
renewal in (t, t + ξ]

}
= {At+ξ < ξ} (3.1)

so that (since F0 was found to have a density so that P(Bt = ξ) = 0) the
stationary distributions for {At}, {Bt} must be the same.

The formal justification for the level crossing argument is provided by
the rate conservation law considered in VII.6, but in the rest of this section,
we will give a rigorous direct treatment of the above discussion as well as
look into some further topics. We let F0 denote the measure with density
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F (x)/µ, assuming for the rest of the section that µ < ∞ since otherwise
there is no hope for stationarity properties.

Considering {At}, {Bt} jointly, we have

P
(
Bt > y

∣∣At = x
)

= P
(
Y1 > x + y

∣∣Y1 > x
)

=
F (x + y)

F (x)
, (3.2)

which leads to:

Lemma 3.1 (i) If {At} is stationary, then so is {Bt}. (ii) If At has
distribution F0, then so has Bt, and P(At > x, Bt > y) = F 0(x + y).

Proof. Part (i) follows immediately from (3.2) which shows that the dis-
tribution of Bt is a function of that of At. If indeed as in (ii) At has
distribution F0, (3.2) yields

P(At > x, Bt > y) =
∫ ∞

x

F (z + y)
F (z)

F0(dz) =
1
µ

∫ ∞

x

F (z + y) dz

=
1
µ

∫ ∞

x+y

F (z) dz = F 0(x + y);

that the distribution of Bt is F0 then follows by taking x = 0. �

The joint distribution in (ii) can be described in a simple intuitive way.
Let Ct = At + Bt denote (in the terminology of Example 1.1) the current
lifetime of the item at time t.

Lemma 3.2 Let F1 be the distribution with density x/µ w.r.t. F , let C be
a r.v. with distribution F1, let U be independent of C and uniform on (0, 1),
and define A = CU , B = C(1 − U). Then P(A > x, B > y) = F 0(x + y).

Proof. Since A > x, B > y is equivalent to C > x + y, U ∈ (
x/C, 1− y/C

)
,

we get

P(A > x, B > y) =
∫ ∞

x+y

[
1 − x + y

c

] c

µ
F (dc)

=
1
µ

∫ ∞

0

[c − x − y]+F (dc) =
1
µ

∫ ∞

x+y

F (z) dz = F 0(x + y),

using integration by parts in the third step. �

Theorem 3.3 Let C be a r.v. with distribution F1 and let U be indepen-
dent of C and uniform on (0, 1). Then the version of the Markov process
{(At, Bt, Ct)} obtained from the initial values A0 = CU , B0 = C(1 − U),
C0 = C is strictly stationary. Further, the point process whose set of epochs
is

{t ≥ 0 : At− 
= At} = {t ≥ 0 : Bt− 
= Bt}
is a stationary renewal process with interarrival distribution F .
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Lemma 3.4 A Radon measure H on [0,∞) satisfies U ∗ H(dx) = dx
(Lebesgue measure) if and only if H has density F (x).

Proof. If H has density h(x) = F (x), then U ∗ H has density U ∗ h =
U − U ∗ F = F ∗0 = 1, i.e. U ∗ H(dx) = dx. If also U ∗ H1(dx) = dx,
then U ∗ H(a) = a = U ∗ H1(a). Thus the solutions of Z = H + F ∗ Z,
Z = H1 + F ∗ Z are the same, and this immediately implies H = H1. �

Proof of Theorem 3.3. In view of Lemma 3.1(i), all that needs to be shown
is that {At} is stationary. By Lemma 3.2, A0 has distribution F0 and we
must show that P(At ≤ ξ) = F0(ξ) for all t, ξ. If t ≥ ξ, At ≤ ξ occurs
precisely when there is a renewal in [t− ξ, t]. Since B0 also has distribution
F0 by Lemma 3.1(i), the intensity measure (cf. A3) of renewals is U ∗F0(dx)
which by Lemma 3.4 is dx/µ. Thus conditioning upon the time x of the
last renewal we get

P(At ≤ ξ) =
∫ t

t−ξ

F (t − x) dx/µ =
∫ ξ

0

F (y) dy/µ = F0(ξ).

If t ≤ ξ, At > ξ occurs when the initial item has age a at least ξ − t and
survives to time t. Thus

P(At > ξ) =
∫ ∞

ξ−t

F (a + t)
F (a)

F0(da)

=
∫ ∞

ξ−t

F (a + t) da/µ =
∫ ∞

ξ

F (a) da/µ = F 0(ξ).

�

The fact that the stationary distribution of Ct is F1, not F , is known as
the inspection or waiting time paradox, stating that the item at time t is
not typical in the sense of having distribution F . The reason is loosely that
sampling at a fixed time favours items with long lifetimes, and therefore
one also speaks of length–biasing. The paradox is important not only for
its own sake but also as a warning for intuition in many similar situations.

Having constructed a stationary renewal process, we finally consider the
uniqueness question. In addition to the characterizations studied above, we
will also consider the intensity measure, counting the expected number of
renewals. The intensity mesure is stationary if it is translation invariant,
i.e. equal to Lebesgue measure times a constant (necessarily µ−1 by the
elementary renewal theorem).

Proposition 3.5 Let G be a distribution on (0,∞), such that either (i) G
is stationary for {At}, (ii) G is stationary for {Bt} (iii) a renewal process
with delay distribution G is stationary, or (iv) a renewal process with delay
distribution G has stationary intensity measure. Then G = F0.
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Proof. It is by now clear that (i)⇒(ii)⇒(iii)⇒(iv) so it suffices to show that
(iv)⇒ G = F0. But the intensity measure dx/µ equals U ∗ G(dx), so this
follows at once from Lemma 3.4. �

Corollary 3.6 A delayed renewal process is stationary if and only if the
distribution of the initial delay B0 is F0.

The proof is immediately clear from the above discussion. However, note
that when replacing B0 by A0 one only gets “if” (“only if” fails say for the
Poisson process).

Problems

3.1 Assume that F has a density f . Show by a level crossing argument that a
stationary density f0 for {At} must satisfy f ′

0(x) = −f0(x)f(x)/F (x) and that
therefore f0(x) = F (x)/µ.
3.2 Evaluate F0 if F is degenerate at 1.
3.3 Evaluate F0 for the cases F = Ek and F = Hk; cf. III.4.
3.4 Find the density of F0 ∗ F ∗n.
3.5 Show that the current life distribution F1 is stochastically larger than F ,
F 1(x) ≥ F (x).

Notes There has been some work on properties of the mapping sending F into
F1; see Brown (2004) for a recent contribution and references.

4 The Renewal Theorem in Its Equivalent Versions

The renewal theorem is one of the most fundamental results of probability
theory, perhaps not so much because of its intrinsic interest but rather be-
cause of the applicability to, and strong implications for, a number of other
areas. It has several versions, one analytical giving asymptotic estimates
for the solutions of (proper) renewal equation, and various probabilistic
ones which all in some way state that as t → ∞, then a (possibly delayed)
renewal process asymptotically behaves like a stationary one if µ < ∞ and
has a behaviour like null recurrence if µ = ∞. In the present section, we
state the various versions and prove their equivalence. The classical ana-
lytical proof of the renewal theorem is then in Section 5 and a more recent
coupling proof in VII.2.

From now on it becomes necessary to distinguish between F being lattice
(concentrated on a set of the form {δ, 2δ, . . .}) or nonlattice. In the lattice
case, one may rescale time so as to make F aperiodic on N and a number
of aspects of renewal theory for that case have already been studied in I.2
(including the Problems). We shall therefore almost entirely concentrate
on the nonlattice case and only state a few selected results for the lattice
case.
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Before being able to state all versions of the renewal theorem, we need a
definition. Suppose for a while that z in the renewal equation Z = z+F ∗Z
is nonnegative, and for h > 0 define

zh(x) = sup
y∈Ih

n

z(y), zh(x) = inf
y∈Ih

n

z(y), x ∈ Ih
n = (nh, (n + 1)h],

Figure 4.1

cf. Fig. 4.1. Then we call z directly Riemann integrable (d.R.i.) if
∫
zh =∫∞

0 zh(x)dx is finite for some (and then all) h, and
∫
zh−

∫
zh → 0 as h → 0.

For functions with compact support this concept is the same as Riemann
integrability. If z can attain also negative values, we say that z is d.R.i. if
both z+ and z− are so.

Proposition 4.1 Suppose z ≥ 0. Then if z is d.R.i., z is also Lebesgue
integrable and

∫
zh,

∫
zh have the common limit

∫
z as h ↓ 0. A necessary

condition for z being d.R.i. is
(i) z is bounded and continuous a.e. w.r.t. Lebesgue measure.
Sufficient conditions are:
(ii)

∫
zh < ∞ for some h and (i) holds;

(iii) z has bounded support and (i) holds;
(iv) z ≤ z∗ with z∗ d.R.i. and (i) holds for z;
(v) z is nonincreasing and Lebesgue integrable.

Proof. Boundedness is necessary for
∫

zh < ∞. Suppose that z is bounded
but not a.e. continuous. Then if we let z(x) = limy→xz(y), z(x) =
limy→xz(y), we have for some ε > 0 that the Lebesgue measure δ, say,
of {z : z(x) > z(x) + ε} is nonzero. But except possibly for x = nh we
have

zh(x) ≥ z ≥ z ≥ zh so that
∫

zh −
∫

zh ≥
∫

z −
∫

z ≥ εδ,

and the necessity of (i) follows. In particular, if z is d.R.i., then by (i) zh(x) ↓
z(x) a.e. and limh↓0 zh is Lebesgue integrable by monotone convergence.
Hence z is so too, and

∫
zh → ∫

z. Similarly,
∫
zh → ∫

z. The same argument
gives the sufficiency of (ii), and obviously (iii)⇒(ii). If (iv) holds, then
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zh ≤ ∫

z∗h < ∞ and (ii) holds. Finally by a standard argument (v)⇒(ii).
�

Example 4.2 We will verify that zA(t) = I(t ≤ ξ)F (t), zB(t) = F (t +
ξ) − F (t) in Example 2.1 are d.R.i. Here F , having a countable number of
jumps, is continuous a.e., and thus the assertion for zA follows from (iii).
If µ < ∞, we may apply (iv) to z = zB, with z∗(t) = F (t) being d.R.i.
according to (v). If µ = ∞, let m ∈ N satisfy ξ ≤ (m − 1)h. Then∫

zh ≤ h

∞∑
n=0

[
F
(
(n + 1)h + ξ

)− F (nh)
]

≤ h

∞∑
n=0

[
F
(
(n + m)h

)− F (nh)
]

= h lim
N→∞

N∑
n=0

[
F
(
(n + m)h

)− F (nh)
] ≤ h lim

N→∞

N+m∑
k=N+1

F (kh)

which is bounded by hm. Now use (ii). �

We can now state four different version 4.4–4.7 of the renewal theorem:

Theorem 4.3 Suppose that F is nonlattice and proper (‖F‖ = 1) and let
µ =

∫∞
0 xF (dx), F0(t) = µ−1

∫ t

0 F (y) dy (i.e. F0 ≡ 0 when µ = ∞). Then:

4.4 (blackwell’s renewal theorem) Let U =
∑∞

0 F ∗n be the
renewal function. Then for all a,

U(t + a) − U(t) → a

µ
, t → ∞.

More generally, in any (possibly delayed) renewal process with interarrival
distribution F the expected number Vt(a) of renewals in (t, t + a] tends to
a/µ as t → ∞.

4.5 Let {At}t≥0 be the backward recurrence time process in a (possibly
delayed) renewal process with interarrival distribution F . Then P(At ≤
ξ) → F0(ξ) for all ξ. In particular, if µ < ∞ then At

D→ F0.

4.6 Let {Bt}t≥0 be the forward recurrence time process in a (possibly
delayed) renewal process with interarrival distribution F . Then P(Bt ≤
ξ) → F0(ξ) for all ξ. In particular, if µ < ∞ then Bt

D→ F0.

4.7 (key renewal theorem) Suppose that the function z in the
renewal equation Z = z + F ∗ Z is d.R.i. Then

Z(t) = U ∗ z(t) → 1
µ

∫ ∞

0

z(x) dx, t → ∞.

We note that in the case µ < ∞, 4.4–4.6 state that the renewal process
becomes asymptotically stationary as t → ∞. If µ = ∞, 4.5 and 4.6 state
that the mass in the distributions of At and Bt drifts off to ∞.
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Proof of 4.7⇒ 4.5. Consider first the case of a zero–delayed renewal process,
where according to Example 2.1 we have to show ZA(t) = U∗zA(t) → F0(ξ).
But it was shown in Example 4.2 that zA is d.R.i., hence by 4.7 the limit
of ZA(t) exists and equals µ−1

∫
zA = F0(ξ). In the case of a general delay

distribution F ∗
0 , replace F by F ∗

0 in (2.4), let t → ∞ and note that the
first term tends to 0 and F ∗

0 ∗ ZA(t) to lim ZA(t) = F0(ξ) by dominated
convergence. �

Proof of 4.5 ⇐⇒ 4.6. The equivalence is an immediate consequence of the
identity {Bt ≤ ξ} = {At+ξ < ξ} noted in (3.1). �

Proof of 4.6⇒ 4.4. Let h(ξ) = U(a − ξ)I(ξ ≤ a), Gt(ξ) = P(Bt ≤ ξ). Then
h is bounded and continuous a.e. w.r.t. dξ, hence a.e. w.r.t. F0(dξ), and
since Gt → F0 in the sense of vague convergence (see A1 and Remark 4.9),
(2.8) yields

Vt(a) = (U ∗ Gt)(a) =
∫ ∞

0

h(ξ)Gt(dξ)

→
∫ ∞

0

h(ξ)F0(dξ) = U ∗ F0(a) =
a

µ
.

�

Proof of 4.4⇒ 4.7. Assume w.l.o.g. that z ≥ 0. Let nh < x ≤ (n + 1)h and
define In = In(x) =

(
x − (k + 1)h, x − kh

]
. Then

Z(x) =
∫ x

0

z(x − y)U(dy)

=
∫ x−nh

0

z(x − y)U(dy) +
n−1∑
k=0

∫
Ik

z(x − y)U(dy) .

Since z(t) → 0 as t → ∞, the first term tends to 0. The second is at most
n−1∑
k=0

zh(kh)
[
U(x − kh) − U

(
x − (k + 1)h

)]
≤

M∑
k=0

zh(kh)
[
U(x − kh) − U

(
x − (k + 1)h

)]
+ U(h)

n−1∑
k=M+1

zh(kh)

since U(t + h) − U(t) ≤ U(h) by Theorem 2.4(iii). Letting first n, x → ∞
with M fixed, next M → ∞ and finally h → 0 yields

lim
x→∞Z(x) ≤ h

µ

M∑
k=0

zh(kh) + U(h)
∞∑

k=M+1

zh(kh),

lim
x→∞Z(x) ≤ 1

µ

∫
zh + 0, lim

x→∞Z(x) ≤ 1
µ

∫ ∞

0

z(t) dt.

lim ≥ is proved similarly. �
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Suitable versions of the renewal theorem also exist in the lattice case.
Mathematically, this is somewhat easier and has to a large extent already
been treated in I.2. For example:

Proposition 4.8 Suppose that F is lattice with span δ and let 0 ≤ y < δ.
Then if ϕ(y) =

∑∞
0 z(y+nδ) converges absolutely, it holds that U∗z(y+nδ)

→ (δ/µ)ϕ(y) as n → ∞.

Proof. The renewal measure U is supported by {0, δ, 2δ, . . .}, with mass
say ukδ at kδ. By I.2.2, ukδ → δ/µ as k → ∞, and hence by dominated
convergence

Z(y + nδ) = (U ∗ z)(y + nδ) =
n∑

k=0

z(y + nδ − kδ)ukδ

=
n∑

k=0

z(y + kδ)u(n−k)δ → δ

µ
ϕ(y) .

�

Remark 4.9 The connection between Blackwell’s renewal theorem and
the key renewal theorem may in more abstract terms be rephrased as
follows. Consider for each t the measure νt on [0, t] obtained by time re-
version of the renewal measure restricted to [0, t], i.e.

∫∞
0 f(x) νt(dx) =∫ t

0 f(t − y)U(dy). Then Blackwell’s theorem asserts that νt[0, a) → a/µ
for all a, which by general results from measure theory is equivalent to
νt(da) → da/µ vaguely (i.e.

∫
f(a) νt(da) → ∫

f(a) da/µ whenever f has
compact support and is continuous or, more generally, bounded and a.e.
continuous). Any such f is d.R.i., and hence we may view the key renewal
theorem as an extension of Blackwell’s theorem to also cover certain f with
unbounded support, a case of major importance for applications. �

Problems

4.1 Show that the stationary distribution F1 of the current life in Section 3 is
also a limiting distribution.
4.2 Show that if F has a d.R.i. density f so that the renewal density u exists,
then u(x) → 1/µ.
4.3 Show that the z in Problem 2.2 is d.R.i. and express lim Z(t) in terms of the
Laplace transform of G.
4.4 Find examples of functions that are Lebesgue integrable but not d.R.i.
4.5 Give a simplified proof of Theorem 3.5 by invoking the renewal theorem.
4.6 Show that Blackwell’s theorem remains valid if F is allowed to have an atom
at 0. [Hint: Show first that Bt converges in distribution and apply next Wald’s
identity to SNt+1.]
4.7 Show that if z in the renewal equation is not necessarily d.R.i. but only
bounded with z(x) → 0, x → ∞, then Z(x) = o(x).
4.8 Show that if z(x) ∼ cxα with α > 0 in the renewal equation, then Z(x) ∼
cxα+1/µα.
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5 Proof of the Renewal Theorem

The formulations 4.5–4.6 of the renewal theorem in terms of the recurrence
time processes shows that for the lattice case the situation is essentially
settled by the analysis of Chapter I. The nonlattice case is considerably
more involved, and no really short and elementary approach is known.
We give in this section a standard analytical proof developed largely by
Feller (1971). A parallel more probabilistic proof is then given in VII.2.
Some ingredients are common, in particular the way the nonlattice property
comes in:

Lemma 5.1 Suppose that F is nonlattice on (0,∞) and define U =∑∞
0 F ∗n, S = supp(U). Then S is asymptotically dense at ∞ in the sense

that d(x, S) = infy∈S |x − y| → 0, x → ∞.

Proof. S is the closure of ∪∞
0 suppF ∗n which is asymptotically dense by

A7.1 (take G = supp(F ) there). �

Proposition 5.2 (choquet–deny) If F is a nonlattice distribution on
(0,∞) and ϕ a bounded continuous function on R satisfying ϕ = F ∗ ϕ,
then ϕ is necessarily constant.

Proof. Since

E[ϕ(x − Sn+1) |Y1, . . . , Yn] =
∫ ∞

0

ϕ(x − Sn − y)F (dy)

= (F ∗ ϕ)(x − Sn) = ϕ(x − Sn),

the sequence {ϕ(x − Sn)} is a bounded martingale and hence converges a.s.
and in L2. By the Hewitt–Savage 0–1 law, the limit is almost surely constant
which by L2–theory for martingales implies that ϕ(x) = ϕ(x − S1) = · · ·
= ϕ(x − Sn) · · · a.s. Thus ϕ(x − u) = ϕ(x) for F ∗n–a.a. u, which by the
continuity of ϕ shows that ϕ(x − u) = ϕ(x) for all u ∈ supp(F ∗n). Now
let a, b be given. Then by Lemma 5.1 we can choose sequences {an}, {bn}
with n − an → a, n − bn → b and an, bn ∈ ∪∞

1 supp(F ∗n). Then

ϕ(a) = limϕ(n − an) = limϕ(n) = limϕ(n − bn) = ϕ(b) . �

Now let λ(t)(dy) = U(t − dy), λ(dy) = dy/µ, t ≥ 0, so that the renewal
theorem is equivalent to λ(t) → λ vaguely; cf. Remark 4.9. To show this, it is
sufficient to show that each sequence {sn} with sn → ∞ has a subsequence
{tn} with λ(tn) → λ. By Theorem 2.4(iii), supn λ(sn)(K) < ∞ for any
compact set K which by standard facts from measure theory implies that{
λ(sn)

}
is vaguely compact. Thus λ(tn) → ν for some subsequence {tn} and

some ν, and we have to show ν = λ.

Lemma 5.3 λ(tn+x) → ν for all x ∈ R.

Proof. With ν(x)(dy) = ν(dy − x), it is clear that λ(tn+x) → ν(x) for all x.
To get ν(x) = ν, it is sufficient to show that continuous functions z with
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compact support have the same integral, i.e. that

ϕ(x) =
∫

z(y)ν(x)(dy) = lim
n→∞

∫
z(y)λ(tn+x)(dy) = lim

n→∞(U ∗z)(tn+x)

is independent of x. But Z = U ∗ z being a solution of a renewal equation,
this implies that ϕ(x) equals

lim
n→∞

{
z(tn + x) +

∫ tn+x

0

Z(tn + x − y)F (dy)
}

= 0 +
∫ ∞

0

ϕ(x−y)F (dy)

(using dominated convergence). Hence by the Choquet–Deny theorem, we
have only to show that ϕ is continuous which will follow if Z is uni-
formly continuous. But let z be supported by [0, T ] and define κ(ε) =
sup|x−y|≤ε |z(x) − z(y)|. Then for |x1 − x2| ≤ ε,

Z(x1) − Z(x2) =
∣∣∣∣∫ x1

0

z(x1 − y)U(dy) −
∫ x2

0

z(x2 − y)U(dy)
∣∣∣∣

≤ κ(ε)U(T + ε) → 0, ε → 0.

�

Proof of the renewal theorem. The conclusion of Lemma 5.3 means that ν
is translation invariant, i.e. ν(dy) = γ dy for some γ, and we have to show
γ = 1/µ. From

U(tn − a) − U(tn − a − h) = λ(tn)[a, a + h) → γh

for all h > 0 it follows by the same arguments as in the proof of 4.4⇒4.7
that U ∗ z(tn) → γ

∫
z whenever z is d.R.i. If µ < ∞, let z(x) = F (x).

Then U ∗ z ≡ 1, cf. Lemma 3.4 , and
∫

z = µ so that 1 = γµ. If µ = ∞,
let z(x) = F (x)I(x ≤ x0). Then similarly we get γ

∫
z ≤ 1 which, letting

x0 → ∞, yields γµ = γ · ∞ ≤ 1 and γ = 0 = 1/µ. �

Notes The present proof of the renewal theorem follows Feller (1971) closely.

For alternative proofs, we mention in particular the coupling proof in VII.2, a

Markov chain proof due to McDonald (1975) and finally the Fourier analytic

proofs that can be found e.g. in Woodroofe (1982).

6 Second–Moment Results

We are concerned with certain refinements of renewal theory, which require
the existence of the second moment EY 2 of the interarrival distribution F ,
or equivalently that σ2 = VarY < ∞. For simplicity, only the nonlattice
case is considered.

The first (and simplest) problem to be studied is to look for expansions of
the renewal function U(t) more detailed than the one U(t) ∼ t/µ provided
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by the elementary renewal theorem. This can be obtained by noting that

SNt = t + Bt (6.1)

and taking expectations: by Wald’s identity,

ESNt = µENt = µU(t), U(t) =
t

µ
+

EBt

µ
. (6.2)

Furthermore, from Bt
D→ F0 one expects that

EBt →
∫ ∞

0

xF0(dx) =
1
µ

∫ ∞

0

xF (x) dx =
EY 2

2µ
=

σ2 + µ2

2µ
. (6.3)

To see that this is indeed the case, evaluate e.g. Z(t) = EBt by the renewal
argument and check that

z(t) = E[Bt; Y1 > t] = E[Y1 − t; Y1 > t]

is directly Riemann integrable with integral EY 2/2. Combining (6.1)–(6.3),
we have proved:

Proposition 6.1 U(t) =
t

µ
+

EY 2

2µ2
+ o(1), t → ∞.

One might expect that (assuming higher order moments) the o(1) term
could be further expanded as c1/t + c2/t2 + · · ·. However, under suitable
regularity conditions the rate of decay is in fact exponentially fast; cf.
Problem VII.2.2.

Ignoring Bt in (6.1) yields the lower bound U(t) ≥ t/µ. We shall next
find an upper bound somewhat related to the asymptotic expression in
Proposition 6.1:

Proposition 6.2 (lorden’s inequality) U(t) ≤ t

µ
+

EY 2

µ2
.

Proof. According to (6.2) we must show that EBt ≤ EY 2/µ for all t. By
(2.8), U(t + s) − U(s) ≤ U(t) so that (6.1) and (6.2) yield

EBt + EBs = µ[U(t) + U(s)] − t − s ≥ µU(t + s) − t − s = EBt+s,

EBt ≤ inf
{
EBs + EBt−s : 0 ≤ s ≤ t/2

}
≤ 2

t

∫ t/2

0

[
EBs + EBt−s

]
ds =

2
t

∫ t

0

EBs ds . (6.4)

Now an inspection of the paths shows that∫ t

0

Bs ds =
1
2

Nt∑
n=1

Y 2
n − 1

2
B2

t .

Thus ∫ t

0

EBs ds =
1
2

ENtEY 2 − 1
2

EB2
t =

1
2
U(t)EY 2 − 1

2
EB2

t
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=
1
2
(t + EBt)EY 2/µ − 1

2
EB2

t . (6.5)

Letting α = EBt we have EB2
t ≥ α2 and combining (6.4), (6.5) yields

tα ≤ (t + α)EY 2/µ − α2,

i.e.

α2 + α(t − EY 2/µ) − tEY 2/µ ≤ 0. (6.6)

But the l.h.s. of (6.6) is a quadratic in α with roots −t and EY 2/µ. Thus
−t ≤ α ≤ EY 2/µ. �

Our next objective is to establish the CLT for the number of renewals
and the corresponding expansion of the variance:

Proposition 6.3 (a) As t → ∞, Nt is asymptotically normal with mean
t/µ and variance tσ2/µ3;

(b) VarNt =
tσ2

µ3
+ o(t).

Proof. The results are also valid for general delay distributions, but will for
simplicity only be proved for the zero–delayed case. Here (a) can easily be
shown by applying Anscombe’s theorem to

Ut =
SNt − Ntµ

t1/2
=

Bt + t − Ntµ

t1/2
≈ t − Ntµ

t1/2
(6.7)

(see VI.3.2 for details). An elementary direct argument is as follows: let y
be fixed and let n = n(t) depend on t in such a way that

t/µ + (tσ2/µ3)1/2y ∈ (n − 1, n].

Then t(1 + o(1)) = nµ, from which we get t = nµ + o(n) and (by Taylor
expansion) t1/2 = (nµ)1/2 + o(n1/2) so that

t = nµ + O(1) − (tσ2/µ)1/2y = nµ − σyn1/2 + o(n1/2).

Therefore the CLT for Sn yields

P

( Nt − t/µ

(tσ2/µ3)1/2
≤ y

)
= P(Nt ≤ n) = P(Sn > t)

= P

(Sn − nµ

σn1/2
> −y + o(1)

)
→ 1 − Φ(−y) = Φ(y),

proving (a). The proof of (b) can be carried out in a number of ways, none
of which are entirely brief. Recalling (6.1), (6.2) and (6.7), we let

Vt = µ
ENt − Nt

t1/2
, Wt = Ut − Vt =

Bt − EBt

t1/2

and have to prove EV 2
t → σ2/µ. We first note that a renewal argument

shows that Z(t) = EB2
t satisfies Z = z + F ∗ Z where z(t) = E[B2

t ; t <
Y1]. Since Bt ≤ Y1 on {t < Y1}, we have z(t) → 0 so that Problem 4.7
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yields EB2
t = o(t) and therefore EW 2

t → 0. Now by Wald’s second moment
identity A10.2(b), EU 2

t = σ2ENt/t → σ2/µ. Hence by the Cauchy–Schwarz
inequality, E[UtWt] → 0 and

EV 2
t = EU2

t + EW 2
t − 2E[UtWt] → σ2/µ + 0 − 0 . �

Problems

6.1 Check the details in the proof of (6.3) outlined in the text.
6.2 Give an alternative proof of Proposition 6.1 by showing that Z(t) = U(t) −
t/µ satisfies a renewal equation with z(t) = F 0(t).
6.3 Show that EN2

t = 2(U ∗U)(t)−U(t), that (U ∗U)(t) = t2/2µ2 + tEY 2/2µ3 +
o(t), and give hereby a different derivation of the asymptotic form of VarNt.

7 Excessive and Defective Renewal Equations

Recall that the renewal equation Z = z+F ∗Z is called excessive if ‖F‖ > 1
and defective if ‖F‖ < 1. We still have Z = U ∗z (provided Z, z are bounded
on finite intervals), but Blackwell’s renewal theorem does not apply to
determine the asymptotic behaviour of U and thereby Z. However, by a
transformation we may often reduce to the case ‖F‖ = 1:

Theorem 7.1 Assume that Z = z + F ∗ Z with Z, z bounded on finite
intervals and that for some real β

F̂ [β] =
∫ ∞

0

eβx F (dx) = 1. (7.1)

Define

Z̃(x) = eβxZ(x), z̃(x) = eβxz(x), F̃ (dx) = eβxF (dx).

Then Z̃ = z̃ + F̃ ∗ Z̃ and if z̃ is directly Riemann integrable (d.R.i.)

lim
x→∞ eβxZ(x) = lim

x→∞ Z̃(x) =
1
µ̃

∫ ∞

0

z̃(t) dt =

∫∞
0

eβtz(t) dt∫∞
0 teβt F (dt)

(7.2)

Proof. Clearly Z̃, z̃ are bounded on finite intervals and ‖F̃‖ = 1 by (7.1).
Also

Z̃(x) = eβx

{
z(x) +

∫ x

0

Z(x − y)F (dy)
}

= z̃(x) +
∫ x

0

eβ(x−y)Z(x − y) eβyF (dy) = z̃(x) + (F̃ ∗ Z̃)(x)

and the remaining statements are clear from results for the case ‖F‖ = 1.
�
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For a closer study of the assumption (7.1) and its implication (7.2), we
need to treat the excessive and the defective case separately.

Proposition 7.2 Consider the excessive case 1 < ‖F‖ ≤ ∞. Then a solu-
tion β to (7.1) is necessarily strictly negative, β < 0. A sufficient condition
for the existence of β is 1 < F̂ [δ] < ∞ for some δ and then always µ̃ < ∞.
This holds in particular if ‖F‖ < ∞.

Proof. Since F̂ [β] ≥ ‖F‖ for β ≥ 0, it is clear that (7.1) implies β < 0. If
δ exists, then by monotone convergence F̂ [β] is a continuous function of
β with limits 0 as β → −∞ and F̂ [δ] > 1 as β ↑ δ. Hence the value 1 is
attained and the F–integrability of eδx implies that of xeβx, i.e. µ̃ < ∞.
Finally, if ‖F‖ < ∞, we can just take δ = 0. �

Example 7.3 Consider Lotka’s integral equation (Example 2.2) for the
density Z(t) of births in a population at time t and assume that, as will
typically be the case, that the net reproduction rate ‖F‖ is > 1. The
assumption ‖F‖ < ∞ is innocent from the demographic point of view and
hence we may conclude that β exists, is < 0 and that

µ̃ =
∫ ∞

0

seβs F (ds) =
∫ ∞

0

seβs
sp0λ(s) ds < ∞.

Also the assumption of z̃ being d.R.i. is innocent. In fact, inspection of
the expression for z shows this to hold if only the birth intensity λ(u)
is bounded and continuous and the survival rate tpa is continuous (then
z(t) is bounded and continuous, hence z̃(t) = eβtz(t) is d.R.i. because of
Proposition 4.1(iv)–(v) and β < 0). Thus under these assumptions, Z(t)
grows asymptotically exponentially, Z(t) ∼ Ce−βt, where

C =
1
µ̃

∫ ∞

0

z̃(t) dt =
1
µ̃

∫ ∞

0

∫ ∞

0

eβtf0(a)tpaλ(a + t) dt da

(the rate −β > 0 is usually called the Malthusian parameter of the popula-
tion). From this the limiting behaviour of other quantities is easily obtained.
For example, for the total population size N(t) we easily obtain from (2.6)
that

eβtN(t) =
∫ t

0

eβ(t−a)Z(t − a)eβa
ap0 da + eβt

∫ t

0

f0(a)t−apa da

→ C

∫ ∞

0

eβa
ap0 da + 0.

�

In the defective case, a simple conclusion can be obtained without
reference to condition (7.1):

Proposition 7.4 If in the defective case z is bounded and z(∞) =
limt→∞ z(t) exists, then Z(t) → z(∞)/(1 − ‖F‖) = Z(∞) (say).
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Proof. Using dominated convergence and (2.10) we get

Z(t) =
∫ t

0

z(t − y)U(dy) →
∫ ∞

0

z(∞)U(dy) =
z(∞)

1 − ‖F‖ . �

If z(∞) = 0, this result is rather imprecise, and also in some cases with
z(∞) 
= 0 it is of substantial interest to estimate the rate of convergence
of Z(t) to Z(∞). To this end (7.1) comes in. However, as (7.1) already
shows, the conditions for the existence of β are rather stronger than in the
excessive case and require the existence of exponential moments. We have
the following analogue of Proposition 7.2:

Proposition 7.5 Consider the defective case ‖F‖ < 1. Then a solution β
to (7.1) is necessarily strictly positive, β > 0. A sufficient condition for the
existence of β is 1 < F̂ [δ] < ∞ for some δ, and then always µ̃ < ∞. This
holds in particular if F̂ [δ] < ∞ for all δ ∈ R.

Proof. Exactly as for Proposition 7.2, except that for the last step one notes
that if F̂ [δ] < ∞ for all δ, then F̂ [δ] → ∞ as δ → ∞. �

Proposition 7.6 Suppose that in the defective case ‖F‖ < 1 a solution
β to (7.1) satisfying µ̃ < ∞ exists. If z(∞) = limt→∞ z(t) exists and
eβt(z(t) − z(∞)) is d.R.i., then

Z(t) − Z(∞) ∼ e−βt 1
µ̃

{∫ ∞

0

eβs
[
z(s) − z(∞)

]
ds − z(∞)

β

}
. (7.3)

Proof. Define Z1(t) = Z(t) − Z(∞),

z1(t) = z(t) − z(∞) + z(∞)
F (t) − ‖F‖

1 − ‖F‖ = z(t) − z(∞)
F (t)

1 − ‖F‖ .

Since U ∗ F = U − 1, we get

U ∗ z1 = U ∗ z − z(∞)
1 − ‖F‖ = Z − Z(∞) = Z1.

Now since β > 0,

eβt
[‖F‖ − F (t)

]
= eβt

∫ ∞

t

F (ds) ≤
∫ ∞

t

eβs F (ds) = 1 − F̃ (t) .

The r.h.s. is nonincreasing with integral µ̃. Thus the l.h.s. is d.R.i., hence
eβtz1(t) is so and (7.2) yields

eβtZ1(t) → 1
µ̃

∫ ∞

0

eβsz1(s) ds .

Thus (7.3) follows from∫ ∞

0

eβt[‖F‖ − F (t)] dt =
∫ ∞

0

eβt dt

∫ ∞

t

F (ds)

=
∫ ∞

0

1
β

(eβs − 1)F (ds) =
1
β

(1 − ‖F‖).
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�

Example 7.7 In Proposition 7.6, take z ≡ 1. Then if β exists and µ̃ < ∞,
we obtain

‖U‖ − U(t) ∼ 1
βµ̃

e−βt. (7.4)

�

Example 7.8 Consider the ruin problem (Example 2.3) and assume that,
as will typically be the case, the premium exceeds the expected claims.
Recalling that the probability Z(u) of ultimate survival with initial reserve
u satisfies Z = z + F ∗ Z with z(u) = Z(0), F (dx) = (λ/c)G(x) dx, where
λ is the arrival intensity, c the premium per unit time and G the claim size
distribution, this amounts to λν/c < 1 where ν =

∫∞
0

xG(dx).
It remains to evaluate Z(0). First note that

ct −
Nt∑

n=1

Xn ≈ t
(
c − Nt

t
ν
)

≈ t(c − λν)

so that ct −∑Nt

1 Xn tends to infinity, hence attains a minimum m > −∞
and thus Z(u) = P(u + m ≥ 0) → 1 as u → ∞. Using Proposition 7.4 we
therefore get 1 = Z(0)/(1 − λν/c), i.e. Z(0) = 1 − λν/c. Since for β > 0

F̂ [β] =
λ

c

∫ ∞

0

eβxG(x) dx =
λ

cβ

∫ ∞

0

(eβx − 1)G(dx) =
λ

cβ
(Ĝ[β] − 1),

the assumption F̂ [β] = 1, µ̃ < ∞ amounts to

Ĝ[β] = 1 +
c

λ
β (7.5)

for some β > 0 satisfying Ĝ′[β] < ∞; cf. Fig. 7.1. Since z(t) = z(∞)
and Z(∞) = 1, we have thus from Proposition 7.6 derived the celebrated
Cramér–Lundberg approximation for the probability 1 − Z(u) of ultimate
ruin,

1 − Z(u) ∼ e−βu 1 − λν/c

µ̃β
(7.6)

The equation (7.5) is known as the Lundberg equation. �

If ‖F‖ < 1 but F is heavy–tailed, β will fail to exist. One has the following
heavy–tailed counterpart of (7.4):

Proposition 7.9 Assume ‖F‖ < 1 and that G = F/‖F‖ is subexponential
(cf. A5), and write F (t) = F (t,∞). Then

‖U‖ − U(t) ∼ 1
1 − ‖F‖F (t) . (7.7)
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Figure 7.1
—— is the m.g.f. Ĝ[α] of G, – · – · is the tangent 1 + Ĝ′[0]α = 1 + να of Ĝ[α] at

0, and – – – is the line 1 + cα/λ

Proof. Recall from the proof of Proposition 2.9 that ‖U‖ − U(t) = P(Y1 +
· · · + Yσ > t) where Y1, Y2, . . . are i.i.d. with distribution G and N an
independent r.v. with P(σ = n) = (1 − ‖F‖)‖F‖n. By a general lemma on
the tail of a random sum of subexponential r.v.’s, cf. X.9.2, we then obtain

‖U‖ − U(t) ∼ Eσ G(t) =
‖F‖

1 − ‖F‖
F (t)
‖F‖ =

F (t)
1 − ‖F‖ . �

Notes The exponential transformations above are related to the general tech-
niques studied in Ch. XIII, and in particular we will revisit the Cramér–Lundberg
approximation in XIII.5 (for reasons to become clear there, we rewrite the

Lundberg equation in the form λ(Ĝ[β]−1)− cβ = 0 there; cf. Problem XIII.1.2).
In the heavy–tailed case, the typical asymptotical counterpart of Proposition

7.6 for the case z(∞) = 0 is

Z(t) ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

1 − ‖F‖ · z(x) if
z(x)

f(x)
→ ∞ ,

(∫∞
0

z(y) dy

(1 − ‖F‖)2 +
c

1 − ‖F‖
)

g(x) if
z(x)

f(x)
→ c ∈ (0,∞) ,

∫∞
0

z(y) dy

(1− ‖F‖)2 · f(x) if
z(x)

f(x)
→ 0

(7.8)

(assuming for simplicity the existence of a density f of F ). However, the precise
formulation and proof requires some care and we refer to Asmussen et al. (2003).
Heuristically, one arrives at the result by considering the distributions G, H where
G = U/‖U‖ and H has density z/

∫
z. Then Z = U ∗ z = ck where k is the

density of G ∗ H and c = ‖U‖ ∫ z =
∫

z/(1 − ‖F‖). In the case of at least one of
G, H being subexponential, the asymptotics of k should be that of the heavier
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of the densities of G, H if one dominates and otherwise that of the sum (see
A5.1(c)). For example, in the case f/z → ∞, this combined with (7.7) leads to
Z ∼ cu/‖U‖ ∼ f

∫
z/(1 − ‖F‖)2 as in the last case in (7.8).



VI
Regenerative Processes

1 Basic Limit Theory

The classical definition of a stochastic process {Xt} to be regenerative
means in intuitive terms that the process can be split into i.i.d. cycles. A
basic example is the GI/G/1 queue length process and its busy cycles, i.e.
the time intervals separated by the instants Sn with a customer entering an
empty systems; cf. Fig. 1.1. At each such instant the queue regenerates, i.e.
starts completely from scratch independently of the past. Different cycles
are independent and all governed by the same probability law. Similar
statements hold for the workload or other processes associated with the
system.

Figure 1.1

This structure with i.i.d. cycles is found in the majority of examples and
can most often safely be used as a guide for intuition, but we shall use a
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slightly wider definition. Assume that {Xt} has state space E and discrete
or continuous time parameter t ∈ T, where T = N or T = [0,∞). We then
call {Xt}t∈T regenerative (pure or delayed) if there exists a renewal process
(pure or delayed) {Sn} = {Y0 + · · · + Yn} with the following property: for
each n ≥ 0, the post–Sn process

θSnX =
(
Yn+1, Yn+2, . . . , {XSn+t}t∈T

)
is independent of S0, . . . , Sn (or, equivalently, of Y0, . . . , Yn) and its dis-
tribution does not depend upon n. We call {Sn} the imbedded renewal
process and refer to the Sn as regeneration points. The kth cycle is
{Xt+Sk

}0≤t<Yk+1
, a random element of the space D0(E) of E–valued D–

functions with finite lifelengths; cf. A2 (in discrete time, consider instead
the space of finite E–valued sequences).

Concerning the definition, we note the following points:

(i) Cycles are still welldefined and all governed by the same probabil-
ity law, but some dependence between cycles may occur (for main
examples, see Section 2e and VII.3).

(ii) The embedded renewal process is by no means unique. For example,
we may as well use {S2n} or, in the M/G/1 case of the queueing ex-
ample, take the regeneration points as the instants where idle periods
start.

(iii) The Sn need not be given as functions of {Xt}. In particular, there are
some examples (e.g. VII.3) where we need to enlarge the probability
space and introduce randomization before the regenerative properties
of {Xt} can be recognized. It may, however, in some cases be con-
venient to have the Sn given as stopping times for {Xt}. This is no
restriction since one can just enlarge the state space to E×(0,∞) and
consider {X̃t} = {(Xt, Bt)} with Bt the forward recurrence time for
{Sn} at time t (clearly, {X̃t} is regenerative with the same imbedded
renewal process).

To a given delayed regenerative process, there clearly corresponds a zero–
delayed one with a unique probability law (e.g. {XS0+t}t∈T). We let P0, E0

correspond to the zero–delayed case and then write Y = Y1 for the length
of the first cycle, µ = E0Y .

A trivial but noteworty property is that the regenerative property is
preserved under mappings (nothing like that is true for say a Markov
process):

Proposition 1.1 If {Xt}t∈T is regenerative and ϕ : E → F any mea-
surable mapping, then {ϕ(Xt)}t∈T is regenerative with the same embedded
renewal process.

The power of the concept of regenerative processes lies in the existence of
a limiting distribution under conditions that are very mild and usually easy



170 VI. Regenerative Processes

to verify. For example, in continuous time it is only required that µ < ∞,
that the cycle length distribution is nonlattice and that the sample paths
satisfy some conditions that are automatic in any concrete example:

Theorem 1.2 Assume that a (possibly delayed) regenerative process
{Xt}t∈T has metric state space, right–continuous paths and nonlattice cycle
length distribution F with finite mean µ. Then the limiting distribution, say
Pe, of Xt exists and is given by

Eef(Xt) =
1
µ

E0

∫ Y

0

f(Xs) ds . (1.1)

Proof. It is immediately checked that

A → 1
µ

E0

∫ Y

0

I(Xs ∈ A) ds

defines a probability measure on the Borel σ–algebra on E, and hence by
standard facts on weak convergence it is sufficient to prove that Ef(Xt)
→ Eef(Xt) whenever f is continuous with 0 ≤ f ≤ 1. Letting Z(t) =
E0f(Xt), z(t) = E0[f(Xt); t < Y ], F ∗

0 (x) = P(Y0 ≤ x), it follows by the
usual renewal argument that

Ef(Xt) = E[f(Xt); t < Y0] +
∫ t

0

Z(t − x)F ∗
0 (dx), (1.2)

Z(t) = z(t) +
∫ t

0

Z(t − x)F (dx). (1.3)

Hence letting t → ∞ in (1.2) shows that it is sufficient to show

Z(t) → Eef(Xt) =
1
µ

∫ ∞

0

E0[f(Xt); t < Y ] ds =
1
µ

∫ ∞

0

z(s) ds ,

i.e. according to the key renewal theorem to show that z is d.R.i. But
z is right–continuous, hence continuous a.e. by A2.1. Also z(t) ≤ z∗(t)
= P0(Y > t) = F (t) where z∗ is d.R.i. by V.4.1(v). Part (iv) of V.4.1
completes the proof. �

The basic renewal argument in the proof may be given in various ways.
For example, the following representation is often useful:

Proposition 1.3 Let {Xt}t∈T be regenerative and {At}t≥Y0
the backward

recurrence time process of the imbedded renewal process. Further let f :
E → R be measurable and bounded, and define g(t) = E0[f(Xt) |Y > t].
Then

Ef(Xt) = E[g(At); Y0 ≤ t] + E[f(Xt); Y0 > t] . (1.4)

In particular, in the zero–delayed case E0f(Xt) = E0g(At).

Proof. Conditioning upon Y0 shows that it is sufficient to consider the zero–
delayed case. Define Z(t), z(t) as above and let Z1(t) = E0g(At), z1(t) =
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E0[g(At); Y > t]. Then Z = U ∗ z, Z1 = U ∗ z1 and the desired conclusion
follows since

E0[g(At); Y > t] = g(t)P(Y > t) = E0[f(Xt); Y > t]

implies that z1 = z. �

Proposition 1.3 yields an alternative proof of the limit result of Theorem
1.2, see Problem 1.3, and we also note the following strengthening (for total
variation convergence, see A8, and recall that F0 is the distribution with
density F (x)/µ):

Corollary 1.4 If At converges to F0 in t.v., then also a t.v. limit of Xt

exists and is given by (1.1) for T = [0,∞), whereas for T = N

Eef(Xt) =
1
µ

E0

Y −1∑
k=0

f(Xk) =
1
µ

E0

Y∑
k=1

f(Xk) . (1.5)

Proof. We must show that Ef(Xt) converges to the asserted limit uniformly
in the bounded measurable f with ‖f‖∞ ≤ 1. But since a uniform bound
for the last term in (1.4) is P(Y0 > t), the uniformity is immediate from
the t.v. convergence of At and (1.4). Also for T = [0,∞) (the case T = N

is entirely similar), the limit is given by

Eef(Xt) =
∫ ∞

0

g(t)F0(dt) =
1
µ

∫ ∞

0

E0

[
f(Xt)

∣∣Y > t
]
P0(Y > t) dt

=
1
µ

E0

∫ ∞

0

f(Xt)I(Y > t) dt =
1
µ

E0

∫ Y

0

f(Xt) dt .

�

Corollary 1.5 Let {Xt}t∈N be regenerative in discrete time with µ =
E0Y < ∞, and let d be the period of the distribution F of the cycle length
Y . Then:
(i) In the aperiodic case d = 1, a t.v. limit exists and is given by (1.5).
(ii) If d > 1, then

1
d

d−1∑
j=0

Ef(Xnd+j) → 1
µ

E0

Y −1∑
k=0

f(Xk) . (1.6)

Proof. The process {An} is Markov and if µ < ∞, d = 1, it follows from
I.2–4 that An → F0 weakly, hence also (since the state space is discrete) in
t.v. Thus (i) follow from Corollary 1.4, whereas (ii) is a similar application
of Proposition 1.3 and I.(4.2) (or Theorem 3.1 below). �

We return to t.v. convergence for T = [0,∞) in VII.1–2.
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Problems

1.1 Let {At} be the backward recurrence time process of a renewal process with
interarrival distribution F with µ < ∞ and let Xt = I(At ∈ Q). Show that
{Xt} is regenerative but that Xt needs not converge in distribution if say F is
concentrated on Q.
1.2 Show by an example that µ < ∞ is not necessary for convergence in
distribution of a regenerative process.
1.3 In Proposition 1.3, show that g is continuous a.e. provided f is continuous
and the paths right–continuous. Give hereby an alternative proof of the limit
result of Theorem 1.2.
1.4 Let {Xt}t∈T

be regenerative and satisfy the conditions for existence of a
limit distribution π, and let f : E → ∞ be π–integrable. Show that Ef(Xt) →∫

f(x)π(dx) holds always when T = N but not always when T = [0,∞). [Hint:
Backward recurrence times, f chosen such that z(x) = f(x)F (x) is Lebesgue
integrable with lim z(x) = ∞.]

Notes The pioneering paper on regenerative processes is Smith (1955). A main
recent monograph treating the subject in depth and giving further history and
many references is Thorisson (2000); note, however, that the flavour is somewhat
different from the present book by emphasizing structure rather than asymptotic
theory and applications.

Of concepts related to regenerative processes, we mention in particular re-

generative phenomena (Kingman, 1972), regenerative sets (level sets of Markov

processes or, equivalently, ranges of subordinators; Fristedt, 1996), renovating

events (Borovkov, 1984) and Palm theory, which we study in more depth in

VII.6.

2 First Examples and Applications

2a. Renewal Processes
2b. Alternating Renewal Processes
2c. Reflected Brownian Motion
2d. Regenerative Simulation
2e. Functionals of Regenerative Processes

Examples and applications of regenerative processes to queues and related
models will abound in Part C, so here we shall only consider a few topics
of a somewhat different flavour.

2a Renewal Processes

Consider a renewal process with nonlattice interarrival distribution F . If
µ < ∞, the stationary limiting distributions of the recurrence times At, Bt

and of the current life Ct = At+Bt have been found in V.3. Their particular
form comes from the basic formula (1.1) as follows. For 0 ≤ t < Y we have
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At = t, Bt = Y − t, Ct = Y . In particular,

Pe(At ≤ ξ) =
1
µ

E0

∫ Y

0

I(At ≤ ξ) dt =
1
µ

E0

∫ Y

0

I(t ≤ ξ) dt

=
1
µ

E0

∫ Y

0

I(Y − t ≤ ξ) dt = Pe(Bt ≤ ξ)

and the common value is

1
µ

E0

∫ ∞

0

I(t ≤ ξ, t < Y ) dt =
1
µ

∫ ξ

0

P0(t < Y ) dt

=
1
µ

∫ ξ

0

F (t) dt = F0(ξ)

(from results of VII.3 it will also follow that the density F (x) is stationary
for {At}, {Bt} even if µ = ∞). Finally

Pe(Ct ≤ ξ) =
1
µ

E0

∫ Y

0

I(Ct ≤ ξ) dt =
1
µ

E0

∫ Y

0

I(Y ≤ ξ) dt

=
1
µ

E0[Y ; Y ≤ ξ] =
1
µ

∫ ξ

0

xF (dx).

Problems

2.1 Show by similar arguments that the relative position At/Ct of the current
item has a limiting uniform distribution; cf. V.3.3.

2b Alternating Renewal Processes

A point process on [0,∞) with first epoch at Y0 and interarrival times
Y1, Y2, . . . is called an alternating renewal process if all Y0, Y1, . . . are inde-
pendent with distributions (say) G0 of Y0, Y2, . . . and G1 of Y1, Y3, . . .. Such
processes arise, for example, in reliability theory where Y2k−1 could be the
lifetime of the kth item and Y2k the time needed to replace it. Here one
might ask, for example, for the probability p(t) that the system is operat-
ing at time t, for the distribution of the remaining lifetime of the current
item and so on. These quantities are easily obtained by observing that the
system regenerates at every second renewal. For example, for p(t) we can
define Xt ∈ {0, 1} by

Xt =
{

0 if Y0 + · · · + Y2k−1 ≤ t < Y0 + · · · + Y2k for some k
1 if Y0 + · · · + Y2k ≤ t < Y0 + · · · + Y2k+1 for some k

Then p(t) = P(Xt = 1) and the Y0 + · · · + Y2k are regeneration points
for {Xt}. The cycle length distribution is the distribution F = G0 ∗ G1 of
Y1 + Y2, and if F is nonlattice with µ = EY0 + EY1 < ∞ and E0 refers to



174 VI. Regenerative Processes

the case Y0 = 0, we get

lim
t→∞ p(t) =

1
µ

E0

∫ Y1+Y2

0

I(Xt = 1) dt =
1
µ

EY1 =
EY1

EY1 + EY2
.

Further characteristics of the system are easily computed in just the same
manner; see Problem 2.2.

Problems

2.2 Consider the system conditioned to be operating (Xt = 1)- Show that the
past life, the residual life and the total life of the current item all have the same
limit distribution as in a renewal process with interarrival distribution G1.

2c Reflected Brownian Motion

Let {Xt} be reflected Brownian motion with drift µ < 0 and variance 1
and starting from X0 = 0. In order to view the process as regenerative,
one would try to take the cycles as the excursions away from 0, leading
to Y = inf {t : Xt = 0}. However, the sample path structure of Brownian
motion implies that the Y defined in this way is 0 and therefore useless
(nevertheless, it makes sense to study the concept of a stationary excursion;
for two different viewpoints, see Pitman, 1986, and Salminen and Norros,
2001).

Instead one may, e.g., take Y = inf {t > τ(1) : Xt = 0 |X0 = 0} where
τ(1) = inf

{
t > 0 : Xt = 1

∣∣X0 = 0
}

(“up to 1 and back to 0”). We have

µ = E0τ(1) + E0

(
Y − τ(1)

)
=

e−2µ + 2µ − 1
2µ2

− 1
µ

=
e−2µ − 1

2µ2
,

where the expression for E0τ(1) is shown in IX.3.8 and the one for E0(Y −
τ(1)) is just Wald’s identity.

2d Regenerative Simulation

As explained in III.1, many practical situations call for numerical values
of a parameter of the form θ = Eef(Xt). For example, {Xt} could be a
queue length process so that f(x) = x would correspond to θ being the
mean queue length in the steady state, f(x) = I(x ≥ N) to θ being the
probability of queue length at least N in steady state and so on (similar
remarks apply to waiting–time processes in discrete time). Now Theorem
1.2 states that θ is indeed welldefined, but to use formula (1.1) to express θ
in terms of the interarrival and service time distributions may be difficult
or impossible. Hence an alternative method could be required, and here we
shall look at simulation.

The standard simulation (Monte Carlo) technique for estimating θ would
be to design a simulation experiment giving as outcome a response variable
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R having the Pe–distribution of f(Xt). One then would perform N replica-
tions giving i.i.d. variables R1, . . . , RN distributed as R, estimate θ by the
empirical mean θ̂ = RN = (R1 + · · ·+ RN )/N and give the uncertainty on
θ say in the form of asymptotic 95% confidence intervals θ̂ ± 1.96s/

√
N ,

where

s2 =
1

N − 1

N∑
n=1

(Rn − RN )2

is the empirical variance. This method is not feasible here since we may
well simulate the queue starting from any given set of initial conditions
but usually not in the unknown steady state. A partial solution would be
to simulate the queue in [0, T ] starting from, say, an empty queue and
choose T so large that hopefully R = f(XT ) would have a distribution
close to the required steady–state distribution. However, with T large each
replication of the experiment becomes timeconsuming and one is faced with
the uncertainty inherent in the choice of T .

Instead we focus on the basic formula (1.1) and estimate the unknown
µ = E0Y , ν = E0

∫ Y

0 f(Xt) dt by simulation of a regenerative cycle. That
is, the simulation experiment consists in running one cycle and observ-
ing a two–dimensional response (column) vector R =

(
R(1) R(2)

)T given
by R(1) = Y , R(2) =

∫ Y

0
f(Xt) dt. We then create i.i.d. replications

R1, . . . ,RN and estimate µ, ν and θ = ν/µ by

µ̂ =
1
N

N∑
n=1

Rn(1), ν̂ =
1
N

N∑
n=1

Rn(2), θ̂ =
ν̂

µ̂
.

By the LLN, µ̂ and ν̂ are strongly consistent for µ, ν (µ̂ a.s.→ µ, ν̂
a.s.→ ν as

N → ∞) and hence θ̂ is so for θ. Confidence intervals can also be obtained
assuming i.i.d. cycles. To this end, let

Σ = Var0R = E[RRT] − ER[ER]T

=
(

Var0R(1) Cov0

(
R(1), R(2)

)
Cov0

(
R(1), R(2)

)
Var0R(2)

)
.

Then (µ̂ ν̂)T = RN is two–dimensional asymptotically normal with mean
(µ̂ ν̂)T and covariance matrix Σ/N . Letting ϕ(x, y) = y/x, it thus follows
by a standard transformation result that θ̂ = ϕ(µ̂, ν̂) is asymptotically
normal with mean ϕ(µ, ν) = θ and variance σ2/N , where

σ2 = [∇ϕ]TΣ∇ϕ with ∇ϕ =
( ∂ϕ/∂x

∂ϕ/∂y

)
=

( −y/x2

1/x

)
(the gradient) evaluated at x = µ, y = ν. Now the empirical covariance
matrix S with elements

sij =
1

N − 1

N∑
n=1

(
Rn(i) − RN(i)

)(
Rn(j) − RN (j)

)
, i, j = 1, 2,
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is strongly consistent for Σ and (−ν̂/µ̂2 1/µ̂)T so for ∆ϕ. Hence

s2 =
ν̂2

µ̂4
s11 +

1
µ̂2

s22 − 2
ν̂

µ̂3
s12

is strongly consistent for σ2 and θ̂ ± 1.96s/
√

N is an asymptotic 95%
confidence interval for θ.

Problems

2.3 The M/M/1 queue length process {Xt} with β = 70, δ = 100 was simulated
in 11 busy cycles and the values

R(1) 0.1494 0.0320 0.0124 0.0114 0.0212 0.0271
R(2) 0.5023 0.0104 0.0036 0.0019 0.0046 0.0169

R(1) 0.0142 0.0145 0.0243 0.0122 0.1175
R(2) 0.0103 0.0003 0.0094 0.0001 0.2332

of the cycle length R(1) = Y and R(2) =
∫ Y

0
Xt dt were recorded, giving

11∑
n=1

Rn(i) =

{
0.4363 i = 1
0.7930 i = 2

,

( 11∑
n=1

Rn(i)Rn(j)

)
=

( −0.0398 0.1038
0.1038 0.3073

)

Check whether the deviation of the corresponding estimate for EeXt = ρ/(1− ρ)
is within the statistical uncertainty.
2.4 Show that the bias Eθ̂ − θ is of order 1/N .

Notes For regenerative simulation, see e.g. Rubinstein and Melamed (1998).

2e Functionals of Regenerative Processes

In a variety of contexts, one is interested in more general functionals of
the paths of a regenerative process {Xt}t∈T than just the value of a single
Xt. For example, for T = N, it would be of interest to say something not
only about Xn but also about the dependence between consecutive values
(Xn, Xn+1). Other examples could be maxk=0,...,N Xn+k,

∫ t+h

t Xs ds and
so on. For such cases, the classical independent cycle property does not
carry over to the functionals. For instance, for the (Xn, Xn+1) example
(XY , XY +1) and (XY −1, XY ) belong to distinct cycles but may clearly be
dependent. However, the slightly weaker definition that we have given of
a regenerative process also includes such cases since we have required the
post–Sn process to be independent only of Sn, not of the whole pre–Sn

process.
A convenient formalism for expressing this is “lifting of the regenerative

process to function space.” Let {Xt} be regenerative (not necessarily with
i.i.d. cycles) with imbedded renewal process {Sn}. If T = [0,∞), we assume
in addition that the state space E is Polish and that {Xt} has paths in
Ẽ = D([0,∞), E). For T = N we let Ẽ = EN. It is then an immediate
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consequence of the regenerativity of {Xt} that the Ẽ–valued process {θtX}
defined by θtX = {Xt+s}s∈T is again regenerative with the same imbedded
renewal process {Sn}.
Theorem 2.1 If {Xt} satisfies the condition for existence of a limit of Xt,
then also θtX has a limit X(e) =

{
X

(e)
t

}
t∈T

(in total variation for T = N

and weakly for T = [0,∞)) given by

Eeϕ(X(e)) =
1
µ

E0

∫ Y

0

ϕ(θtX) dt = E0

[
Y

µ
ϕ (θUY X)

]
(2.1)

(
∑Y −1

0 if T = N) for any nonnegative or bounded ϕ : Ẽ → R where U
is uniform on (0, 1) and independent of the regenerative process. Further,{
X

(e)
t

}
t∈T

is strictly stationary.

Proof. For T = [0,∞) it is easily checked that the paths of {θtX} are right–
continuous (they are not in D([0,∞), Ẽ), however, since lims↑t θsx will fail
to exist in this space if x is a D–function with a jump at t). Hence the
existence of a limit and the first expression for Eϕ(X (e)) in (2.1) follows
immediately; that this is the same as the second follows since

E0

[
Y ϕ (θUY X)

]
= E0

∫ 1

0

ϕ(θuY X)Y du = E0

∫ Y

0

ϕ(θtX) dt.

Stationarity follows follows from

θuX(e) = θu

(
lim

t→∞ θtX
(e)
)

= lim
t→∞ θuθtX

(e)

= lim
t→∞ θu+tX

(e) = lim
t→∞ θtX

(e) = X(e).

�

In view of Theorem 2.1, X (e) represents a strictly stationary version of
the given regenerative process. Note the peculiarity of the process X (e) that
it is deterministic given its initial value X

(e)
0 : for any t, X

(e)
t is a function

of X
(e)
0 . Note also that for T = [0,∞) we obtain convergence of θtX in

function space without as usual having to invoke tightness. Finally note
that the final expression in (2.1) gives a similar description of a stationary
regenerative process as the one for a renewal process given in V.3.3: the
stationary version is obtained from a zero–delayed version by first length–
biasing (using the length of the first cycle Y as likelihood ratio) and next
shifting t = 0 to a uniformly chosen point in the cycle.

3 Time–Average Properties

We shall state and prove the results only in continuous time, the
modifications in discrete time being obvious.
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A real–valued process {Zt} is called cumulative if Z0 = 0 and there exists
a renewal process {Sn} such that for any n {ZSn+t − ZSn}t≥0 is indepen-
dent of S0, . . . , Sn and {Zt}t<Sn

, and the distribution is independent of n.
An obvious example is Zt =

∫ t

0
f(Xs) ds where {Xt} is regenerative with

i.i.d. cycles, but there are others (with possible jumps) like the Markov
additive processes studied in XI.2.

The basic tool in the study is to write

Zt = U0(t) + U1 + · · · + UNt−1 + ∆t (3.1)

where U0(t) = Zt∧S0, Un = ZSn − ZSn−1 , ∆t = Zt − ZSNt−1 . Here U0(t) =
ZS0 eventually and becomes negligible in the limit t → ∞, U1 + · · ·+UNt−1

is a random sum of i.ı.d. summands and can be handled by standard tools,
and the only problem turns out to be to bound ∆t. To this end, define V =
max0≤t<Y |Zt|,

Vn = max
Sn−1≤t<Sn

∣∣Zt − ZSn−1

∣∣ = max
Sn−1≤t<Sn

|∆t| . (3.2)

Then V1, V2, . . . are i.i.d. with Vn
D= V . We will assume throughout that

V < ∞ a.s. and that µ = E0Y < ∞ (as usual, Y is the generic cycle and
E0 refers to the case S0 = 0; we then write U = U1).

We start by a LLN which contains as a special case results stated in I.4
and II.4.

Theorem 3.1 Suppose µ = E0Y < ∞, E0|U | < ∞ and let z = E0U/µ.
Then Zt/t

a.s.→ z if and only if E0V < ∞.
Note that in the regenerative example Zt =

∫ t

0 f(Xs)ds, we may write the
limit EU1/µ as Eef(Xt).

Proof. By the standard LLN and the elementary renewal theorem,

U1 + · · · + UNt−1

t
∼ Nt − 1

t
E0U ∼ 1

µ
E0U = z a.s.

Also obviously U0(t)/t
a.s.→ 0 a.s. and hence the asserted convergence of

Zt/t holds if and only if ∆t → 0. But t ∼ nµ when n, t are connected by
Sn−1 ≤ t < Sn and hence by (3.1), ∆t → 0 is equivalent to Vn/n

a.s.→ 0 which
in turn (Borel–Cantelli!) is well known to hold if and only if E0V < ∞. �

Note that in some applications, it is more convenient to identify the form
of the limiting distribution by means of the LLN 3.1 than to use the formula
(1.1). In particular, this may be the case when a discrete–time process is
imbedded in a continuous–time one, and one wishes to relate the limiting
distributions (an example is PASTA; see VII.6).

We next prove a CLT analogue:

Theorem 3.2 Assume Var0U < ∞, Var0Y < ∞. Then the limiting dis-
tribution of (Zt − tz)/

√
t exists and is normal with mean zero and variance
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σ2/µ, where

σ2 = Var0(U − zY ) = Var0U + z2 Var0Y − 2z Cov0(U, Y ).

Proof. We again use (3.1) where clearly U0(t)/
√

t
P→ 0. Also ∆t/

√
t

P→ 0 is
clear as above from Vn/

√
n

P→ 0 (moments of V are not needed for this).
Thus it remains to prove that

1√
t
(U1 + · · · + UNt−1 − tz) (3.3)

has the desired limit distribution. But letting

T (n) = U1 + · · · + Un − (Y1 + · · · + Yn)z,

we may write (3.3) as

T (Nt − 1)√
t

+
1√
t
(Y1 + · · · + YNt−1 − t)z. (3.4)

Now clearly T (n)/
√

n is asymptotically normal with mean zero and vari-
ance σ2. Since (Nt − 1)/t

P→ µ−1, it thus follows by Anscombe’s theorem
(Chung, 1974, p. 216) that the first term of (3.4) has the desired limit dis-
tribution, and it remains only to check that the second term vanishes in
the limit. But

t − Y1 − · · · − YNt−1 = t − SNt−1 + Y0 = At + Y0.

Since {At} is always tight when µ < ∞ (in fact convergent in distribution
in the nonlattice case), we thus always have At/

√
t

P→ 0 and since clearly
Y0/

√
t

P→ 0, the proof is complete. �

Notes Beyond the (simpler!) regenerative setting, the traditional approach to
the CLT in the presence of dependence is to assume stationarity and some mixing
condition. The limiting variance constant for the time–average of {Xt}t∈T

then
comes out as

2

∫ ∞

0

Cov(X0, Xt) dt , VarX0 + 2
∞∑

n=1

Cov(X0, Xn) (3.5)

for T = [0,∞), resp. T = N (assuming, of course, that (3.5) is finite). See e.g.
Durrett (1991), pp. 381, 384. It should be noted that the evaluation of the co-
variances in (3.5) is most often cumbersome also in the regenerative setting. For
further expressions for variance constants, see I.7, II.4d and XI.2.8.

A sharp version of the CLT for regenerative processes is in Glynn and Whitt

(1993).

4 Rare Events and Extreme Values

We consider a regenerative process {Xt}t∈T with independent cycles and
finite cycle mean µ. The aim is to obtain information on the first time
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certain rare events occur. For a typical example, assume that the state
space is E = [0,∞) and that the rare event is exceedance of level x where
x is large. The hitting time of the rare event is then

τ(x) = inf {t > 0 : Xt > x} . (4.1)

Letting XT = max0≤t≤T Xt, we have

P(τ(x) > T ) = P(XT ≤ x). (4.2)

Therefore, once a limit theorem for τ(x) as x → ∞ has been established,
this can be translated into the classical goal of extreme value theory, viz.
a limit theorem for XT as T → ∞.

The key feature of the regenerative setting is that the discussion of issues
like these can be reduced to the study of the behaviour within a regenerative
cycle. Generalizing the set–up somewhat, let {A(x)}x≥0 be a family of cycle
events, that is, measurable sets in D0(E) indexed by a parameter x ≥ 0
and having the property that A(x) ↓ ∅, x → ∞; note that this implies

a(x) = P0

({Xt}0≤t<Y ∈ A(x)
) → 0, x → ∞.

Let further

M(x) = inf
{
n = 0, 1, . . . :

{
Xt+Y0+···+Yn−1

}
0≤t<Yn

∈ A(x)
}

be the index of the first cycle in which A(x) occurs and

ω(x) = Y0 + Y1 + · · · + YM(x)−1, ω(x) = Y0 + Y1 + · · · + YM(x).

Then, in intuitive terms, the rare event occurs for the first time some-
where between ω(x) and ω(x). We will see that both are approximately
exponentially distributed with mean µ(x) where

µ(x) = µE0M(x) =
µ

a(x)

(the last identity follows since M(x) is geometric w.r.t. P0 on {1, 2, . . .}
with success parameter a(x), i.e. P0(M(x) = n) = (1 − a(x))n−1a(x), n =
1, 2, . . .). Consider first the means:

Proposition 4.1 For all x, E0ω(x) = µ(x). Further, for a delayed process
with EY0 < ∞, a(x)Eω(x) and a(x)Eω(x) both converge to µ as x → ∞.

Proof. The first statement follows immediately from Wald’s identity. Since

a(x)E0YM(x) = a(x)E0[Y |A(x)] = E0[Y ; A(x)] → 0 (4.3)

by monotone convergence, the second statement is then also clear in the
zero–delayed case. In the delayed case, just appeal to the bounds

Eω(x) ≥ P
({Xt}0≤t<Y0


∈ A(x)
)
E0ω(x) ∼ E0ω(x),

Eω(x) ≤ EY0 + E0ω(x). �

Next consider convergence in distribution:
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Theorem 4.2 As x → ∞, it holds that a(x)ω(x) D→ µV , a(x)ω(x) D→ µV ,
where V is standard exponential. Further, a(x)[ω(x) − ω(x)] P→ 0.

Proof. It is straightforward from a(x) → 0 that a(x)M(x) D→ V :

P
(
a(x)M(x) ≥ y

)
= P

(
M(x) ≥  y/a(x)!) =

(
1 − a(x)

)�y/a(x) → e−y.

It then follows from (Y0 + Y1 + · · · + Yn)/n
a.s.→ µ a.s. that

a(x)ω(x) = a(x)M(x) · Y0 + Y1 + · · · + YM(x)−1

M(x)
D→ V µ.

The last statement follows from (4.3) and implies then the stated
asymptotics of ω(x). �

In practice, one is seldom given a family of rare events {A(x)}x≥0 but
rather a single cycle event A such that a = P(A) is small. The implication
of the above results is then to use µV/a as an approximation for the first
occurence time of A, and µ/a as an approximation for the mean. In specific
cases, the evaluation of a may well be nontrivial.

Example 4.3 Let {Xt} be the M/M/1 queue length process, β the arrival
intensity and δ the service intensity. Assume ρ = β/δ < 1 and that we want
the asymptotics of the time τ(x) = inf {n > 0 : Xt = x} of the first visit
to x. We then take the start of cycles as the instances of returns to 0
and let A(x) = {Xt = x for some t < Y }. To evaluate a(x) = P0(A(x)) for
x = 2, 3, . . ., we note that a(x) is the probability that {St}, the difference
between two independent Poisson processes with rates β, δ, hits x before 0
when started from S0 = 1. The Wald martingale for {St} (see III.8.8) is

zSt

E
[
zSt

∣∣S0 = 0
] =

zSt

exp
{
t[β(z − 1) + δ(z−1 − 1)]

} .

Taking z = ρ−1, the denominator becomes 1. Optional stopping at time
σ = inf {t : St = 0 or x |S0 = 1} yields

1
ρ

= E1ρ
−S0 = E1ρ

−Sσ = ρ−xP1(Sσ = x) + ρ−0P1(Sσ = 0)

= P1(Sσ = x)
{
ρ−x − 1

}
+ 1,

a(x) = P1(Sσ = x) =
(1 − ρ)ρx−1

1 − ρx
∼ (1 − ρ)ρx−1.

Since ω(x) ≤ τ(x) ≤ ω(x), it follows that a(x)τ(x) is asymptotically expo-
nential with mean 1/β(1 − ρ) (the mean busy cycle), and that a(x)Eτ(x)
→ 1/β(1 − ρ). �

Example 4.4 Assume that {Xn} is a positive recurrent Markov chain with
state space {0, 1, 2, . . .} and p0x > 0 for all x = 1, 2, . . .. Assume we want
the asymptotics of the time τ(0, x) = inf {n > 0 : Xn−1 = 0, Xn = x} of the
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first jump from 0 to x. We then take the start of cycles as the instances of
visits to 0 and let A(x) = {Xn−1 = 0, Xn = x for some n = 0, . . . , Y − 1}.
However, the choice of Y implies that A(x) = {X0 = 0, X1 = x} and hence
a(x) = P0(A(x)) = p0x whereas µ = E0Y = 1/π0, where (π0 π1 . . .)
is the stationary distribution. Since ω(x) ≤ τ(0, x) ≤ ω(x), it follows
that p0xτ(0, x) is asymptotically exponential with mean 1/π0, and that
p0xEτ(0, x) → 1/π0. �

Example 4.5 Assume that {Xt} is an ergodic birth–death process on
{0, 1, 2, . . .} with birth rates βn and death rates δn, and that we want
the asymptotics of the time τ(x) = inf {t > 0 : Xt = x} of the first visit
to 0. We then take the start of cycles as the instances of return to
0 (then µ = 1/π0β0) and let A(x) = {Xt = x for some t < Y }. Since
ω(x) ≤ τ(x) ≤ ω(x), it follows that Eτ(x) ∼ µ/a(x) and that τ(x)/Eτ(x)
is asymptotically standard exponential.

To compute a(x), we let {Yn} denote the imbedded Markov chain stopped
at the time σ when 0 or x is hit (then a(x) = P1(Yσ = x)) and put {Yt}
on its natural scale ϕ. That is, ϕ(0), . . . , ϕ(x) are such that

{
ϕ(Yn)

}
is a

martingale. With ∆n = ϕ(n) − ϕ(n − 1) this means

0 = Enϕ(Y1)−ϕ(n) = − δn

βn + δn
∆n+

βn

βn + δn
∆n+1, n = 1, 2, . . . , x−1.

Taking ϕ(0) = 0, ϕ(1) = ∆0 = 1, it follows that ∆n+1 = (δn/βn)∆n and

ϕ(n) = 1 + ∆1 + · · · + ∆n = 1 +
δ1

β1
+ · · · + δ1 · · · δn−1

β1 · · ·βn−1
.

Finally 1 = ϕ(1) = E1ϕ(Yσ) = a(x)ϕ(x) so that a(x) = 1/ϕ(x). For
example, for M/M/∞ with βn = β, δn = nδ, η = β/δ,

Eτ(x) ∼ µ

a(x)
=

1 + η + 2η + · · · + (x − 1)!ηx−1

βe−η
∼ (x − 1)!ηx−1

βe−η
.

�

The approximations above apply to time intervals of order T (x) ≈
a(x)−1. On a shorter time scale, we have the following result (stated for
simplicity only for the zero–delayed case and for A(x) =

{
τ(x) < Y

}
):

Theorem 4.6 Let a(t; x) = P0 (τ(x) ≤ t < Y ) and assume that T (x) ∈ T

varies with x in such a way that

lim
x→∞ a(x)T (x) = 0, lim

x→∞
a(εT (x); x)

a(x)
= 1 (4.4)

for all ε > 0. Then P0

(
τ(x) ≤ T (x)

) ∼ a(x)T (x)/µ.

Proof. Let U be the renewal measure of the regeneration points and

U(A; x) =
∞∑

k=0

P0

(
Y0 + · · · + Yk ∈ A, τ(x) > Y0 + · · · + Yk

)
.
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If m(x) denotes the expected number of cycles before T (x) (including the
one straddling T (x)) where A(x) occurs, then m(x) = a(x)U

(
T (x)

)
is of

order a(x)T (x)/µ so that

lim sup
x→∞

P
(
τ(x) ≤ T (x)

)
a(x)T (x)/µ

≤ lim sup
x→∞

m(x)
a(x)T (x)/µ

= 1.

Conversely, if x is so large that a(εT (x); x) ≥ (1 − ε)a(x), then

P(τ(x) ≤ T (x)) =
∫ T (x)

0

a(T (x) − t; x)U(dt; x)

≥
∫ (1−ε)T (x)

0

a(T (x) − t; x)U(dt; x)

≥
∫ (1−ε)T (x)

0

a(εT (x); x)U(dt; x) ≥ (1 − ε)a(x)U
(
(1 − ε)T (x); x

)
≥ (1 − ε)a(x)(1 − a(x))U

(
(1 − ε)T (x)

)
,

and U(z) ∼ z/µ and 1 − a(x) → 1 yields

lim inf
x→∞

P(τ(x) ≤ T (x))
a(x)T (x)/EC

≥ = (1 − ε)2.

Let ε ↓ 0. �

We now turn to the study of extreme values. Recall that in the real–
valued case, XT = max0≤t≤T Xt, and let ξk denote the maximum over
cycle k, i.e. ξ0 = sup0≤t≤Y0

Xt, ξk = supSk−1≤t≤Sk
Xt, k = 1, 2, . . ..

Thus, the ξk are independent and ξ1, ξ2, . . . have the common tail a(x)
= P0 (maxt<Y Xt > x).

Proposition 4.7 Assume that E is a real interval and define

G(x) = 1 − a(x) = P0

(
max
t<Y

Xt ≤ x
)
, FT (x) = P(XT ≤ x).

Then lim
T→∞

‖FT − GT/µ‖ = 0 where ‖ · ‖ is the uniform norm. Here in

the delayed case with G having finite support, one needs in addition the
condition

P

(
ξ0 > max

k=1,...,n
ξk

)
→ 0. (4.5)

Proof. The function z(1−zγ), z ∈ [0, 1], attains it maximum γ/(1+γ)1+1/γ

at z = (1+ γ)−1/γ , and is therefore bounded by γ. Hence for all T , x and ε∣∣GT (x) − GT (1+ε)(x)
∣∣ ≤ ε. (4.6)

Define k±
T =  T (1 ± δ)/µ!, and let Nt = inf

{
n : Sn > t

}
. Then

FT (x) ≥ P(XSNT
≤ x) ≥ P

(
NT ≤ k+

T , max
0≤k≤k+

T

ξk ≤ x
)
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≥ P

(
max

1≤k≤k+
T

ξk ≤ x
)

− P(NT > k+
T ) − P

(
ξ0 > max

k=1,...,k+
T

ξk

)
.

Here the the two last terms on the r.h.s. tend to zero and are indepen-
dent of x, while the first term is Gk+

T (x), which according to (4.6) can be
approximated by GT/µ(x) uniformly in x. A similar but easier upper bound

FT (x) ≤ P
(
NT < k−

T

)
+ P

(
max

1≤k≤k−
T

ξk ≤ x
)

completes the proof. �

The classical goal of extreme value theory is to find constants sT , rT such
that sT (XT − rT ) has a limit Γ, say, in distribution. It is well known in
the i.i.d. case that (up to trivial scalings and translations) such a Γ must
either be a Gumbel (type I) r.v. ΓG with c.d.f. P(ΓG ≤ x) = e−e−x

, x ∈ R,
a Fréchet (type II) r.v. ΓF with c.d.f. P(ΓF ≤ x) = e−x−α

, x ≥ 0, or a
Weibull (type III) r.v. The type III case can occur only in the case of a
bounded support and will not be discussed in detail here. Proposition 4.7
immediately yields that these limits are also the only possible ones in the
case of regenerative processes:

Corollary 4.8 Assume that E is a real interval unbounded to the right and
that sT (XT − rT ) D→ Γ for some r.v. Γ. Then Γ has one of the extremal
types Gumbel, Fréchet or Weibull.

The two following types of asymptotics occur in a large number of queue-
ing models (Proposition 4.9 covering light–tailed service times, cf. XIII.5,
and Proposition 4.10 heavy–tailed service times, cf. X.9). The results fol-
lows immediately by translating standard i.i.d. results via Proposition 4.7,
but we give self–contained proofs.

Proposition 4.9 Assume that E is a real interval unbounded to the right
and that a(x) = P0(τ(x) < Y ) ∼ c0e−γx as x → ∞ continuously for some
c0 > 0 and some γ > 0. Then

γXT − log T − log(c0/µ) D→ ΓG, T → ∞,

where ΓG is Gumbel.

Proof. Using (4.2), we get

P
(
γXT − log T − log(c0/µ) ≤ x

)
= P

(
τ([x + log T + log(c0/µ)]/γ) > T

)
∼ P

(
µV/a([x + log T + log(c0/µ)]/γ) > T

)
∼ P

(
V > Tc0 exp

{−x − log T − log(c0/µ)
}
/µ

)
= P(V > e−x) = e−e−x

= P(ΓG ≤ x).

�
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Proposition 4.10 Assume that E is a real interval unbounded to the right
or that E contains a set of the form {n0, n0 + 1, . . .}, and that a(x) ∼
L(x)/xα, x → ∞, where α > 0 and L(x) is slowly varying. Then

XT /b(T/µ) D→ ΓF , T → ∞,

where b(x) is determined by L(b(x))/b(x)α ∼ 1/x and ΓF is Fréchet.

Proof. Using first the definition of a slowly varying function (see A5) and
next the definition of b(·), we get

a
(
xb(T/µ)

)
T

µ
∼ L

(
xb(T/µ)

)
T

xαb(T/µ)αµ
∼ L

(
b(T/µ)

)
T

xαb(T/µ)αµ
∼ 1

xα
.

Hence (4.2) yields

P
(
XT /b(T/µ) ≤ x

)
= P

(
τ(xb(T/µ)) > T

) ∼ P
(
V > [a(xb(T/µ))T ]/µ

)
∼ P

(
V > x−α

)
= e−x−α

= P(ΓF ≤ x).

�

Problems

4.1 Assume that a(x) ∼ c0e
−c1xβ

, x → ∞, for some c0, c1 and some β < 1. Show
that there exist constants sT , rT such that sT (XT − rT ) has a Gumbel limit.
4.2 Assume that E contains a set of the form {n0, n0 + 1, . . .} and that a(n) ∼
c0e

−γn, n → ∞, for some c0 > 0 and some γ > 0. Show that

P(γXT − log T − log(c0/µ) ≤ x) ∼ exp
{−α(log T + x)e−x}

for all x ∈ R, where α is the periodic function

α(y) = exp {y + log(c0/µ) − γ�[y + log(c0/µ)]/γ�} .

Notes The results of this section are standard; see the author’s survey paper,
Asmussen (1998b), for references to earlier literature. Standard treatments of
extreme value theory are Leadbetter et al. (1983) and (emphasizing the heavy–
tailed case) Embrechts et al. (1997). A notable recent paper on the regenerative
case is Glasserman and Kou (1995a).

Note that only certain specific asymptotic forms of 1 − G(x) = a(x) allow us

to find a normalization of the form sT (XT − rT ) such that a limit exists. One

important exception is many light–tailed discrete distributions; see e.g. Problem

4.2 and further Andersson (1970). However, once the asymptotic form of a(x) is

known, then according to Proposition 4.7 the asymptotic properties of FT are

completely known as well, only in a possibly different form (cf. again Problem

4.2).



VII
Further Topics in Renewal Theory and
Regenerative Processes

1 Spread–Out Distributions

By a component of a distribution F on R we understand a nonnegative
measure G with the property 0 
= G ≤ F . We say that F is spread out if
F ∗n has a component G that is absolutely continuous (i.e. has a density g
w.r.t. Lebesgue measure) for some n.

In applied contexts, situations where F is nonlattice and spread out (or
even has a density) are virtually the same. Strengthening the nonlattice
assumption of renewal theory and regenerative processes to F being spread
out does not therefore appear terribly restrictive, and the theory then gains
some simplifications and strengthenings, rather in the spirit of the discrete–
time case. The basic tool is Stone’s decomposition of the renewal measure
U =

∑∞
0 F ∗n:

Theorem 1.1 If the interarrival distribution F of a renewal process is
spread out, then we can write U = U1 + U2, where U1, U2 are nonnegative
measures on [0,∞), U2 is bounded (‖U2‖ < ∞) and U1 has a bounded
continuous density u1(x) = dU1(x)/dx satisfying u1(x) → 1/µ as x → ∞.

The proof is based on smoothness properties of the convolution. Most of
these are easy to check and are used without further reference. However,
we shall prove:

Lemma 1.2 If F is spread out, then F ∗m has a uniform component on
(a, a + b) for some m, a, b > 0.
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Proof. We can assume that g is bounded with compact support. Choose
continuous bounded functions gk ∈ L1 with ‖g − gk‖1 =

∫ |g − gk| → 0.
Then gk∗g(x) =

∫
gk(x−y)g(y) dy is continuous by dominated convergence.

Furthermore, ‖g∗2 − gk ∗ g‖∞ ≤ ‖g‖∞‖g − gk‖1 → 0, where ‖ · ‖∞ is the
supremum norm. Thus g∗2 is continuous as the uniform limit of continuous
functions; hence there exists a, b, δ > 0 such that g∗2(x) ≥ δ for x ∈
(a, a + b). Take m = 2n. �

Proof of Theorem 1.1. In Lemma 1.2, let G be the uniform component and
g(x) = I(a ≤ x < a + b)‖G‖/b its density.

Assume first that m = 1 and let H = F − G, U2 =
∑∞

0 H∗n. Then

F ∗n = G ∗
n−1∑
k=0

F ∗(n−k−1) ∗ H∗k + H∗n,

U = G ∗
∞∑

k=0

H∗k ∗
∞∑

n=k+1

F ∗(n−k−1) + U2 = G ∗ U2 ∗ U + U2.

Since ‖H‖ = 1 − ‖G‖ < 1, we have ‖U2‖ < ∞, and we must show that
U1 = G ∗ U2 ∗ U has the desired properties. Now G ∗ U has density U ∗
g(x) =

∫ x

0
g(x − y)U(dy) which is bounded and continuous by dominated

convergence (g(0) = 0 is needed for this since otherwise a discontinuity
at x arises when U has an atom at x). Also U ∗ g(0) = 0, and hence by
the same argument U1 = U2 ∗ (G ∗ U) has the bounded continuous density
u1 = U2 ∗ (U ∗ g). We then get

U ∗ g(x) =
‖G‖

b
U(x − a − b, x − a] → ‖G‖

µ
, (1.1)

u1(x) =
∫ x

0

U ∗ g(x − y)U2(dy) → ‖G‖
µ

‖U2‖ =
1
µ

, (1.2)

using dominated convergence in the first step of (1.2) and ‖U2‖ = (1 −
‖H‖)−1 = ‖G‖−1 in the last.

If m > 1, define U (k) = F ∗k ∗ ∑∞
0 F ∗nm. Then from above, U (0) =

U
(0)
1 +U

(0)
2 with ‖U (0)

2 ‖ < ∞ and U
(0)
1 having a bounded continuous density

u
(0)
1 with u

(0)
1 (x) → 1/ESm = (mµ)−1. This is readily seen to imply a

similar decomposition of U (k) = F ∗k ∗ U (0) and since U =
∑m−1

0 U (k),
U1 =

∑m−1
0 U

(k)
1 and U2 =

∑m−1
0 U

(k)
2 have the desired properties. �

We proceed to give some main consequences of Stone’s decomposition.
The first is a version of the key renewal theorem U ∗ z(x) → µ−1

∫
z, where

the strengthened assumption on F permits a weakening of the conditions
on z, in particular to avoid reference to direct Riemann integrability.

Corollary 1.3 Let z be bounded and Lebesgue integrable with z(x) → 0,
x → ∞. Then U ∗ z(x) → µ−1

∫∞
0 z(y) dy provided F is spread out.
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Proof. By dominated convergence,

Z(x) = U ∗ z(x) = U1 ∗ z(x) + U2 ∗ z(x)

=
∫ x

0

z(y)u1(x − y) dy +
∫ x

0

z(x − y)U2(dy)

→
∫ ∞

0

z(y)µ−1 dy +
∫ ∞

0

0 · U2(dy).

�

Corollary 1.4 Consider a regenerative process {Xt}t≥0 with the cycle
length distribution F being spread out with finite mean µ. Suppose as the
only path regularity condition that Xt(ω) is measurable jointly in (t, ω).
Then, no matter the initial conditions, the limiting distribution Pe of Xt

exists in the sense of total variation convergence and is given by

Eef(Xt) =
1
µ

∫ ∞

0

E0[f(Xs); Y > s] ds.

Proof. It is easily seen that it is sufficient to consider the zero–delayed case.
Define

Z(t) = P0(Xt ∈ A), z(t) = P0(Xt ∈ A, Y > t).

Then z(t) is Lebesgue measurable, and, being bounded by P0(Y > t), also
integrable with limit 0 at ∞. As in VI.1, Z = z + F ∗ Z = U ∗ z. Here

U2 ∗ z(t) ≤
∫ t

0

P0(Y > x − y)U2(dy),

|U1 ∗ z(t) − Pe(Xt ∈ A)| =
∣∣∣∣∫ t

0

z(y)u1(t − y) dy − 1
µ

∫ ∞

0

z(y) dy

∣∣∣∣
≤ 1

µ

∫ ∞

t

P0(Y > y) dy +
∫ t

0

P0(Y > y)
∣∣∣u1(t − y) − 1

µ

∣∣∣ dy,

and both these bounds are uniform in A and tend to zero as t → ∞ (using
dominated convergence). This proves t.v. convergence. �

A somewhat easier proof can be obtained using coupling; see the next
section.

In many cases, it is also necessary for total variation convergence that F
is spread out. For example (recall that dF0/dx = F (x)/µ):

Corollary 1.5 Let {Bt} be the forward recurrence time process of a re-
newal process with interarrival distribution F with finite mean µ, and define
Gt(x) = P(Bt ≤ x). Then Gt → F0 in t.v. for any distribution of the initial
delay if and only if F is spread out.

Proof. Sufficiency follows from Corollary 1.4. Suppose F is not spread out so
that for each n, F ∗n is concentrated on a Lebesgue null set Nn, and consider
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the zero–delayed case. On {Sn ≤ t < Sn+1}, we have t+Bt = Sn+1 ∈ Nn+1.
Hence Gt is concentrated on the null set {y : y − t ∈ N0 ∪ N1 ∪ · · ·} and
the absolute continuity of F0 yields ‖Gt − F0‖ = 1. �

Finally we mention that instead of spread–out distributions one fre-
quently works with distributions that are strongly nonlattice, i.e. satisfy
Cramér’s condition (C) lim|s|→∞

∣∣F̂ [s]
∣∣ < 1, where F̂ is the characteristic

function of F . We have:

Proposition 1.6 F is spread out ⇒ F is strongly nonlattice ⇒ F is
nonlattice.

Proof. If F is itself absolutely continuous, then F̂ [s] → 0, |s| → ∞, ac-
cording to the Riemann–Lebesgue lemma. Thus if F ∗n ≥ εG with G an
absolutely continuous probability measure, we have

lim
|s|→∞

∣∣F̂ [s]
∣∣ = lim

|s|→∞

∣∣F̂ ∗n[s]
∣∣1/n = lim

|s|→∞

∣∣F̂ ∗n[s]− εĜ[s]
∣∣1/n ≤ (1− ε)1/n

and (C) holds. Finally, if F is lattice, say concentrated on {0,±δ,±2δ, . . .},
then F̂ [s] = 1 for s = 2kπ/δ and (C) cannot hold. �

In fact some results in renewal theory and regenerative processes re-
quire distributions that are only strongly nonlattice rather than spread
out. However, the disadvantage of (C) is that the probabilistic significance
is not clear and thus one has to rely on analytical methods.

Notes The theory was initiated by Stone (1966). An example where F is

singular but F ∗2 not is given in Feller (1971, p. 146). It can be shown in contin-

uation of Proposition 1.6 that discrete distributions cannot satisfy (C). See e.g.

Bhattacharya and Rao (1976, p. 207).

2 The Coupling Method

2a. The Coupling Inequality
2b. The Classical Coupling of Markov Chains
2c. Coupling Proof of the Renewal Theorem
2d. Spread–Out Distributions and Exponential Rates

In the literature, the term coupling is used both in a broad and in a
narrow sense. The broad sense is as follows: a coupling of two probability
distributions P′, P′′ on (Ω′, F′), resp. (Ω′′, F′′), is defined as a probability
distribution P on (Ω, F) = (Ω′×Ω′′, F′⊗F′′) having marginals P′ and P′′,
i.e.

P(A′ × Ω′′) = P′(A′), P(Ω′ × A′′) = P′′(A′′).

We shall use language such as “a coupling of X ′, X ′′,” where X ′, X ′′ are
r.v.’s, to denote a pair (X̃ ′, X̃ ′′) of r.v.’s defined on a common probability
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space (a priori, X ′, X ′′ are not necessarily so) such that X̃ ′ D= X ′, X̃ ′′ D= X ′′.
For ease of notation, we omit the tilde, and broad sense coupling thus just
means that the r.v.’s have been redefined on a common probability space
without changing the marginal distributions.

A trivial case of a (broad sense) coupling is P = P′ ⊗ P′′; in terms of
r.v.’s this just means that we take X ′, X ′′ independent with the prescribed
distributions. However, the interesting examples involve dependence. One
example is real–valued r.v.’s X ′, X ′′ such that X ′ ≤so X ′′ (stochastical
ordering; see A4), where a classical result, stated in A4, on a.s. realization
of stochastic order can be paraphrased as the existence of a broad sense
coupling such that X ′ ≤so X ′′ a.s.

The set–up in the narrow (and more traditional) sense is that of two
stochastic processes {X ′

t}t∈T, {X ′′
t }t∈T, in discrete or continuous time and

with the same state space E, and an associated random time T ∈ T (the
coupling time) such that

X ′
t = X ′′

t for all t ≥ T (2.1)

(we shall encounter weakening of also this relation in connection with ε–
coupling, requiring only that the processes are close rather than equal
after T ). A priori the two processes may be defined on different proba-
bility spaces, but the first step in the construction is to make them defined
on the same (Ω, F, P) (without changing the distributions).

2a The Coupling Inequality

We start by an inequality related to coupling in the broad sense (‖ · ‖ is
the total variation distance; cf. A8):

Proposition 2.1 Let X ′, X ′′ r.v.’s taking values in the same space E and
defined on a common probability space. Then∥∥P(X ′ ∈ ·) − P(X ′′ ∈ ·)∥∥ ≤ P(X ′ 
= X ′′). (2.2)

Proof. Write

P(X ′ ∈ A) = P(X ′ ∈ A, X ′ = X ′′) + P(X ′ ∈ A, X ′ 
= X ′′),
P(X ′′ ∈ A) = P(X ′′ ∈ A, X ′ = X ′′) + P(X ′′ ∈ A, X ′ 
= X ′′)

= P(X ′ ∈ A, X ′ = X ′′) + P(X ′′ ∈ A, X ′ 
= X ′′).

Subtracting, we get∣∣P(X ′ ∈ A) − P(X ′′ ∈ A)
∣∣

=
∣∣P(X ′ ∈ A, X ′ 
= X ′′) − P(X ′′ ∈ A, X ′ 
= X ′′)

∣∣ ≤ P(X ′ 
= X ′′).

Taking supremum over A, the result follows. �

Corollary 2.2 Let {X ′
t}t∈T, {X ′′

t }t∈T be stochastic processes defined on a
common probability space, let θt be the shift, i.e. (θtX

′)s = X ′
t+s, and let
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T ≤ ∞ be a random time such that (2.1) holds. Then∥∥P(θtX
′ ∈ ·) − P(θtX

′′ ∈ ·)∥∥ ≤ P(T > t). (2.3)

Proof. Replace X ′, X ′′ by θtX
′, θtX

′′ in Proposition 2.1 and note that
P(θtX

′ 
= θtX
′′) ≤ P(T > t). �

The inequality (2.3) is commonly referred to as the coupling inequality. Its
main applications are:

1. To show convergence in distribution of Xt as t → ∞. In a Markovian
setting, one takes {X ′

t} stationary, i.e. started by letting X ′
0 have the

stationary distribution π and {X ′′
t } the given initial distribution ν.

If a coupling with T < ∞ can be constructed, one has P(T > t) → 0
and∥∥Pν(Xt ∈ ·)−π(·)∥∥ ≤ ∥∥P(θtX

′ ∈ ·)−P(θtX
′′ ∈ ·)∥∥ ≤ P(T > t) → 0.

(2.4)
We will say in the following that the Markov chain (or process) ad-
mits coupling if a coupling with T < ∞ exists for any pair of initial
distributions ν′, ν′′, i.e. if there exist stochastic processes {X ′

n}, {X ′′
n}

and a random time T < ∞ defined on a common a probability space
(Ω, F, P), such that {X ′

n}, {X ′′
n} are Markov chains with transition

probabilities (pij)i,j∈E and initial distributions ν′, resp. ν′′, and (2.1)
holds for some random time T < ∞. If in addition a stationary dis-
tribution π exists, (2.4) shows that Xn

D→ π no matter the initial
conditions.

2. To obtain estimates of the rate of convergence. One then shows that
T can be chosen with Eϕ(T ) < ∞ for some ϕ increasing to ∞ (often,
ϕ(t) = tp or eεt). Then∥∥P(Xt ∈ ·) − π(·)∥∥ ≤ P(T > t) ≤ 1

ϕ(t)
Eϕ(T ) = O

( 1
ϕ(t)

)
[it should be noted as a limitation of the method that typically the
convergence rates obtained in this way are not the best possible].

2b The Classical Coupling of Discrete Markov Chains

Let {Xn}n=0,1,... be a Markov chain on a discrete state space E with
transition probabilities (pij)i,j∈E .

Proposition 2.3 A positive recurrent and aperiodic Markov chain on a
discrete state space admits coupling.

Proof. This is one of the relatively few examples where independent cou-
pling works. Let Ω = EN × EN (with F the obvious σ–field) and let P be
such that the coordinate processes

{
X ′

n

}
,
{
X̃ ′′

n

}
(say) are Markov chains
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with transition probabilities (pij)i,j∈E and initial distributions ν′, resp. ν′′.
Obviously,

{
(X ′

n, X̃ ′′
n)
}

is Markov on E × E with n–step transition proba-
bilities qn

ij,k� = pn
ikpn

j�. For given i, j, k, �, it follows from I.1.4 that pn
ik > 0,

pn
j� > 0 for all sufficiently large n and hence qn

ij,k� > 0. Thus
{
(X ′

n, X̃ ′′
n)
}

is
irreducible. Further, if π is the stationary distribution for

{
Xn

}
, then π⊗π

is stationary for
{
(X ′

n, X̃ ′′
n)
}
. These facts imply that

{
(X ′

n, X̃ ′′
n)
}

is positive
recurrent and aperiodic. By recurrence, Tij = inf

{
n : (X ′

n, X̃ ′′
n) = (i, j)

}
is finite for all i, j, and we define T either as Tii for some fixed i or as
min {Tii : i ∈ E}. Then T is a stopping time with the property X̃ ′′

T = X ′
T .

Now just define

X ′′
n =

{
X̃ ′′

n n ≤ T
X ′

n n ≥ T
.

Then by the strong Markov property, {X ′′
n} has the desired marginal

distribution. So has {X ′
n}by construction, and clearly (2.1) holds. �

2c Coupling Proof of the Renewal Theorem

We say that two processes {X ′
t}, {X ′′

t } with continuous time parameter are
ε–coupled if there exist (a.s. finite) random times T ′, T ′′ such that |T ′−T ′′|
< ε and

θT ′X ′ = θT ′′X ′′. (2.5)

A Markov process admits ε–coupling if for any ε and any two initial dis-
tributions ν′, ν′′ there exists ε–coupled versions {X ′

t}, {X ′′
t } with initial

distributions ν′, resp. ν′′. Note that the existence of an ε–coupling can be
rephrased as the existence of random times Tε > 0, Sε such that |Sε| < ε
and

X ′′
t = X ′

t+Sε
, t ≥ Tε. (2.6)

The role of the concept is to provide convergence in distribution in some
situations where t.v. convergence does not necessarily hold:

Proposition 2.4 Consider a continuous–time Markov process {Xt} hav-
ing a stationary distribution π and right–continuous paths. If the process
admits ε–coupling, then Xt

D→ π for any initial distribution.

Proof. Let λ be an arbitrary initial distribution. We must show that
Eλf(Xt) → π(f) for any continuous f : E → [0, 1].

Let ν′ = π, ν′′ = λ and assume that (2.6) holds for a given ε ∈ (0, 1).
Then for t ≥ Tε,∣∣f(X ′

t) − f(X ′′
t )
∣∣ ≤ M ′

t = sup
t−ε≤s≤t+ε

∣∣f(X ′
s) − f(X ′

t)
∣∣.
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Hence ∣∣Ef(X ′
t) − Ef(X ′′

t )
∣∣ ≤ EM ′

t + P(Tε > t).

Since Ef(X ′
t) = π(f), EM ′

t = EM ′
1 by stationarity, it follows that

lim sup
t→∞

∣∣π(f) − Eλf(Xt)
∣∣ ≤ EM ′

1. (2.7)

However, by stationarity {Xt} has probability 0 to have a jump at t = 1
(cf. A2.3) and since f is continuous, we therefore have M ′

1 ↓ 0 as ε ↓ 0.
Thus the desired conclusion follows by letting ε ↓ 0 in (2.7). �

Now consider a renewal process in the notation of Ch. V with µ < ∞
and recall that the distribution F0 with density F (x)/µ is stationary for
the forward recurrence time process {Bt}. We let {Bt}, {B′

t} be indepen-
dent versions defined on a common probability space, such that {B ′

t} is
stationary and {Bt} has some arbitrary delay distribution.

Lemma 2.5 For all large enough A, there exists a sequence τk ↑ ∞ of
finite stopping times such that Bτk

≤ A, B′
τk

≤ A for all k.

Proof. Choose A with F0(A) > 1/2. By the LLN VI.3.1 for cumulative
processes (note that the proof only uses the elementary renewal theorem
and not the renewal theorem itself!), we have

1
T

∫ T

0

I(Bt ≤ A) dt
a.s.→ F0(A),

1
T

∫ T

0

I(B′
t ≤ A) dt

a.s.→ F0(A)

which in view of F0(A) > 1/2 is only possible if the set {t : Bt ≤ A, B′
t ≤ A}

is unbounded w.p. 1. �

Lemma 2.6 Assume that F is nonlattice. Then given A and ε > 0, it is
possible to choose a such that δ = infa≤x≤a+2A h(x) > 0, where I(x) =
[x − ε, x + ε], h(x) = P

(
Y1 + · · · + Yn ∈ I(x) for some n

)
.

Proof. Define I ′(x) = [x − ε/2, x + ε/2], h′(x) = P
(
Y1 + · · · + Yn ∈

I ′(x) for some n
)
. By V.5.1, we can choose a such that I ′(x) contains a

point of the support of the renewal measure
∑∞

0 F ∗n for each x ≥ a − ε/2
and hence h′(x) > 0. Choose m, x1, . . . , xm such that the I ′(xj) cover
[a, a + 2A] and let δ = minj=1,...,m h′(xj). �

Proof of the renewal theorem V.4.6. In the notation of Lemmas 2.5, 2.6, we
have

Bτk
+[a, a+2A] ⊇ [a+A, a+2A], B′

τk
+[a, a+2A] ⊇ [a+A, a+2A], (2.8)

Therefore δ is a (pessimistic!) lower bound for the probability that {Bt}
has a renewal in [τk + a + A, τk + a + 2A]. Given that this occurs, let x
be the position of the first such renewal. The probability that {B ′

t} has
a renewal in I(x) is then at least δ. In other words, the probability of
{Bt}, {B′

t} to have renewals at most ε apart in [τk + a + A, τk + a + 2A]
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is at least δ2. W.l.o.g., we may assume τk+1 − τk > a + 2A so that the
adaptedness assumption of the geometric trials lemma A6.1 are satisfied.
Thus, {Bt} will eventually have a renewal at most ε apart from a renewal of
{B′

t}. Replacing the following interarrival times for {Bt} by those of {B′
t}

and denoting the resulting process by {B′′
t } provides an ε–coupling, and

Bt
D→ F0 then follows by Proposition 2.4. �

2d Spread–Out Distributions and Exponential Rates

It is easy to adapt the above proof of the renewal theorem for the nonlattice
case to give also say t.v. convergence of the recurrence times processes {At},
{Bt} when F is spread out; cf. Corollary 1.5. In fact (with the convention
that a renewal process admits coupling if {Bt} does so):

Theorem 2.7 A nonlattice renewal process with µ < ∞ admits coupling
if and only if F is spread out.

The necessity follows from Corollary 1.5 since the coupling inequality
applied to {Bt} shows that the existence of a coupling implies t.v. con-
vergence. For sufficiency, it is easy to either adapt the above proof of the
renewal theorem for the nonlattice case to give t.v. convergence or apply
Corollary 1.5; cf. Proposition 3.13 of the next section. We shall use a third
variant that will also provide exponential rates with a small additional
effort.

Lemma 2.8 For a zero–delayed spread–out renewal process, there exists
A, b such that the distributions of the Bt with t ≥ A have a common uniform
component on (0, b). That is, for some δ ∈ (0, 1) and all t ≥ A,

P(u < Bt ≤ b) ≥ δ
v − u

b
, 0 < u < v < b. (2.9)

Proof. By Lemma 1.2, there exist m, 0 < c < d, η > 0 such that F ∗m(v) −
F ∗m(u) ≥ η(v −u) for 0 < c < u < v < d. Let b = (d− c)/2, a = (c + d)/2.
When c < z < a, 0 < u < v < b, we then have (u + z, v + z) ⊆ (c, d), and
hence

P(u < Bt ≤ b) ≥
∫ t−c

t−a

F ∗m(t + u − y, t + v − y] U(dy)

=
∫ a

c

F ∗m(u + z, v + z] U(t − dz) ≥ η(u − v)U(t − a, t − c).

By Blackwell’s renewal theorem, U(t − a, t − c) ≥ (a − c)/2µ > 0 for all
large t. �

Proof of “if” in Theorem 2.7. We construct a zero–delayed and a stationary
renewal process, {Sn} and {S′

n}, on a common probability space in steps
k = 0, 1, 2, . . .. After step k, the renewal processes have been constructed
in a certain random interval [0, tk], as have the overshoots Btk

, B′
tk

. To get
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started, let t0 = 0, Bt0 = 0 and choose B′
t0 according to F0. Given step k

has been completed, let

Lk = max
[
Btk

, B′
tk

]
, tk+1 = tk + Lk + A,

sk = Lk + A − Btk
, s′k = Lk + A − B′

tk

s1

s′1
S �• • • • • • • •

S′ �• • • • • • • •

L0 A
t1

L1 A
t2

Lσ+1
�

Figure 2.1

with A from Lemma 2.8; cf. Fig. 2.1. Then sk, s′k ≥ A, and by Lemma 2.8
we can choose Uk, Vk, Rk, R′

k such that P(Uk = 1) = 1 − P(Uk = 0) = δ,
that Vk is uniform on (0, b) and that

Btk+1 = UkVk + (1 − Uk)Rk, B′
tk+1

= UkVk + (1 − Uk)R′
k

have the overshoot distributions corresponding to sk, resp. s′k (Uk, Vk, Rk, R′
k

are taken independent of all preceding U�, V�, R�, R
′
�). The renewals for

{Sn} in [tk+1 − sk, tk+1] are then just taken according to the conditional
distribution of the renewal process given that its overshoot at time sk has
the value of the constructed Btk+1 , and similarly for {S′

n}. The procedure
is stopped at step σ = inf {k : Uk = 1}. Then the two renewal processes
have a common renewal at time T = tσ + Lσ+1, and defining {S′′

n} as the
renewal process with the same renewals as {Sn} before T and with the
same renewals as {S ′

n} after provides the desired coupling. For the proof
of Lemma 2.9 below, note that P(σ = n) = δ(1 − δ)n. �

We now turn to the rate results and first note:

Lemma 2.9 If
∫∞
0

eηxF (dx) < ∞ for some η > 0, then also EeεT < ∞
for some ε > 0.

Proof. Since z(t) = E[eηBt ; t < Y ] ≤ e−ηtEeηY is d.R.i., the usual renewal
argument yields convergence of Z(t) = EeηBt to a finite limit. In particular,
Z(t) ≤ c1 < ∞ for all t. Now

E
[
eη(A+Lk+1)

∣∣Btk
, B′

tk

] ≤ E
[
eη(A+Btk+1 ) + eη(A+B′

tk+1
) ∣∣Btk

, B′
tk

]
= E

[
eη(A+Bsk

) + eη(A+B′
sk

)] ≤ c

where c = 2c1eηA. Similarly c2 = Eeη(A+L0) < ∞, and letting Tn =
∑n

0 (A+
Lk), it follows easily by induction that EeηTn ≤ c2c

n. Now for some (large)
p and some q (close to 1) with 1/p+1/q = 1, it holds that c1/p(1−δ)1/q < 1
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With ε = η/p, Hölder’s inequality then yields

EeεT ≤ EeεTσ+1 =
∞∑

n=1

E
[
eεTn+1; σ = n

]
≤

∞∑
n=1

[
EeηTn+1

]1/p
P(σ = n)1/q ≤ c3

∞∑
n=1

c(n+1)/p(1 − δ)n/q < ∞

where c3 = c
1/p
2 δ1/q. �

Theorem 2.10 Assume
∫∞
0 eηxF (dx) < ∞ for some η > 0. Then for

some ε > 0:
(i)

∥∥P0(Bt ∈ ·) − F0

∥∥ = O(e−εt), cf. Corollary 1.5.
(ii) In Stone’s decomposition, U2[x,∞) = O(e−εx), u1(x) = µ−1 +
O(e−εx).
(iii) If z is measurable with z(x) = O(e−δx) for some δ > ε, then

U ∗ z(t) =
1
µ

∫ ∞

0

z(x) dx + O(e−εt).

Proof. (i) is clear from (2.4) and Lemma 2.9. The proof of (ii) proceeds
by reinspecting the derivation of Stone’s decomposition. In the notation
there, H < F implies

∫
eηx H(dx) < ∞ and hence

∫
eεx H(dx) < 1 for

some possibly smaller ε > 0. This implies that
∫

eεx U2(dx) < ∞ and
hence that U2[x,∞) = O(e−εx). Using (i), the representation V.(2.8) of
U(x− a− b, x− a] and V.3.4, we have U(x− a− b, x− a] = 1/µ + O(e−εx)
and hence (cf. (1.1), (1.2))

u1(x) =
∫ x

0

U ∗ g(x − y)U2(dy) =
∫ x

0

[‖G‖/µ + O
(
e−ε(x−y)

)]
U2(dy)

= ‖G‖‖U2‖/µ − O
(
U2[x,∞)

)
+ e−εx

∫ x

0

O(eεy)U2(dy) =
1
µ

+ O(e−εx).

Finally in (iii),

U ∗ z(x) =
∫ x

0

z(x − y)U2(dy) +
∫ x

0

z(x − y)u1(y) dy

= e−εx

∫ x

0

O(eεy)U2(dy) +
∫ x

0

z(y)
{ 1

µ
+ O

(
e−ε(x−y)

)}
dy

= O(e−εx) +
∫ ∞

0

z(y)
µ

dy −
∫ ∞

x

z(y)
µ

dy + e−εx

∫ x

0

O
(
e−(δ−ε)y

)
dy

= O(e−εx) +
∫ ∞

0

z(y)
µ

dy.

�

Corollary 2.11 If, in addition to the conditions of Corollary 1.4, a regen-
erative process has

∫∞
0 eηxF (dx) < ∞ and, in the delayed case, EeηY0 < ∞
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for some η > 0 , then the t.v. convergence is exponentially fast. That is,∥∥P(Xt ∈ ·) − Pe(Xt ∈ ·)∥∥ = O(e−εt) for some ε > 0.

Proof. If zA(t) = P0(Xt ∈ A, t < Y ), then zA(t) ≤ P0(Y > t) = O(e−ηt),
and a check of the above proof shows that

P0(Xt ∈ A) = U∗zA(t) = O(e−εt)+
∫ ∞

0

zA(y)
µ

dy = O(e−εt)+Pe(Xt ∈ A)

uniformly in A. The delayed case is easily reduced to the zero–delayed one
by conditioning upon Y0. �

Problems

2.1 The purpose is to give a coupling proof of Xn
D→ ∞ for an irreducible

aperiodic null recurrent Markov chain. Let P be the transition matrix and ν
the stationary measure. Consider independent versions {Xn}, {X ′

n} with initial
distributions λ, λ′. Show that {Zn} = {(Xn, X ′

n)} is irreducible and aperiodic.
Define now T = inf {n : Xn = X ′

n = i} for some fixed state i. Show that {Zn}
is recurrent if and only P(T < ∞) for any choice of i, λ, λ′. If {Zn} is transient,
let λ = λ′ and show hereby Pλ(Xn = i) ≤ P(Zn = (i, i))1/2 → 0. If {Zn} is
recurrent, let B ⊆ E be finite with i ∈ B, and define λ′

j = νj/ν(B) for j ∈ B and
0 otherwise. Show that

lim Pλ(Xn = i) = lim Pλ′(X ′
n = i) ≤ lim

(νP n)i

ν(B)
=

νi

ν(B)

and hereby that Pλ(Xn = i) → 0.
2.2 Show that U(t) = t/µ + EY 2/2µ2 + O(e−αt) provided that F is spread out
and
∫∞
0

eδx F (dx) < ∞ for some δ > 0.

Notes The idea of a coupling goes back to Doeblin in a 1938 paper, but to-
day’s interest in the subject was largely initiated by Pitman (1974). Two main
monographs are Lindvall (1992) and Thorisson (2000).

Further interesting aspects not discussed here include the concept of a maximal
coupling, the relations to the tail and invariant σ–fields and a shift–coupling. In
the broad sense, a maximal coupling is one for which P(X̃ ′ �= X̃ ′′) achieves the
minimal value ‖P(X ′ ∈ ·) − P(X ′′ ∈ ·)‖. In the narrow sense, a maximal coupling
time achieves the exact rate of convergence. A shift–coupling is defined as an
ε–coupling without the requirement |T ′ − T ′′| < ε. A main theorem states that
the existence of a shift–coupling is equivalent to P(X ′ ∈ F ) = P(X ′′ ∈ F ) for
all F in the invariant σ–field (there are similar characterizations of other sorts of
couplings; see Thorisson, 2000).

For the history of the coupling proof of the renewal theorem, see Thorisson
(2000) pp. 480–481. The present proof is basically a variant of Lindvall’s (1977)
argument.

For more on exponential convergence rates as in Theorem 2.10, see Lund et al.
(1996) and references therein.
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3 Markov Processes: Regeneration and Harris
Recurrence

From the point of view of regenerative processes, the Markov case is a
rather special one. Without doubt, a major force of the concept of a re-
generative process is precisely that neither the Markov property nor other
restrictions need to be put on the evolution in between regeneration points.
Conversely, from the point of view of Markov processes on a general state
space E, regeneration appears at first sight as a severe restriction. There is
no apparent choice of regeneration points since e.g. the renewal processes
of entrances to a fixed state x, so important in the discrete case, will only
be nonterminating in quite special cases.

Nevertheless, the connection between Markov processes and regenerative
processes has turned out to be of basic importance, and in fact ergodic
theory for Markov processes in a simple and satisfying form is hardly known
beyond the set–up to be developed below.

We consider as in I.8 a Markov process {Xt}t∈T on E with T = N or
T = [0,∞) and let Ft = σ(Xs : s ≤ t). If T = [0,∞), it is assumed that
E is Polish, E the Borel σ–algebra, that {Xt} has D–paths and the strong
Markov property holds. Write P t(x, A) = Px(Xt ∈ A).

Letting τ(R) = inf {t ≥ 1 : Xt ∈ R}, we call a set R ∈ E recurrent if
Px(τ(R) < ∞) = 1 for all x ∈ E (if T = [0,∞), we need in addition
to assume that τ(R) is measurable and that Xτ(R) ∈ R). By the strong
Markov property, this is equivalent to {t : Xt ∈ R} being unbounded with
probability 1, irrespective of initial conditions. We call R a regeneration set
if R is recurrent and for some r > 0 the P r(x, ·), x ∈ R, contain a common
component, i.e. for some ε ∈ (0, 1) and some probability measure λ on E,

P r(x, B) ≥ ελ(B), x ∈ R, (3.1)

for all B ∈ E. For example, this holds for a one–point set R = {x} if
and only if x is a recurrent state since then we may just take an arbitrary
r > 0, ε = 1/2 and λ(B) = P r(x, B). The following example is typical
of applications and shows that regeneration sets exist in far more general
situations:

Example 3.1 Assume that the transition functions contain components
with smooth densities, i.e. for some µ, r and f r we have

P r(x, B) ≥
∫

B

f r(x, y)µ(dy),

E0 =
{
x ∈ E :

∫
E

f r(x, y)µ(dy) > 0
}


= ∅ (3.2)

where f r(x, y) is jointly continuous in x, y in a suitable topology on E. Then
a regeneration set exists, provided that for some x0 ∈ E0 every neighbour-
hood of x0 is recurrent. Indeed, choose y0 ∈ supp(µ) with δ = f r(x0, y0) > 0
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and let R, S be neighbourhoods of x0, resp. y0, with f r(x, y) ≥ δ/2, x ∈ R,
y ∈ S. Then if λ(B) = µ(BS)/µ(S), we have for x ∈ R that

P r(x, B) ≥
∫

BS

f r(x, y)µ(dy) ≥ δ

2
µ(BS) =

δµ(S)
2

λ(B). �

We call a Markov chain {Xn} with a regeneration set Harris recurrent or
just a Harris chain (the traditional equivalent definition looks somewhat
different; see the end of the section; in continuous time the terminology
is less well established). We shall justify the term “regeneration set” by
showing that it is possible to construct {Xn} simultaneously with a renewal
process S0, S1, . . . w.r.t. which the Markov chain becomes regenerative. The
idea is to randomize by w.p. ε letting a regeneration occur r time units after
a visit to R and then restart according to λ. Choose an initial value X0 = x
and just take the usual version of the process up to the time τ(R) where R
is hit. Then realize Xτ(R)+r by w.p. ε letting the distribution be λ and a
renewal epoch occur at τ(R) + r, and w.p. 1− ε letting the distribution be

1
1 − ε

[
P r(Xτ(R), ·) − ελ(·)] .

After that, realize the whole segment
{
Xs+τ(R)

}
0<s<r

by choosing it
according to the conditional distribution of {Xs}0<s<r given that the
boundary values X0, Xr are the constructed Xτ(R), Xr+τ(R). Now repeat
the procedure with the new initial value Xr+τ(R) and so on. That we get a
Markov process with the given transition probabilities is intuitively obvious
and easily verified. Also the distribution of Xt = XSn at a renewal epoch
t = Sn is λ for all n and independent of S1, . . . , Sn. Hence the post–Sn

process evolves in the same way for all n and is independent of S1, . . . , Sn.
Thus we indeed have a regenerative process in the general sense of VI.1
where we do not require independent cycles. In fact, Xs+τ(R) needs not
be independent of Xr+τ(R) if 0 < s < r, and hence the last r − 1 values
in a cycle need not be independent of the next cycle. At least, the con-
struction ensures that cycles are one–dependent (cycles n+1, n+2, . . . are
independent of cycles 1, . . . , n − 1).

We denote by Pλ the zero–delayed case where X0 is chosen according to
λ, by Y the length of the first cycle of the Pλ–process.

The regeneration points obviously behave rather like stopping times, but
are not so in the strict sense since in addition to F∞ = σ(Xt; t ∈ T) they
also depend on the 0–1 variables determining the randomizations. However,
they fall into the framework of so–called randomized stopping times. We
shall not go into a discussion of this subject but mention only that in the
Markov chain case one of the possible definitions of τ being a randomized
stopping time is

Ex

[
g(Xn, Xn+1, . . .); τ > n

]
= Ex

[
EXng(X0, X1, . . .); τ > n

]
, (3.3)

Ex

[
g(Xs; s ≥ t); τ > t

]
= Ex

[
EXtg(Xs; s ≥ 0); τ > t

]
(3.4)
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for T = N, resp. T = [0,∞). This relation will be needed below so we shall
give a proof. Let T = N (the continuous case is entirely similar) and let τ
be any of S0, S1, . . .. By the Markov property,

Exg(Xn, Xn+1, . . .) = ExEXng(X0, X1, . . .)

and therefore it is sufficient to prove (3.3) with τ > n replaced by τ ≤ n.
But conditionally upon τ , it holds on {τ ≤ n} that the Markov process is
restarted according to λ at time τ . Thus on {τ ≤ n}

Ex

[
g(Xn, Xn+1, . . .)

∣∣ τ ; Xn

]
= EXng(X0, X1, . . .)

and (3.3) follows easily.
A measure ν on (E, E) is called stationary if ν ≥ 0, ν 
= 0, ν is σ–finite

and νP s = ν for all s ∈ T.

Theorem 3.2 For a Markov process with a regeneration set, a stationary
measure ν can be defined by

ν(f) = Eλ

Y −1∑
n=0

f(Xn), T = N, ν(f) = Eλ

∫ Y

0

f(Xt) dt, T = [0,∞).

Proof. It is clear that ν ≥ 0 and ν 
= 0. Also, a geometrical trial ar-
gument easily shows that if En,m = {x ∈ E : Px(τ(R) ≤ n) ≥ 1/m} then
ν(En,m) < ∞. Since E = ∪n,mEn,m, ν is σ–finite. To show νP s = ν, let
T = [0,∞) (the discrete time case differs only in notation). Let f be fixed
and define g(x) = Exf(Xs). Then

νP s(f) =
∫

Exf(Xs) ν(dx) =
∫

g(x) ν(dx) = ν(g)

= Eλ

∫ ∞

0

g(Xt)I(Y > t) dt =
∫ ∞

0

Eλ

[
EXtf(Xs); Y > t)

]
dt

But according to (3.4) with τ = Y , this is the same as∫ ∞

0

Eλ

[
f(Xs+t); Y > t)

]
dt

= Eλ

∫ Y +s

s

f(Xu) du = Eλ

{∫ Y

s

+
∫ Y +s

Y

f(Xu) du
}

= Eλ

{∫ Y

s

+
∫ s

0

f(Xu) du
}

= Eλ

∫ Y

0

f(Xu) du = ν(f),

using the regeneration at Y in the third step. Since this holds for all f , the
proof is complete. �

Corollary 3.3 Let ν be as in Theorem 3.2 and T = N. Then A ∈ E is
recurrent if and only if ν(A) > 0, or equivalently if and only if Pλ(Xn ∈
A) > 0 for some n.
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Proof. Starting from X0 = x, we eventually end up with a regeneration, and
thus A is recurrent if and only if Pλ(Xn ∈ A i.o.) = 1. Since cycles 1, 3, 5, . . .
are i.i.d. and 2, 4, 6, . . . are so too, this is in turn equivalent to Pλ(Xn ∈
A for some n < Y ) > 0 which again holds if and only if the expected
number ν(A) of visits to A before Y is > 0. The last characterization now
follows easily by a renewal argument. �

To investigate whether the stationary measure is unique, we first look at
the case T = N. Let F be recurrent,

{
XF

n

}
the Markov chain restricted to

F , cf. I.3, and let νF denote the restriction of ν to F (i.e. νF (A) = ν(AF )).
Then:

Proposition 3.4 If ν is stationary for {Xn} and 0 < ν(F ) < ∞, then νF

is stationary for
{
XF

n

}
.

Proof. We may assume that νF (F ) = ν(F ) = 1. Letting Pν denote the
measure defined for finite segments by

Pν

(
X0 ∈ A0, . . . , Xn ∈ An

)
=

∫
Px

(
X0 ∈ A0, . . . , Xn ∈ An

)
ν(dx),

it is easily seen that Pν can be handled by the same formal rules as if ν was a
proper probability (e.g. we have by stationarity that Pν(Xk ∈ A) = ν(A)).
Let A ⊆ F and define cn(A) = Pν

(
X0 
∈ F, . . . , Xn−1 
∈ F, Xn ∈ A

)
. Then

cn(A) = Pν

(
X1 
∈ F, . . . , Xn 
∈ F, Xn+1 ∈ A

)
= cn+1(A) + Pν

(
X0 ∈ F, X1 
∈ F, . . . , Xn 
∈ F, Xn+1 ∈ A

)
,

ν(A) = Pν(X1 ∈ A) = Pν(X0 ∈ F, X1 ∈ A) + c1(A)
...

=
n∑

k=1

Pν

(
X0 ∈ F, X1 
∈ F, . . . , Xk−1 
∈ F, Xk ∈ A

)
+ cn(A).

Letting n → ∞ yields

cn(A) → ν(A) − Pν

(
X0 ∈ F, Xτ(F ) ∈ A

)
= ν(A) − PνF (XF

1 ∈ A).

But for A = F the r.h.s. is just 1 − 1 = 0. Thus cn(A) ≤ cn(F ) → 0, and
ν(A) = PνF (XF

1 ∈ A) and stationarity follows. �

Theorem 3.5 For a (discrete–time) Harris chain, the stationary measure
is unique up to a multiplicative constant.

Proof. Existence was shown in in Theorem 3.2. For uniqueness, suppose first
that EλY = ν(E) < ∞ and let ν̃ be a different stationary measure with
ν̃(E) < ∞. Then π = ν/ν(E), π̃ = ν̃/ν̃(E) are stationary distributions and
by VI.1.5(ii) we have that

1
d

d∑
j=1

Pπ̃(Xnd+j ∈ A) → 1
EλY

Eλ

Y −1∑
n=0

I(Xn ∈ A) = π(A),
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where d is the period of Y . But by stationarity of π̃, the l.h.s. is just π̃(A)
for all n. Hence π = π̃ so that ν, ν̃ are proportional.

In the general case where not necessarily ν(E) < ∞, ν̃(E) < ∞, we
first assume r = 1 in (3.1). Proportionality follows if we can show that
ν(A)/ν(F ) = ν̃(A)/ν̃(F ) whenever A ⊆ F and ν(F ), ν̃(F ) ∈ (0,∞). Here F
is recurrent according to Corollary 3.3 since ν(F ) > 0 and we can consider
the chain

{
XF

n

}
for which νF , ν̃F are both stationary by Proposition 3.4.

Thus if we can prove that
{
XF

n

}
has a regeneration set, we have from

above that νF = cν̃F and the desired conclusion follows. To this end,
choose m, k, δ such that

RF =
{
x ∈ F : Px

(
Xm ∈ R,

m∑
n=1

I(Xn ∈ F ) = k
)

≥ δ
}

has positive ν–measure. Then RF is recurrent for {Xn}, hence for
{
XF

n

}
and for x ∈ RF we have Px(XF

k+1 ∈ A) ≥ δ Pλ(Xτ(R) ∈ A).
For a general r, consider a discrete time renewal process {S∗

n}, indepen-
dent of {Xn} and having interarrival distribution {f ∗

n} with finite mean
and support on all of N. Then the probability of a renewal at n is bounded
away from 0, and it is easy to see by a geometric trial argument that
R is recurrent for the Markov chain {X∗

n} = XS∗
n
. Further, f∗

r > 0 and
P(X∗

1 ∈ A |X∗
0 = x) ≥ εf∗

r λ(A). Thus a condition of type (3.1) holds with
r∗ = 1 so that from above the stationary measure of {X∗

n} is unique up to a
constant. But the transition kernel is P ∗ =

∑∞
0 f∗

nPn, and since νP n = ν,
ν̃P n = ν, the measures ν, ν̃ are both stationary for P ∗, hence differ only
by a constant. �

For T = N, we call the chain aperiodic if the Pλ–distribution of Y is
aperiodic (it follows from Proposition 3.10 below that this property does
not depend on the choice of R, λ, ε). For T = [0,∞), terminology such as
“nonlattice cycles” or “spread–out cycles” refers to the Pλ–distribution of
Y in a similar manner. We call {Xt} positive recurrent if EλY = ‖ν‖ < ∞
and null recurrent if ‖ν‖ = ∞ (an aperiodic positively recurrent Harris
chain is simply called Harris ergodic). With π = ν/‖ν‖, the basic limit
theorems for regenerative processes then give:

Theorem 3.6 For a Harris ergodic chain, the Px–distribution of Xn con-
verges to π in total variation. In particular, P n(x, A) → π(A) for all A ∈ E.
For a continuous time positive recurrent Markov process with non–lattice
cycles, the Px–distribution of Xt converges weakly to π.

Theorem 3.6 is the main ergodic theorem for Harris chains, and we
proceed to miscellaneous complements and extensions. First, since the
LLN holds for identically distributed one–dependent variables C1, C2, . . .
(consider {C2n} and {C2n+1} separately!), the same proof as in VI.3 yields:
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Proposition 3.7 In the positive recurrent discrete time case, the time–
averages

∑N
0 f(Xn)/N converge to π(f) for any bounded measurable f .

Similarly,
∫ T

0
f(Xt) dt/T → π(f) in the positive recurrent continuous time

case.

Proposition 3.8 Suppose that a continuous–time Markov process {Xt}t≥0

either (a) has spread–out cycles or (b) that (3.1) holds for all r in an open
interval. Then:
(i) Every discrete skeleton {Xnδ}n∈N is a Harris chain.
(ii) The stationary measure ν is unique up to a constant.
(iii) In the positive recurrent case ‖ν‖ < ∞, the Px–distribution of Xt

converges to π = ν/‖ν‖ in total variation.
(iv) In the null recurrent case, Px(Xt ∈ F ) → 0 for any set F ∈ E with
ν(F ) < ∞.

Proof. In case (b), we can impose an additional randomization by letting
the regenerations occur at times after visits to R that are not fixed at r
but uniformly distributed on say (a, b). Then it is immediately clear that
the cycle length distribution is absolutely continuous, and we may proceed
exactly as in the following argument for case (a). First (iii) follows by
Corollary 1.4. For (i), we first show that R is recurrent for {Xnδ}. Letting
Bt be the forward recurrence time of the imbedded renewal process, it
follows from {δ} being recurrent for {Bt} that [0, δ] is recurrent for {Bnδ}.
Also when cycles are spread out, it is easy to see by a renewal argument
that g(t) = Pλ(Xt ∈ R) ≥ ε > 0 for t in an interval of length > 2δ,
therefore for t ∈ [(m − 1)δ, mδ] with m suitably chosen. Hence, if Gt =
σ(Xs, Bs : s ≤ t),

∞∑
n=0

P
(
X(n+m)δ ∈ R

∣∣Gnδ

) ≥
∞∑

n=0

g(mδ − Bnδ)I(Bnδ ≤ δ)

≥ ε

∞∑
n=0

I(Bnδ ≤ δ) = ∞

and R being recurrent for {Xnδ} follows by the conditional Borel–Cantelli
lemma. That R is a regeneration set for {Xmδ} is then easily proved: if
m0δ > r, then for x ∈ R we get from (3.1) that

Pm0δ(x, A) ≥ εPλ(Xm0δ−r ∈ A).

This proves (i), and (ii) is a consequence of (i) and Theorem 3.5. For (iv),
check that z(t) = Pλ(Xt ∈ F, Y > t) satisfies the assumptions of Corollary
1.3. Hence Pλ(Xt ∈ F ) = U ∗ z(t) converges to

∫
z/µ = ν(F )/µ = 0. That

Px(Xt ∈ F ) → 0 then follows by conditioning upon Y0. �.

Clearly, the proof of (iv) applies to the case T = N as well, and thus:

Corollary 3.9 In the discrete–time null recurrent case, Px(Xn ∈ F ) → 0
whenever ν(F ) < ∞.
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Turning to the periodicity problem, we have the following result
concerning the existence of cyclic classes.

Proposition 3.10 For T = N, there exists a d = 1, 2, . . . and a partition-
ing E = E1 ∪ · · · ∪ Ed such that P (x, Ei+1) = 1 for all x ∈ Ei\N , where
N is a ν–null set (here we identify Ed+1 with E1 and so on). Furthermore,
such a partitioning is unique in the sense that if a different one is given
in terms of d̃, Ẽ1, . . . , Ẽd, Ñ , then d is a multiple of d̃, d = cd̃, and after a
cyclic permutation of the Ej one can achieve Ẽj = ∪c−1

k=0Ej+k ˜d up to ν–null
sets. Finally d can be characterized as the Pλ–period of Y for some [and
therefore any] choice of R, λ, ε in (3.1).

Proof. We start from one representation (3.1) and define d to be the Pλ–
period of Y ,

Fi =
{
x ∈ E : P nd−r−i(x, R) > 0 for some n = 0, 1, 2, . . .

}
.

Since R is recurrent, E = F0 ∪ · · · ∪ Fd−1. The Fi need not be disjoint
but, however, ν(FiFj) = 0 for i 
= j. In fact, otherwise there is a m with
Pλ(Xm ∈ FiFj) > 0, implying that for some n1, n2 both m + n1d − i and
m + n2d − j are in the support of Y , which is impossible.

A similar argument shows that Pλ(Xnd+i ∈ Fi) = 1 for all n, i. Not-
ing that if ν(A) = 0, then Pλ(Xn ∈ A) = 0 for all n, it follows that if
we define E0 = F0, Ei = Fi − E0 − · · · − Ei−1 then E is the disjoint
union of the Ei and Pλ(Xnd+i ∈ Ei) = 1 for all n, i. To show that Ei,j =
{x ∈ Ei : P (x, Ej) > 0} is a ν–null set for j 
= i + 1, note similarly that
otherwise Pλ(Xm ∈ Ei,j) > 0 for some m. Here m must be of the form
nd + i and then Pλ(Xnd+i+1 ∈ Ej) > 0, which is only possible if j = i + 1.

Now let Ẽ0, . . . , Ẽd̃−1 be a different set of cyclic classes, fix j and choose
i with ν(EiẼj) > 0. Let ψ be a probability measure that is equivalent to
the restriction of ν to EiẼj . Then it is easy to see that if A ⊆ Ei, ν(A) > 0,
then Pψ(Xnd ∈ A) > 0 for all sufficiently large n. Letting first A = EiẼj ,
it follows that for some n both nd and (n + 1)d are multiples of d̃. Hence
d = cd̃. Next with A = Ei\Ẽj , Pψ(Xnd ∈ A) > 0 would imply that nd

is not a multiple of d̃, which is impossible. Hence ν(Ei\Ẽj) = 0. That is,
if ν(Ei\Ẽj) > 0, then Ei ⊆ Ẽj up to a ν–null set. Choose the numbering
such that E0 ⊆ Ẽ0. Then Ei ⊆ Ẽi, i = 0, . . . , c − 1, Ec ⊆ Ẽ0, Ec+1 ⊆ Ẽ1,
. . ., E2c ⊆ Ẽ0, . . ., and Ẽj = ∪c−1

0 Ej+k ˜d follows. �

Now let ϕ be a nontrivial σ–finite measure on (E, E). We call {Xn} ϕ–
recurrent if any F ∈ E with ϕ(F ) > 0 is recurrent, and ϕ–irreducible if to
any x ∈ E and F ∈ E with ϕ(F ) > 0 we can find n with Px(Xn ∈ F ) > 0
(obviously, ϕ–recurrence implies ϕ–irreducibility). Then:
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Theorem 3.11 (orey’s C–set theorem) Let {Xn} be ϕ–irreducible
and ϕ(F ) > 0. Then we can find C ⊆ F , r and ε > 0 such that ϕ(C) > 0
and Px(Xr ∈ A) ≥ εϕ(AC) for all x ∈ C.

The proof is a highly technical application of differentiation results for set
functions and will not be given here (see the Notes for textbook references).
However, the result permits us to characterize Harris chains (as defined here
by existence of regeneration sets) in the following more traditional way:

Corollary 3.12 A Markov chain is a Harris chain if and only if for some
ϕ it is ϕ–recurrent. In that case, any set F with ν(F ) > 0 contains a
regeneration set.

Proof. If a regeneration set exists, the construction of the imbedded renewal
process immediately shows that {Xn} is λ–recurrent. Suppose, conversely,
that {Xn} is ϕ–recurrent, in particular ϕ–irreducible, and let ϕ(F ) > 0.
Choosing C as in the C–set theorem, we see that C is a regeneration set.
Thus the stationary measure ν exists, the chain is ν–recurrent (Corollary
3.3) and we may repeat the argument to see that any F with ν(F ) > 0
contains a regeneration set. �

We remark that in practical cases the existence of regeneration sets seems
far more easy to check than ϕ–recurrence. For example, for E = R, the
obvious choice of ϕ is frequently Lebesgue measure (possibly restricted to
some interval) and it may be fairly easy to check that every interval is
recurrent. But one needs to show recurrence of every Borel set of positive
Lebesgue measure, and since such a set A can have a very complicated
structure (e.g. A need not have interior points), this is a considerable task.

Finally:

Proposition 3.13 A Markov chain {Xn} with a stationary distribution π
admits coupling (cf. Section 2) if and only if it is Harris ergodic. In that
case, for any set F with π(F ) > 0 and any two initial distributions µ, µ′

it is possible to construct coupled versions {Xn}, {X ′
n} with the property

XT = X ′
T ∈ F , where T is the coupling epoch.

Proof. Suppose first that {Xn} is Harris ergodic, let µ, µ′, F be given and
choose a regeneration set R ⊆ F as in Corollary 3.12. We construct {Xn},
{X ′

n} by first realizing coupled versions of the imbedded renewal process
(this is possible according to the discussion of coupling of ergodic Markov
chains on a discrete state space given in Section 2b). Let T be the epoch
of the first common renewal. Then we may choose XT = X ′

T distributed
according to λ (so that in particular XT = X ′

T ∈ R ⊆ F ) and independent
of the renewal process up to T , and construct the remaining Xn, n 
= T ,
according to their conditional distribution given XT in such a way that
Xn = X ′

n, n > T .
Suppose, conversely, that {Xn} admits coupling so that we have total

variation convergence to π. Let A ⊆ E, π(A) = 2ε > 0 and define τ =
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inf {n ≥ 1 : Xn ∈ A}. For any ψ, we may find m(ψ) such that Pψ(Xm(ψ) ∈
A) > ε and hence Pψ(τ ≤ m(ψ)) > ε. For a fixed x ∈ E, we now succes-
sively define integers n(1) < n(2) < · · · by n(1) = m(δx) and n(k + 1) =
n(k) + m(ψk), where ψk is the conditional Px–distribution of Xn(k) given
τ > n(k). Then Px(τ > n(k)) ≤ (1 − ε)k so that Px(τ < ∞) = 1 and
π–recurrence follows. Null recurrence is excluded by the existence of a sta-
tionary distribution, and periodicity by total variation convergence as is
easily seen from Proposition 3.10. �

Problems

3.1 The Ornstein–Uhlenbeck process with parameter ξ > 0 may be described
as a Markov process with state space R and the Px–distribution of Xt being
normal with mean e−ξtx and variance (1 − e−2ξt)/2ξ. Show that (a) the normal
distribution π with mean zero and variance 1/2ξ is stationary: (b) any discrete
skeleton {Xnδ}n∈N

is Harris recurrent [Hint: Test functions]; (c) Xt converges in
total variation to π.
3.2 Show that if (3.1) holds for r +1 (with the same R, λ!) as well as r, then the
chain is aperiodic.

Notes The theory was initiated largely by Harris in the 1950s (though Doeblin
had some early results) and further main work done by Orey and others in the
1960s. The role of regenerative processes and minorization conditions such as
(3.1) was realized independently by Nummelin and Athreya and Ney around
1978. A main textbook treatment is Meyn and Tweedie (1993). See also Orey
(1971), Nummelin (1984) and Revuz (1984).

A nontrivial queueing application is given in XII.2. Among many further

examples, we mention in particular Sigman (1988) and Dai (1995a).

4 Markov Renewal Theory

By a Markov renewal process we understand a point process where the
interarrival times T0, T1, . . . are not necessarily i.i.d. but governed by a
Markov chain {Jn} with (finite or countable) state space E. This Markov
dependence of the Tn may be formulated in various equivalent ways.
One formulation is that Tn is sampled according to the current val-
ues of Jn, Jn+1. With H = σ(J0, J1, . . .) this means that T0, T1, . . . are
conditionally independent given H with

P(Tn ≤ t |H) = P
(
Tn ≤ t

∣∣ Jn, Jn+1

)
= Gij(t) (4.1)

on {Jn = i, Jn+1 = j} for a suitable family (Gij)i,j∈E of distributions on
(0,∞). Equivalently, one may think of Jn+1, Tn being sampled simultane-
ously according to the current value of Jn. That is, {(Jn+1, Tn)} is a Markov
chain on E×(0,∞) with the transition function depending only on the first
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coordinate. In particular, letting Q = (qij) denote the transition matrix of
{Jn} and Fij = qijGij , we have

Fij(t) = P
(
Jn+1 = j, Tn ≤ t

∣∣Jn = i
)

= Pi(J1 = j, T0 ≤ t) (4.2)

where Pi, Ei refer to the case J0 = i. The matrix F whose elements are the
measures Fij is called the semi–Markov kernel, and we define the associated
semi–Markov process {Wt}t≥0 by Wt = J0 for t < T0, Wt = J1 for T0 ≤ t <
T1 and so on. Obviously, the semi–Markov process and the Markov renewal
process are in one–to–one correspondence (at least subject to regularity
conditions like qii = 0, T0 + T1 + · · · = ∞), and we shall not keep a formal
distinction between them.

We note that the process reduces to a renewal process if E consists of
one point, to a Markov chain with state space E if all Gij are degenerate
at 1 and to a continuous–time Markov process with state space E if all
Gij are exponential with intensities depending only on i, Gij(t) = e−λ(i)t.
Thus, the Markov renewal process may be said to extend the continuous–
time Markov jump process in the same way as the renewal process extends
the Poisson process. We take these remarks as sufficient motivation for
developing the theory and give just one practical example.

Example 4.1 Suppose in the traffic theory example V.1.2 that two types
of vehicles are possible, e.g. cars and trucks. Then clearly the distribution
of the distance between two vehicles depends in an essential way on their
types. One could also model clumping by letting the type of a vehicle be
its number in a clump. Suppose that a clump consists of n cars w.p. qn

(q1 + q2 + · · · = 1) and that the sizes of the clumps are independent. Then
the Markov chain goes from state n to state 1 w.p. qn/(qn +qn+1 + · · ·) and
to state n+1 otherwise, and one could take all Gn1 = H1, all Gn(n+1) = H2

(with H1 stochastically larger than H2). �

The following observation is the key to Markov renewal theory:

Proposition 4.2 The instants t of returns to i (Wt = i, Wt− 
= i) form a
renewal process that is nonterminating if {Jn} is recurrent. In that case,
the mean interarrival time is µ/νi where ν is the stationary measure for
{Jn} and µ =

∑
i,j∈E νiµij with µij =

∫∞
0 t Fij(dt).

Proof. The first statement is obvious and letting τ = inf {n ≥ 1 : Jn = i},
it is seen that if J0 = i, then T0 + · · ·+Tτ−1 is the first interarrival interval
of the renewal process. Hence, letting m(i, j) =

∫∞
0

t Gij(dt) (so that µij =
qijm(i, j)), the mean interarrival time is

Ei(T0 + · · · + Tτ−1) = Ei

∞∑
n=0

Ei

[
Tn; τ > n

∣∣H ]
= Ei

∞∑
n=0

I(τ > n)m(Jn, Jn+1)
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=
∑

j,k∈E

m(j, k)Ei

∞∑
n=0

I
(
Jn = j, Jn+1 = k, τ > n

)
=

∑
j,k∈E

m(j, k)qjkEi

∞∑
n=0

I(Jn = j, τ > n) =
∑

j,k∈E

µjk
νj

νi
=

µ

νi
.

�

In a standard manner, one can now prove that if {Jn} is irreducible
recurrent, then the interarrival distributions corresponding to Proposition
4.2 are either nonlattice for all i, or all lattice with the same span. We call
the Markov renewal process (or equivalently the semi–Markov kernel F )
nonlattice in the first case and lattice in the second.

For two kernels F , G we define H = G ∗ F as the kernel with elements

Hij(t) =
∑
k∈E

Gik ∗ Fkj(t) =
∑
k∈E

∫ t

0

Fkj(t − u)Gik(du)

and the convolution powers F ∗k the obvious way (with F ∗0
ij (t) = δijI(t ≥

0)). Using (4.2) and induction, one can immediately check that the
interpretation in terms of Markov renewal processes is

F ∗k
ij (t) = Pi

(
Jk = j, T0 + · · · + Tk−1 ≤ t

)
. (4.3)

Define finally the Markov renewal kernel U as U =
∑∞

0 F ∗n. We then
have the following generalization of Blackwell’s theorem:

Theorem 4.3 Consider a Markov renewal process with semi–Markov ker-
nel F and J0 = W0 = i. Then Uij(t) is the expected number of returns to
j before t,

Uij(t) =
∞∑

n=0

Pi

(
Jn = j, T0 + · · · + Tn−1 ≤ t

)
. (4.4)

In particular, Uij(t) < ∞ and in the nonlattice case it holds in the notation
of Proposition 4.2 that Uij(t + a) − Uij(t) → aνj/µ, t → ∞.

Proof. Here (4.4) is clear from (4.3), and the rest of the theorem is an
immediate consequence of Proposition 4.2 and one–dimensional renewal
theory. �

The Markov renewal equation (or multivariate renewal equation, system
of coupled renewal equations, etc.) has the form

Zi(t) = zi(t) +
∑
j∈E

∫ t

0

Zj(t − u)Fij(du), i ∈ E, (4.5)

where the Zi are unknown functions on [0,∞), the zi known functions
on [0,∞) and the Fij known bounded measures on [0,∞). Equation (4.5)
can be rewritten in matrix form as Z = z + F ∗ Z, with the convolution



4. Markov Renewal Theory 209

defined in the manner consistent with (4.5), and in a similar manner as in
one dimension we have:

Proposition 4.4 Suppose that F is a semi–Markov kernel (i.e. Q =(‖Fij‖
)

a transition matrix) and that {Jn} is irreducible recurrent. Then if
zi ≥ 0 and the zi are bounded on finite intervals uniformly in i, it holds that
Z = U ∗z is the unique solution to (4.5) with the Zi uniformly bounded on
finite intervals.

Proof. Since U = F ∗0 + F ∗ U , F ∗0 ∗ z = z, it is clear that Z = U ∗ z is
well defined and solves (4.5). Given two solutions of the type considered,
their difference D = (Di) satisfies D = F ∗ D = · · · = F ∗k ∗ D so that
with D∗

i = |Di| we get |D∗| ≤ F ∗k ∗ D∗ and KT < ∞ where KT =
supi∈E,t≤T D∗

i (t). To prove that D ≡ 0, let 0 ≤ t ≤ T and assume w.l.o.g.
that KT = 1. Then D∗ ≤ F ∗k ∗ 1 on [0, T ] and hence by (4.4),

D∗
i (t) ≤

∑
j∈E

F ∗k
ij (t) = Pi(T0 + · · · + Tk−1 ≤ t).

We claim that T0 + T1 + · · · = ∞ a.s. so that indeed Di(t) = 0 follows as
k → ∞. To see this, note simply that the Tn with Jn = i, Jn+1 = j are i.i.d.
given H and not degenerate at 0, and that P(Jn = i, Jn+1 = j i.o.) = 1
for some i, j by recurrence. �

Using Theorem 4.3, one can now deduce exactly as in one dimension that
if zj is directly Riemann integrable (d.R.i.), then

Uij ∗ zj(t) → νj

µ

∫ ∞

0

zj(x) dx. (4.6)

From this one expects the generalization

Zi(t) =
∑
j∈E

Uij ∗ zj(t) → 1
µ

∑
j∈E

νj

∫ ∞

0

zj(x) dx. (4.7)

of the key renewal theorem. However, if E is infinite one cannot deduce
(4.7) from (4.6) without imposing some further conditions. We shall not go
into this but will be satisfied by noting:

Corollary 4.5 Suppose in addition to the assumptions of Proposition 4.4
that F is nonlattice, that E is finite or, more generally, that zi ≡ 0 except
for a finite number of i, and that the zi are d.R.i. Then (4.7) holds.

We shall also derive an analogue of the asymptotic estimates of V.7 for
the case where the rows of Q not necessarily have sum 1:

Theorem 4.6 Consider the Markov renewal equation (4.5) with E =
{1, . . . , p} and Q =

(‖Fij‖
)

irreducible. Suppose that for some real β the
matrix A = (aij) where aij =

∫∞
0 eβu Fij(du) has spectral radius 1 and
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choose ν, h with νA = ν, Ah = h, νi > 0, hi > 0, i = 1, . . . , p. Then

F̃ij(du) =
hj

hi
eβu Fij(du)

defines a semi–Markov kernel F̃ with Q̃ =
(‖F̃ij‖

)
irreducible recurrent.

Let further Z̃i(t) = eβtZi(t)/hi, z̃i(t) = eβtzi(t)/hi. Then Z = z + F ∗ Z

implies that Z̃ = z̃+ F̃ ∗ Z̃. Hence if F̃ is nonlattice and the z̃i d.R.i., then

lim
t→∞ Z̃i(t) =

1
µ̃

p∑
j=1

ν̃j

∫ ∞

0

z̃j(x) dx,

where ν̃ is stationary for Q̃, hence

lim
t→∞ eβtZi(t) =

hi

p∑
j=1

νj

∫ ∞

0

eβxzj(x) dx

p∑
k,j=1

νkhj

∫ ∞

0

xeβx Fkj(dx)

. (4.8)

Proof. That Q̃ = (hjaij/hi) is a transition matrix is immediate and has in
fact already been noted in I.6 where it was also found that ν̃j = νjhj (the
existence of ν, h, ν̃ is ensured by I.6.5). The rest of the proof is trivial
manipulation. �

For conditions for β to exist, see Problem 4.3.

Example 4.7 Consider the Lotka–Sharpe population model from V.2.2,
but assume now that each woman has one of p types. The type can change
during life and could, for example, be one of p social groups, one of p
geographical regions in which the woman lives, or the parity of the woman,
i.e. the number of children already born (then group p comprises all women
having p − 1 or more children). In such situations, it is highly relevant to
assume that the birth rates and survival rates depend on types, say type
i women aged a give birth to type j daughters at rate λij(a) and can be
found t time units later in group j in an average proportion of tpa(i, j).
Then if Zi(t) is the rate of birth of type i girls at time t, f

(j)
0 (a) the density

of type j women aged a in the initial population, we get exactly as for p = 1

Zi(t) = zi(t) +
p∑

j,k=1

∫ t

0

Zj(t − s)sp0(j, k)λki(s) ds,

where

zi(t) =
p∑

j,k=1

∫ ∞

0

f
(j)
0 (a)tpa(j, k)λki(a + t) da.
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This is of the form (4.5) with

dFij(x)
dx

=
p∑

k=1

xp0(j, k)λki(x),

and the program of Theorem 4.6 may be carried through to obtain
asymptotic estimates of the form Zi(t) ∼ e−βtci. �

Problems

4.1 Suppose that the Markov chain J0, J1, . . . imbedded in a Markov renewal
process is transient and define the lifetime as L = T0 + T1 + · · ·. Explain that,
in contrast to the recurrent case, it is possible that L < ∞ a.s. Define Zi(t) =
Pi(L ≤ t). Show that Z = U ∗ Z and that the solution of the Markov renewal
equation needs not be unique in the transient case.
4.2 Consider a Markov renewal equation of the form

Z1(t) = z1(t) + F11 ∗ Z1(t) + F12 ∗ Z2(t)

Z2(t) = z2(t) + F22 ∗ Z2(t)

where 0 < ‖F11‖ < 1, ‖F11‖ + ‖F12‖ = ‖F22‖ = 1. Show that the solution is
unique and find its limiting behaviour.
4.3 Consider the set–up of Theorem 4.6 and suppose that Q is irreducible with
1 < spr(Q) < ∞. Show that β always exists. [Hint: Let A = Aβ be as in Theorem
4.6, ρ(β) = spr(Aβ), p(B, λ) = det(B − λI). Show that ∂p/∂λ evaluated at
B = Aβ , λ = ρ(β) is nonzero and thereby, using the implicit function theorem,
that ρ(β) is continuous in β. Show finally ρ(β) → 0, β → −∞.]

Notes See the next section.

5 Semi–Regenerative Processes

The concept of semi–regenerativity generalizes regenerative processes by
allowing the regeneration points to be of several types, indexed by i ∈ E
where E is finite or countable. Thus instead of an imbedded renewal process
we have an imbedded Markov renewal process specified say by {(Jn, Tn)}∞0 .
Each time state i is entered, the semi–regenerative process {Xt} is restarted
subject to the ith set of initial conditions and independent of the Markov
renewal process up to that time.

More formally, let T = N or T = [0,∞) and let (Pi)i∈E be a govern-
ing set of probabilities for {Xt}t∈T. We then call {Xt} semi–regenerative if
we can find a Markov renewal process (possibly defined on an enlarged
probability space), such that for any n the conditional distribution of{
Xt+T0+···+Tn−1

}
t∈T

given T0, . . . , Tn−1, J0, . . . , Jn−1, Jn = i is the same
as the Pi–distribution of {Xt} itself. Thus if E consists of one point, the
concept reduces to regenerative processes. Even in the general case, we
have:
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Proposition 5.1 Any semi–regenerative process with {Jn} recurrent is re-
generative, with the instants of returns of the Markov renewal process to
i ∈ E as an imbedded renewal process.

This is an immediate consequence of the definitions. From the point of
view of proving the existence of limiting distributions, semi–regenerative
processes are therefore not a much more powerful tool than regenerative
processes. Rather, the formulas derived for the limits may be somewhat
more convenient than the expression (EC)−1E

∫ C

0 f(Xt) dt for regenerative
processes, and at least serve the purpose of doing some reduction once and
for all:

Proposition 5.2 Consider a semi–regenerative process with {Jn} irre-
ducible recurrent, say with stationary measure ν. Define C = T0 and
suppose that µ =

∑
i∈E νiEiC is finite. Then:

(i) if T = [0,∞), the imbedded Markov renewal process is nonlattice and
{Xt} has metric state space and right–continuous paths, then the limiting
distribution exists and is given by

Eef(Xt) =
1
µ

∑
j∈E

νj Ej

∫ C

0

f(Xt) dt; (5.1)

(ii) if T = N and the imbedded Markov renewal process is aperiodic on N,
then the limiting distribution exists and is given by (5.1) with

∫ C

0
replaced

by
∑C−1

0 .

Proof. First check that the expression given for µ is the same as in Proposi-
tion 4.2. Hence if µ < ∞, we may appeal to Proposition 5.1 and use VI.1.3
to get the existence of the limit as well as the expression

Eef(Xt) =
1

EiC̃
Ei

∫
˜C

0

f(Xt) dt =
νi

µ
Ei

∫
˜C

0

f(Xt) dt (5.2)

where C̃ = T0 + · · · + Tτ−1, τ = inf {n ≥ 1 : Jn = i}. Now the
semi–regenerative property implies

Ei

[∫ T0+···+Tk

T0+···+Tk−1

f(Xt) dt

∣∣∣∣∣ T0, . . . , Tk−1, J0, . . . , Jk

]
= Ej

∫ C

0

f(Xt) dt

on {Jk = j}. Hence (5.2) can be written as

νi

µ
Ei

τ−1∑
n=0

EJn

∫ C

0

f(Xt) dt =
νi

µ

∑
j∈E

Ej

∫ C

0

f(Xt) dt · Ei

τ−1∑
n=0

I(Jn = j),

and since the last factor is just νj/νi, (5.1) follows. The proof of (ii) is
entirely similar. �

Corollary 5.3 Let {Xn} be an irreducible recurrent Markov chain with
discrete state space E and let XF

k be the value of Xn at the kth visit to
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F ⊂ E, τ(F ) = inf {n ≥ 1 : Xn ∈ F}. Then a measure ν is stationary for
{Xn} if and only if (νi)i∈F is stationary for

{
XF

n

}
and

νj =
∑
k∈F

νk Ek

τ(F )−1∑
n=0

I(Xn = j) . (5.3)

Proof. Let i ∈ F be fixed and define τ = inf {n ≥ 1 : Xn = i}, νj =
Ei

∑τ−1
0 I(Xn = j). Then according to I.3.9 (cf. also Proposition 3.4),

it only remains to show that (5.3) holds. But letting Jn = XF
n , C = τ(F ),

τF = inf
{
n ≥ 1 : XF

n = i
}
, the expectation in the definition of νj may

then be evaluated exactly as in the proof of Proposition 5.2 and we get

νj =
∑
k∈F

Ei

τF−1∑
n=0

I(XF
n = k) Ek

C−1∑
n=0

I(Xn = j)

=
∑
k∈F

ν
(F )
k Ek

C−1∑
n=0

I(Xn = j) =
∑
k∈F

νk Ek

C−1∑
n=0

I(Xn = j)

�

Notes A classical source for Markov renewal theory and semi–regenerative pro-
cesses (in the case of a discrete E) is Çinlar (1975). As argued in the text, the
extension from renewal theory and regenerative processes does not present in-
trinsically new mathematical difficulties in the discrete case, but nevertheless
the versatility of the set–up makes it highly useful and popular in applications.
A broad spectrum of topics in the area can be found in the volume edited by
Janssen and Limnios (1999).

Markov renewal theory on a general state space E has received considerable

attention. See Alsmeyer (1997) for a recent contribution and references.

6 Palm Theory, Rate Conservation and PASTA

Assume that a stochastic process {Xt} has a stationary distribution π and
that we sample it at a sequence of random time points {Tk}. Then the
stationary distribution of the XTk

(if it exists) is typically not π but some
other distribution ν. What can be said about the relation between π and
ν? In particular, in which situations is indeed π = ν?

The prototype of this sort of question is the comparison of the stationary
current life distribution in a renewal process and the interarrival distribu-
tion. Here the waiting time paradox means that sampling at an arbitrary
point of time favours long interarrival intervals. The precise formulas for
this biasing effect are given in V.3, and we will see that closely analogous
results hold more generally.

Example 6.1 As a further motivating example, consider a Markov–modu-
lated Poisson process generated by an ergodic Markov process {Jt} with a
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finite state space E and intensities βi, i ∈ E. Then arrivals occur as in a
Poisson process with intensity βi when Jt = i. Write π for the stationarity
distribution for {Jt} and ν for the stationarity distribution of the Markov
chain {JTk

} where {Tk} is the sequence of arrival epochs. To compute ν, we
use a time–average argument. The fact that the average time spent in state
i up to time T is approximately πiT implies that the number of arrivals up
to time T occuring while Jt = i is approximately

βi

∫ T

0

I(Jt = i) dt ≈ Tβiπi.

Summing over i, it follows that the total number of arrivals is approximately
T
∑

i∈E βiπi. Identifying the fraction of the arrivals occuring in state i with
νi, we finally get

νi =
βiπi∑

j∈E βjπj
. (6.1)

Again, we have an instance of biasing: sampling at arrival times favours
states i with a large βi. �

Palm theory is a general framework in which to carry out these types
of calculations (and much more general ones!). The traditional setting is
marked point processes, but to adhere more with the mainstream of this
book, we choose a formally different but mathematically equivalent one in-
volving a pair of a stochastic process and an associated sequence of random
time points.

The object that we sample “at an arbitrary point of time” or at the
event times is a stochastic process X = {Xt}; most often we assume that
X has doubly infinite time, t ∈ (−∞,∞) (in the stationary case, this can
always be obtained by a standard construction). The shifted process θsX
is defined by (θsX)t = Xt+s. The event times at which we sample are

· · · < T−2 < T−1 < 0 ≤ T0 < T1 < · · ·
and the sequence {Tn}n=0,±1,±2,... is denoted T. The shift θsT is defined
by (θsT)k = TNs+k − s where Nt = max {� : T� ≤ t} (note that (θTj T)k =
Tj+k − Tj). Write further N(a, b] = N(b) − N(a), a < b.

We write Z = (X, T), θsZ = (θsX, θsT) and call Z time–stationary
w.r.t. some probability measure P if the P–distribution of θsZ does not
depend on s. Similarly, Z is event–stationary w.r.t. some P0 if the P0–
distribution of θTk

Z does not depend on k (we will adopt the convention
that also P0(T0 = 0) = 1 is required).

If Z is time–stationary, we define the intensity λ as the rate of events
occuring per unit time,

λ =
1
h

EN(t, t + h] =
1
h

E#
{
i : Ti ∈ (t, t + h]

}
;
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we shall assume in the following that λ < ∞. The interpretation is similar
as for a Poisson process (except for certain independence properties!):

Proposition 6.2 In the time-stationary case, λ does not depend on t and
h, and one has λ > 0, P(T0 = 0) = 0 and

lim
h↓0

P(T0 ≤ h)
h

= lim
h↓0

P(Nh ≥ 1)
h

= λ, (6.2)

lim
h↓0

P(T1 ≤ h)
h

= lim
h↓0

E[Nh; Nh ≥ 2]
h

= 0. (6.3)

Proof. For the first statement, define ϕ(h) = EN(t, t + h]. By stationarity,
ϕ(h) does not depend on t and is additive, ϕ(h1 + h2) = ϕ(h1) + ϕ(h2).
Since ϕ is increasing, this implies ϕ(h) = hϕ(1) and the independence of
λ on h. That λ > 0 follows by choosing h with P(0 < T0 ≤ h) > 0 (then
EN(0, h] > 0), and P(T0 = 0) = 0 follows since the probability of an arrival
at t does not depend on t and therefore must be 0 (cf. also A2.3). The proof
of (6.2), (6.3) is given below. �

Theorem 6.3 Assume that Z = (X, T) is time–stationary w.r.t. P. Define
a new probability measure by

P0(Z ∈ F ) =
1

λh
E

∑
i: t<Ti≤t+h

I(θTiZ ∈ F ). (6.4)

Then P0 does not depend on the choice of t and h > 0. Furthermore, Z is
event–stationary w.r.t. P0 and and E0T1 = λ−1.

Proof. That P0 is a probability measure follows easily by checking that the
r.h.s. of (6.4) has the relevant properties (e.g. σ–additivity) as a function of
F , and the independence of t, h follows as in the proof of Proposition 6.2.
Taking F = {T0 = 0} and using (θTiT)0 = Ti − Ti = 0 yields P0(T0 = 0)
= 1.

Now consider event–stationarity. Taking t = 0 in (6.4) yields

P0(θT1Z ∈ F )

= P0(Z ∈ θ−1
T1

F ) =
1
λh

E

Nh∑
i=1

I(θTiZ ∈ θ−1
T1

F )

=
1

λh
E

Nh∑
i=1

I(θTi+1Z ∈ F ) =
1
λh

E

Nh+1∑
i=2

I(θTiZ ∈ F )

≤ 1
λh

(
1 + E

Nh∑
i=1

I(θTiZ ∈ F )
)

=
1
λh

+ P0(Z ∈ F ).

Letting h → ∞ yields P0(θT1Z ∈ F ) ≤ P0(Z ∈ F ). The proof of ≥ is
similar (or follows by replacing F by F c).
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Finally, if T0(1) = inf {Tk : Tk > 1}, then T0(1) D= 1 + T0 and hence

λE0T1 = E

N1∑
i=1

(Ti+1−Ti) = E[T0(1)−T0; T0 ≤ 1] = E[T0(1)−T0] = 1.

�

The probability measure P0 in Theorem 6.3 is called the Palm distri-
bution associated with P. The traditional interpretation of P0 is as the
conditional P–distribution given an event at 0, i.e. T0 = 0. In fact, it follows
from (6.2), (6.3) that

P0(Z ∈ F ) = lim
h↓0

1
λh

E
∑

i: 0<Ti≤h

I(θTiZ ∈ F )

= lim
h↓0

1
P(T0 ≤ h)

EI(θT0Z ∈ F, T0 ≤ h) = lim
h↓0

P(θT0Z ∈ F |T0 ≤ h),

which (at least from the intuitive/heuristical point of view) can be identified
with P(Z ∈ F |T0 = 0).

The following result is called the Palm inversion formula and shows how
to retrieve P in terms of P0. Basically, the formula is just the same as the
one defining the stationary distribution of a regenerative process.

Theorem 6.4 Assume that Z = (X, T) is event–stationary w.r.t. P0.
Define a new probability measure P′ by

P′(Z ∈ F ) =
1

kE0T1
E0

∫ Tk

0

I(θtZ ∈ F ) dt . (6.5)

Then P′ does not depend on k = 1, 2, . . ., and Z is time–stationary w.r.t.
P′. If P0 is the Palm distribution of a time–stationary P, then P′ = P.

Proof. That P′ is a probability measure follows just as before. Let

W = W (Z) =
∫ T1

0

I(θtZ ∈ F ) dt .

Recalling P0(T0 = 0) = 1, we have

W (θTk
Z) =

∫ Tk+1

Tk

I(θtZ ∈ F ) dt

P0–a.s., which in conjunction with event–stationarity implies the desired
independence of k.

For time–stationarity, we must prove that Z and θsZ have the same
P′–distribution. But

P′(θsZ ∈ F ) =
1

kE0T1
E0

∫ Tk

0

I(θs+tZ ∈ F ) dt

=
1

kE0T1
E0

∫ Tk+s

s

I(θtZ ∈ F ) dt
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≤ 1
kE0T1

(
s + E0

∫ Tk

0

I(θtZ ∈ F ) dt
)

=
s

kE0T1
+ P′(Z ∈ F ).

Letting k → ∞ yields P′(θsZ ∈ F ) ≤ P(Z ∈ F ), and the proof of ≥ is
similar.

Finally, assume that P0 is the Palm distribution of P and let T0(1) be as
in the proof of Theorem 6.3. Then

P′(Z ∈ F ) =
1

E0T1

1
λ

E
∑

0<Tk≤1

∫ Tk+1

Tk

I(θtZ ∈ F ) dt

= E

∫ T0(1)

T0

I(θtZ ∈ F ) dt = E

∫ 1

0

I(θtZ ∈ F ) dt = P(Z ∈ F ),

where the two last steps both use the time–stationarity of P. �

Proof of (6.2), (6.3). By the Palm inversion formula with k = 1,

P(0 < T0 ≤ h) = λE0

∫ T1

0

I(0 < T1 − t ≤ h) dt

= λE0

∫ T1

0

I(0 < v ≤ h) dv = λE0(T1 ∧ h).

But (T1 ∧ h)/h is dominated by 1 and has limit 1 as h ↓ 0 so that the
expectation has limit 1, establishing the claimed asymptotics for P(0 <
T0 ≤ h) in (6.2). Similarly,

P(N(0, h] = 1) = λE0

∫ T1

0

I
(
0 < T1 − t ≤ h, T2 > t + h

)
dt

= λE0

∫ T1

0

I
(
T1 − T2 + h < v ≤ h

)
dv

= λE0

[
T1 ∧ h − T1 ∧ (T1 − T2 + h)

]+ = λh + o(h),

where the last identity follows by the same dominated convergence ar-
gument (note that (T1 − T2 + h)+ equals 0 for h small enough since
T1 < T2). Combining these estimates with the definition of λ yields
E[Nh; Nh ≥ 2] = o(h), and the rest of the proof is then easy. �

We now turn to some first applications. The first result is to intensity–
driven point processes (part (ii) will be used in XI.5; for Cox processes, see
A3):

Proposition 6.5 Consider a Cox process with time–stationary intensity
function {β(t)} with λ = Eβ(t) < ∞, and write B(t) =

∫ t

0 β(s)ds. Then:
(i) the Palm distribution of β(0) is given by E0f(β(0)) = E

[
β(t)f(β(t))

]
/λ;

(ii) E0B
−1(a) = a/λ for all a.

Proof. Part (i) is straightforward from P(N(0, h] = 1, β(0) ∈ A) = P(β(0) ∈
A)β(0)h + o(h) (use the a.s. continuity of β(·) at 0, cf. A2.3). For (ii), we
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use the representation Tk = B−1(T ′
k) in terms of an independent Poisson

process {N ′
t}, cf. A3. Since T ′

k is Erlang(k) with unit rate, this gives E0Tk =∫∞
0

ak−1/(k−1)! e−aE0B
−1(a) da. Multiplying by (1−s)k−1 and summing

over k = 1, 2, . . . gives∫ ∞

0

e−saE0B
−1(a) da =

∞∑
k=1

(1 − s)k−1E0Tk =
∞∑

k=1

(1 − s)k−1 k

λ
=

1
λs2

,

and E0B
−1(a) = a/λ follows by Laplace transform inversion. �

We next give a formal version of the rate conservation law, which was
used at the intuitive level in V.3 to derive the stationary excess distribution
F0 of a renewal process and will be further applied to the GI/G/1 queue
in X.3–4.

Theorem 6.6 Let Z = (X, T) be time–stationary, such that X is real–
valued and a jump of X of size Uk occur at time Tk [formally, Uk = 0
is not excluded], and that {Xt} is right differentiable and continuous on
(Tk, Tk+1) with sample path derivative Yt at t. Then λE0U0 + EY0 = 0
provided all expectations are finite.

Proof. Just note that

0 = E[X1 − X0] = E

⎡⎣ ∑
i: 0<Ti≤1

Ui +
∫ 1

0

Yt dt

⎤⎦ = λE0U0 + EY0. �

We finally consider PASTA (Poisson Arrivals See Time Averages), which
in the language of Palm theory means that the time– and event–stationary
distributions coincide for systems driven by a Poisson input process {Nt}.
By “driven by Poisson input” we mean that for any t the processes

{Ns − Nt}s≥t and {(Xs, Ns)}s<t (6.6)

are independent. In particular, Xt− is independent of the event At of a
Poisson epoch at t. However, typically Xt and At are dependent: e.g. in
classical examples such as queueing models with Poisson arrival of cus-
tomers or shot–noise processes, an arrival at t typically triggers a jump of
{Xt}.
Theorem 6.7 Assume that Z is time–stationary w.r.t. P, that T is a
Poisson process with rate λ and that there is independence in (6.6). Then
P0(X0− ∈ F ) = P(X0 ∈ F ).

Proof. Taking h = 1 in the definition of P0 and noting that an event in
[t, t + dt) occurs w.p. λdt, we get

P0(X0− ∈ F ) =
1
λ

∫ 1

0

P
(
Xt− ∈ F

∣∣At

)
λdt =

∫ 1

0

P(Xt− ∈ F ) dt



6. Palm Theory, Rate Conservation and PASTA 219

=
∫ 1

0

P(Xt ∈ F ) dt = P(X0 ∈ F ),

noting that by right–continuity and stationarity Xt− = Xt P–a.s. for any
fixed t (cf. A2.3). �

Problems

6.1 Let Z = (X, T) be time–stationary on R and Φ : R×(D×RZ) be a bounded
measurable functional. Show Campbell’s formula

E
∞∑

k=−∞
Φ(Tk, θTkZ) = λ

∫ ∞

−∞
E0Φ(s, Z) ds .

[Hint: Consider first the case where Φ(s, Z) = I(t < s ≤ t + h)Ψ(Z).]
6.2 An event F is called time–shift invariant for Z if {θtZ ∈ F} does not depend
on t, and event-shift invariant if {θTkZ ∈ F} does not depend on k. Show that
these two concepts are the same. [Hint: To see that event–shift invariance implies
time-shift invariance, let Tk ≤ t < Tk+1 and use {θtZ ∈ F} = {θT1θtZ ∈ F}.]
The set of events that are invariant in this sense is denoted by I, the invariant
σ–field, and a stationary process is ergodic if P(Z ∈ I) = 0 or 1 for I ∈ I.
6.3 For a time–stationary process, define a new one Z∗ by Z∗ = θUZ where U

is uniform on (0, T ) and independent. Show that Z∗ D
= Z no matter T . Let next

Z∗
0 = θV Z where V is uniform on {T0, . . . , TK} and independent. Show using

Birkhoff’s ergodic theorem that Z∗
0 has a limit P∗

0 in distribution as K → ∞, and
that P∗

0 = P0 in the ergodic case but not in general.
6.4 Let z(t) be the periodic extension of the function x(t) = t for 0 ≤ t ≤ 1,
= 1− (t−1)/2 for 1 ≤ t ≤ 3, and Xt = z(t+U) where U is uniform on (0, 3). Let
{Tk} be the epochs of crossing of level 1/2. Compute P0(X

′
0 = a), a = 1,−1/2.

Now define P#
0 (·) = limε↓0 P(· |X0 ∈ (1/2 − ε, 1/2 + ε)) and show that P#

0 �= P0.

Notes Franken et al. (1982) is a classical reference for Palm theory. More recent
expositions are in Daley and Vere–Jones (1988), Sigman (1995), Serfozo (1999),
Rolski et al. (1999), Thorisson (2000) and Baccelli and Brémaud (2002).

Problem 6.3 shows that the evaluation of P0 as a limiting time average per-
formed in Example 6.1 is only valid in the ergodic case. Sigman (1995) gives a
careful study using P∗

0 as the fundamental object, including an “empirical Palm
inversion formula” showing how to retrieve P in terms of P∗

0.
In Problem 6.4, P#

0 is constructed from a conditioning based upon a vertical
window (in the x–direction) rather than the horizontal one (in the t–direction)
used in Palm theory. This is common in Gaussian processes (where also more so-
phisticated windows have been proposed); see e.g. the treatment of Rice’s formula
in Leadbetter et al. (1983) [Rice’s formula gives the distribution of the sample
path derivative X ′ at a level crossing under suitable sample path differentiability
assumptions].

The rate conservation law is due largely to Miyazawa and surveyed in his (1994)
paper; see also Sigman (1995). The literature on PASTA and its generalizations
is extensive. See e.g. Wolff (1989) for the basic theory and Melamed and Yao
(1995) for generalizations and similar results.



VIII
Random Walks

1 Basic Definitions

We consider a random walk Sn = X1 + · · ·+Xn (S0 = 0) where the Xn are
i.i.d. with common distribution F . The case where F has support contained
in a half–line (−∞, 0] or [0,∞) is to a large extent covered by renewal
theory, and so we assume that supp(F ) contains points of both positive and
negative sign (in particular, F is nondegenerate). In statements concerning
the mean EX , it is understood that this is welldefined, i.e. that EX+ and
EX− are not both infinite (thus we may have EX = +∞ or EX = −∞).
Also, in expressions such as P(Sτ ∈ A) or EeitSτ with τ a stopping time
it is understood that the integration is carried out on {τ < ∞} only (in
contrast,

∑τ−1
0 may well be an infinite sum).

The relevance of random walks for queueing theory should already be
clear from the discussion of Lindley processes in III.6. A main point was
found there to be the study of the distribution of the maximum, but a
number of further quantities are important, both as technical tools and
because of other queueing interpretations (e.g. the so–called ladder epochs
and ladder heights, a terminology arising from path decompositions to be
discussed in Section 2, will be found in Ch. X to be closely related to busy
periods and busy cycles). For the sake of easy reference, we start by a list
of the functionals to play an important role in the following. For graphical
illustrations, see Fig. 1.1 (path (b) has M = 0 and τ+ = ∞).
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Figure 1.1

Mn the partial maximum max0≤k≤n Sk of the first n partial sums.
M the (total) maximum sup0≤k<∞ Sk (which may be infinite). Clearly,

Mn ↑ M as n → ∞.
τ+ = τ s

+ = inf {n ≥ 1 : Sn > 0}, the first (strict) ascending ladder
epoch or the entrance time to (0,∞). The distribution of τ+ may
be defective, i.e. P(τ+ = ∞) = P(Sn ≤ 0 for all n ≥ 1) > 0.

Sτ+ the first (strict) ascending ladder height (defined on {τ+ < ∞} only).
G+ the (strict) ascending ladder height distribution G+(x) = P(Sτ+ ≤

x). Here G+ is concentrated on (0,∞) and may be defective, i.e.
‖G+‖ = P(τ+ < ∞) < 1.

τ− = τw
− = inf {n ≥ 1 : Sn ≤ 0} the first (weak) descending ladder epoch

or the entrance time to (−∞, 0].
Sτ− the first (weak) descending ladder height (defined on {τ− < ∞}

only).
G− the (weak) descending ladder height distribution G−(x) = P(Sτ− ≤

x). Here G− is concentrated on (−∞, 0] and may be defective, i.e.
‖G−‖ = P(τ− < ∞) < 1.

τ(u) the time inf {n ≥ 1 : Sn > u} of first passage to level u ≥ 0 or the
entrance time to (u,∞). The distribution of τ(u) may be defective.
Clearly, τ(0) = τ+.

B(u) the overshoot Sτ(u) − u. Clearly, B(0) is the ascending ladder
height Sτ+ .

B(∞) a r.v. having the limiting distribution (if it exists) of B(u).

It is seen that there is a slight asymmetry between positive and negative
values, cf. the strict inequality Sn > 0 in the definition of τ+ and the
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weak inequality Sn ≤ 0 in the definition of τ−; this corresponds to different
treatments of values n > 0 with Sn = 0 (if F has a density, this event has
probability zero and the difference vanishes). Weak ascending and strict
descending ladder epochs can be defined the obvious way by

τw
+ = inf {n ≥ 1 : Sn ≥ 0} , τ s

− = inf {n ≥ 1 : Sn < 0} .

The corresponding ladder heights are Sτw
+
, Sτ s

− with distributions say Gw
+,

Gs
−. These quantities may be needed in arguments involving sign changes,

say if we want to study the minimum inf0≤k<∞ Sk rather than the maxi-
mum M . Fortunately, a separate treatment can almost always be avoided
by reference to the following result:

Proposition 1.1 Define ζ = P(Sτ− = 0) = P(τ− 
= τ s
−). Then ζ < 1 and

ζ = P(Sτw
+

= 0) = P(τ+ 
= τw
+ ), and if δ0 is the distribution degenerate at

zero, then

Gw
+ = ζδ0 + (1 − ζ)G+, G− = ζδ0 + (1 − ζ)Gs

−. (1.1)

The proof is based upon a trivial but important observation:

Lemma 1.2 Let n be fixed and define S∗
k = Sn−Sn−k = Xn−k+1+· · ·+Xn,

k = 0, . . . , n. Then {S∗
k}n

0

D= {Sk}n
0 .

Proof of Proposition 1.1. For any n, we get by Lemma 1.2 that

P(Sτw
+

= 0, τw
+ = n) = P(S∗

0 = 0, S∗
k < 0, k = 1, . . . , n − 1, S∗

n = 0)

= P(S0 = 0, Sn − Sn−k < 0, k = 1, . . . , n − 1, Sn = 0)
= P(S0 = 0, S� > 0, � = 1, . . . , n − 1, Sn = 0) = P(Sτ− = 0, τ− = n)

(� = n− k) and ζ = P(Sτw
+

= 0) follows by summation over n. The relation
(1.1) is obvious, and finally 1 − ζ ≥ P(X1 < 0) > 0. �

We shall also need:

Lemma 1.3 G+ is lattice with span d if and only if F is so, and in par-
ticular nonlattice if and only if F is so. The same statement holds with G+

replaced by any of Gw
+, G−, Gs−.

Proof. It has to be shown that G+ is concentrated on {0,±d,±2d, . . .} if
and only if F is so. The “if” part is obvious, and for the converse we may
assume d = 1. That is, we have to show that if G+ is concentrated on N,
then F is concentrated on Z. Obviously, supp(F )∩(0,∞) ⊆ supp(G+) ⊆ N

so we have to show that X1I(X1 < 0) ∈ Z. But this follows since a path
with X1 < 0, Xk > 0, k = 2, . . . , τ+ has positive probability and satisfies
n = Sτ+ = X1 + m for some n, m ∈ N. The last assertion of the lemma
follows by symmetry arguments and (1.1). �
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Problems

1.1 Show that τ+
D
= T0 +T1 + · · ·+Tσ−1 where T0, T1, . . . are independent, T0 is

distributed as τw
+ given Sτw

+
> 0, T1, T2, . . . are distributed as τw

+ given Sτw
+

= 0

and σ is independent of the Tk with P(σ = n) = ζn−1(1 − ζ), n = 1, 2, . . ..

Notes Random walks are of course one of the classical areas of probability the-

ory and give rise to a broad spectrum of problems, of which the present treatment

only covers a rather narrow range.

2 Ladder Processes and Classification

By iterating the definitions of τ+, τ−, we can define whole sequences
{τ+(n)}, {τ−(n)} of ladder epochs by τ+(1) = τ+, τ−(1) = τ− and

τ+(n + 1) = inf
{
k > τ+(n) : Sk > Sτ+(n)

}
,

τ−(n + 1) = inf
{
k > τ−(n) : Sk ≤ Sτ−(n)

}
.

The points in the plane of the form
(
τ+(n), Sτ+(n)

)
are called the ascend-

ing ladder points. Similarly, the
(
τ−(n), Sτ−(n)

)
are the descending ladder

points,
{
Sτ+(n)

}
is the ascending ladder height process and so on; see Fig.

2.1.

Figure 2.1

The importance of these concepts is due to the fact that the segments
of the random walk between (say) ascending ladder points are just i.i.d.
replicates. For example, the ascending ladder epoch process {τ+(n)} is a
discrete–time renewal process with governing probabilities fn = P(τ+ = n),
thus terminating if and only if ‖G+‖ < 1. Similarly, the ascending ladder
height process

{
Sτ+(n)

}
is a renewal process governed by G+, hence proper
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if and only if ‖G+‖ = 1. Further, its forward recurrence time process is
easily seen to coincide with the overshoot process {B(u)}u≥0 of the random
walk. Hence the renewal theorem V.4.6 and Lemma 1.3 yield the following
result (the lattice version is obvious and omitted):

Theorem 2.1 The overshoot B(u) is proper if and only if the ascending
ladder height process is nonterminating, i.e. ‖G+‖ = 1. In that case, it
holds as u → ∞ that B(u) D→ ∞ if ESτ+ = ∞, whereas if ESτ+ < ∞
and F is nonlattice, then B(u) D→ B(∞) with B(∞) having density (1 −
G+(x))/ESτ+ .

Also, it is clear that the maximum M equals the lifetime sup{Sτ+(n) :
τ+(n) < ∞} of the ascending ladder height process. Hence if we let
U+ =

∑∞
0 G∗n

+ denote the corresponding renewal measure, V.2.9 yields
the elementary but important:

Theorem 2.2 The maximum M is finite if and only if ‖G+‖ < 1. In
that case, the distribution of M is the normalized ascending ladder height
renewal measure U+/‖U+‖ = (1 − ‖G+‖)U+.

The renewal measure U+ is of basic importance in the following, and
we proceed to give yet a third interpretation as the pre–τ− occupation
measure:

Theorem 2.3 (a)
P
(
Sn > Sk, k = 0, . . . , n − 1, Sn ∈ A

)
= P

(
Sk > 0, k = 1, . . . , n, Sn ∈ A

)
;

(b) U+(A) = E
∑τ−−1

n=0 I(Sn ∈ A), U−(A) = E
∑τ+−1

n=0 I(Sn ∈ A);
(c) Eτ− = ‖U+‖ =

(
1 − ‖G+‖)−1, Eτ+ = ‖U−‖ =

(
1 − ‖G−‖)−1.

Proof. Here (a) is an immediate consequence of Lemma 1.2, the first part
of (b) is obtained by summing over n and using {Sk > 0, k = 1, . . . , n}
= {τ− > n}, and the first part of (c) follows by letting A = [0,∞) (or R)
in (b). The second parts of (b), (c) follow in a similar way by replacing >
by ≤ in (a). �

We next classify the random walk into several types. The first result is
as follows:

Theorem 2.4 For any random walk with F not degenerate at 0, one of
the following possibilities occur:
(i) (oscillating case) G+ and G− are both proper, ‖G+‖ = ‖G−‖ = 1
and limSn = +∞, limSn = −∞ a.s. Furthermore Eτ+ = Eτ− = ∞;
(ii) (drift to +∞) G+ is proper and G− defective, and Sn → +∞ a.s.
Furthermore Eτ+ =

(
1 − ‖G−‖)−1

< ∞;
(iii) (drift to −∞) G+ is defective and G− proper, and Sn → −∞ a.s.
Furthermore Eτ− =

(
1 − ‖G+‖)−1

< ∞.
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A sufficient condition for (i) is EX = 0, for (ii) EX > 0 and for (iii)
EX < 0.

Necessary and sufficient (though rather intractable) conditions covering
also the case EX+ = EX− = ∞ are given in Corollary 4.4. Note that if
say −∞ < EX < 0, then Wald’s identity applies and yields

1 − ‖G+‖ = 1/Eτ− = EX/ESτ− . (2.1)

Proof. Since lim Sn is exchangeable, we have by the Hewitt–Savage 0–1
law that limSn = a for some constant a ∈ [−∞,∞]. If |a| < ∞, then
lim (Sn − X1) = a would imply a + X1

D= a, which is impossible. Similarly,
P
(|limSn| = ∞)

= 1, and hence indeed only the possibilites (i′) limSn =
∞, limSn = −∞, (ii′) Sn → ∞, (iii′) Sn → −∞ occur.

Since Sτ+ > 0 and obviously limSn = limSτ+(n), we see that limSn = ∞
if and only if the ascending ladder height renewal process is nonterminating,
i.e. if and only if ‖G+‖ = 1. Similarly, lim Sn = −∞ if and only if ‖Gs

−‖ = 1,
i.e. if and only if ‖G−‖ = 1 (Proposition 1.1). Noting that the expressions
for Eτ−, Eτ+ are just Proposition 2.3(c), it is then seen that indeed (i) ⇐⇒
(i′), (ii) ⇐⇒ (ii′), (iii) ⇐⇒ (iii′).

By the LLN Sn/n
a.s.→ EX , it follows that Sn > 0 eventually if EX > 0,

and hence EX > 0 ⇒(ii); similarly EX < 0 ⇒(iii). To see that (i) holds if
EX = 0, suppose that we are, for example, in case (iii). Then Eτ− < ∞ and
Wald’s identity yields ESτ− = 0 which is impossible since P(Sτ− < 0) > 0.

�

Now define U =
∑∞

0 F ∗n so that for any Borel set A ⊆ R

U(A) =
∞∑

n=0

P(Sn ∈ A) = E

∞∑
n=0

I(Sn ∈ A) (2.2)

is the expected number of visits of the random walk to A (which may
of course be infinite). Sometimes the term “the renewal measure of the
random walk” is used, but “occupation measure” seems more appropriate.

Lemma 2.5 If F is nonlattice, then supp(U) = R. If F is aperiodic on Z,
then supp(U) = Z.

Proof. Suppose first that F is nonlattice. Let x ∈ R be fixed and for a
given ε > 0, choose T such that d

(
y, supp(U+)

)
< ε for all y ≥ T (this is

possible in view of Lemma 1.3 and V.5.1). Choose next z < x − T with
z ∈ supp(F ∗k) for some k and u ∈ supp(U+) with |u − (x − z)| < ε. Then
z + u is clearly in supp(U) so that d

(
x, supp(U)

)
< ε which letting ε ↓ 0

proves that x ∈ supp(U). The lattice case is similar. �

Now if F is lattice, say aperiodic on Z, we may view {Sn} as a Markov
chain on Z, and irreducibility follows from Lemma 2.5. Hence by I.1.2 we
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have recurrence if
∑∞

0 P(Sn = 0) = ∞ and transience otherwise. Also in
the nonlattice case a similar dichotomy holds:

Theorem 2.6 For any nonlattice random walk, one of the following two
possibilities occur:
(i) (transient case) for any bounded interval J , we have U(J) < ∞
and P(Sn ∈ J i.o.) = 0. That is, |Sn| → ∞ a.s.;
(ii) (recurrent case) for any nondegenerate interval J , we have
U(J) = ∞ and P(Sn ∈ J i.o.) = 1.

Proof. We shall show that (i′) U(−ε, ε) < ∞ for some ε > 0, (ii′) U(−ε, ε) =
∞ for all ε > 0 imply the conclusions of (i), resp. (ii). Define

I = (x − ε/2, x + ε/2), τ = inf {n : Sn ∈ I} .

In case (i′), we have on {τ < ∞} that (Sτ − ε, Sτ + ε) covers I. Thus
the strong Markov property (see I.8.2) and the spatial homogeneity of the
random walk implies that U(I) ≤ U(−ε, ε) < ∞. But then for any bounded
interval J we have U(J) < ∞, since J can be covered by a finite number of
intervals of length ε. Also, by the Borel–Cantelli lemma only a finite number
of the events An = {Sn ∈ J} can occur since

∑
P(An) = U(J) < ∞. Thus

(i) holds.
In case (ii′), it suffices to show that U(I) = ∞ and P(Sn ∈ I i.o.) = 1

(since x, ε are arbitrary). By Lemma 2.5 we have P(τ < ∞) > 0. Define

q(δ) = P
(|Sn| < δ for some n ≥ 1

)
,

pk(δ) = P
(|Sn| < δ at least k times

)
.

Applying the strong Markov property at the time of the kth visit to (−δ, δ)
shows that pk+1(δ) ≤ pk(δ)q(2δ) which in conjunction with

∑
pk(δ) =

U(−δ, δ) = ∞ yields q(2δ) = 1. But from q(δ) = 1 for all δ > 0 and the
strong Markov property applied to τ one easily gets

P
(
Sn ∈ I for at least two n

∣∣ τ < ∞)
= 1.

Repeating the argument, we get P(Sn ∈ I i.o. | τ < ∞) = 1, i.e. P(Sn ∈
I i.o.) = P(τ < ∞) > 0. Since {Sn ∈ I i.o.} is an exchangeable event,
the Hewitt–Savage 0–1 law implies P(Sn ∈ I i.o.) = 1 and therefore also
U(I) = ∞. The lattice case is entirely similar. �

Corollary 2.7 The random walk is transient if EX 
= 0 and recurrent if
EX = 0 or, more generally, if the weak LLN Sn/n

P→ 0 holds.

Proof. That EX 
= 0 implies transience is obvious since then Sn eventually
has the same sign as EX . Recalling the interpretation of U , we have

m−1∑
k=−m

U [k, k + 1] ≥ U [−m, m],

U [k, k + 1] ≤ U [−1, 1]P(Sn ∈ [k, k + 1] for some n) ≤ U [−1, 1].
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Hence letting Rn = |Sn|/n, we have for each K and m that

U [−1, 1] ≥ 1
2m

U [−m, m] ≥ 1
2m

Km∑
n=1

P(|Sn| < m)

≥ 1
2m

Km∑
n=1

P(Rn < K−1).

But Rn
P→ 0 implies

∑N
1 P(Rn < ε)/N → 1 for all ε > 0. Hence letting

m → ∞ yields U [−1, 1] ≥ K/2. Thus indeed U [−1, 1] = ∞ and recurrence
follows. �

Problems

2.1 Explain in the case EX < 0 how the expression (1−‖G+‖)U+ for the distri-
bution of M is connected to Theorem 2.3(b),(c) and the basic formula VI.(1.1)
for the limits of regenerative processes.
2.2 Let Y

(1)
0 , Y

(2)
0 be initial delays for a discrete–time renewal process with

infinite mean, i.e. µ =
∑∞

1 nfn = ∞. Let c = f1 + · · · + fN with N chosen such
that at least two terms are nonzero, and define

gn = fn/c, n ≤ N, hn = fn/(1 − c), n > N.

Consider independent sequences {U (1)
n }, {U (2)

n }, {Vn}, {Bn} of i.i.d. r.v.’s such

that the U
(i)
n are governed by {gn}, the Vn by {hn} and P(Bn = 1) = 1−P(Bn =

0) = c, and define

Y (i)
n = BnU (i)

n + (1 − Bn)Vn, S(i)
n =

n∑
k=0

Y
(i)

k .

Show that {S(1)
n }, {S(2)

n } are renewal processes governed by {fn}, and that σ =

inf{n : S
(1)
n = S

(2)
n } is a.s. finite [this construction is known as the Ornstein

coupling].
2.3 Show that if EX > 0, then Eτ (u)/u ∼ u/EX as u → ∞. [Hint: The
elementary renewal theorem applied to the ascending ladder height renewal
process.]

Notes The systematic use of ladder processes is largely due to Feller (1971).

3 Wiener–Hopf Factorization

The expressions given in Theorems 2.1 and 2.2 for the distributions of
B(∞) and M indicate that it is of major importance to compute G+ and,
for symmetry reasons, G−. This problem certainly does not appear to be
easy, and in fact the known ways (presented in the next section) to represent
G+, G− in terms of F without imposing additional conditions on F seem
too complicated to be of much use. However, in some situations it is easy or
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at least possible to compute one of G+, G− (we study some main examples
in Section 5, but for a simple example take F concentrated on Z with
EX ≥ 0, P(X ≥ 2) = 0; then obviously G+ is the one–point distribution at
1). The set of formulas in the following main result then allows calculation
of the other ladder height distribution and thereby the distributions of M ,
B(∞), etc.:

Theorem 3.1 (a) F = G+ + G− − G+ ∗ G−.

(b) U− ∗ F (A) =
{

G+(A) A ⊆ (0,∞),
U−(A) A ⊆ (−∞, 0).

In terms of ch.f.’s (or m.g.f.’s, when defined), we may rewrite (a) as

1 − F̂ = (1 − Ĝ+)(1 − Ĝ−) = (1 − Ĝ s
+)(1 − Ĝw

− ). (3.1)

This formula (and some generalizations like Problem 4.2) is known in the
literature as the Wiener–Hopf factorization identity, and we shall refer to
(a) in the same way. We see that, knowing G−, we can solve (3.1) for Ĝ+.
Alternatively, G+ can be computed by (b), and this is frequently more
appealing.

Proof. Consider E
∑τ+

0 I(Sn ∈ A), A ⊆ R. By splitting into the contribu-
tions from n = 0, . . . , τ+ −1 and n = τ+, the sum becomes R+(A)+G+(A)
where R+(A) = E

∑τ+−1
0 I(Sn ∈ A). Splitting instead into the contribu-

tions from {n = 0} and {n = 1, . . . , τ+}, we get δ0(A)+ (R+ ∗F )(A) where
δ0 is the distribution degenerate at 0 (for a formal proof, see I.3.3), and so,
using that R+ = U− by Theorem 2.3(b), we obtain

U− + G+ = δ0 + U− ∗ F. (3.2)

Since U− ∗G− =
∑∞

1 G∗n− = U− − δ0, convolving (3.2) with G− to the left
yields

U− − δ0 + G− ∗ G+ = G− + U− ∗ F − F

, and subtracting this identity from (3.2) produces (a). For (b), evaluate
(3.2) at A and note that U−(A) = δ0(A) = 0 when A ⊆ (0,∞), G+(A) =
δ0(A) = 0 when A ⊆ (−∞, 0). �

If ζ > 0, then obviously some asymmetry is inherent in Theorem 3.1,
and variants of the formulas may be required. For example:

Corollary 3.2 (a) F = Gw
+ + Gs

− − Gw
+ ∗ Gs

−.
(b) U+ ∗ F (A) = G−(A), A ⊆ (−∞, 0].

Proof. Sign reversion immediately yields (a). Convolving Theorem 3.1(a)
with U+ yields

U+ ∗ F = U+ − δ0 + U+ ∗ G− − (U+ − δ0) ∗ G− = U+ + G− − δ0.

Since U+ − δ0 =
∑∞

1 G∗n
+ is concentrated on (0,∞), it follows that (U+ ∗

F )(A) = G−(A), A ⊆ (−∞, 0]. �
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Notes For an alternative proof of Theorem 3.1(a), see Kennedy (1994). The
original work of Wiener and Hopf is analytic in flavour and deals with solution
of integral equations of the form

Z(x) = z(x) +

∫ x

−∞
Z(x − y)µ(dy), x ≥ 0, (3.3)

where µ is a measure. Note the x ≥ 0 in (3.3) so that the equation is not just
a renewal (convolution) equation on the whole line. Also, the Lindley equation
in III.6 corresponds to z ≡ 0. Asmussen (1998c) gives references to the math-
ematical literature and studies existence, uniqueness and asymptotic properties
of solutions to (3.3) by probabilistic methods in the special case where z, Z ≥ 0
and F is a probability measure.

We return to Wiener–Hopf factorization in the setting of Markov additive

processes in XI.2f. Another important further direction is Lévy processes {St}t≥0.

We do not treat this case but refer to Bingham (1976), Bertoin (1996) and Sato

(1999); the flavour is somewhat different because say τ+ = inf {t > 0 : St > 0} is

zero for an abundance of interesting special cases, and so there are no nontrivial

analogues of G+, G−.

Problems

3.1 By Theorem 2.3, one can rewrite (3.1) as (1− F̂ )−1 = Û+R̂+ where R+ is the
pre–τ+ occupation measure. Give the probabilistic interpretation of this formula
when EX �= 0 and thereby an alternative short proof of (3.1).
3.2 Find the distribution of inf {S1, S2, . . .}. [Hint: The forms on (−∞, 0] and
(0,∞) are very different.]
3.3 Show that P(M > x), E[τ (x); τ (x) < ∞], E[eατ(x); τ (x) < ∞] and P(B(x) ≤
y) all satisfy Wiener–Hopf integral equations of the form (3.3).
3.4 Let U =

∑∞
0 F ∗n be as in (2.2). Show that U(x, x+a] is bounded by c1+c2a

and has limit a/EX as x → ∞ when EX > 0 and F is nonlattice.

4 The Spitzer–Baxter Identities

The theory to be presented is a classical cornerstone of probability theory
as a whole and an instructive example of both the merits and the deficits
of transform methods. To illustrate the scope and flavour, we state two of
the main results:

Theorem 4.1 For |r| < 1 and t ∈ R

1 − E
[
rτ+eitSτ+

]
= exp

{
−

∞∑
n=1

rn

n
E
[
eitSn ; Sn > 0

]}
(4.1)

[recall that in expressions like the l.h.s. of (4.1), the integration is
understood to be carried out on {τ+ < ∞} only].
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Theorem 4.2 (spitzer’s identity) For |r| < 1 and t ∈ R

∞∑
n=0

rnEeitMn = exp
{ ∞∑

n=1

rn

n
EeitS+

n

}
(4.2)

and, provided M < ∞ a.s.,

EeitM = exp
{ ∞∑

n=1

1
n

(
EeitS+

n − 1
)}

. (4.3)

It is seen that in a certain sense a complete solution of the random walk
problems has been provided: by uniqueness theorems for transforms, the
distributions of (τ+, Sτ+), Mn, M are in principle determined by (4.1)–
(4.3), and the solutions are also explicit in the sense that knowing F , we
can in principle also evaluate the distribution F ∗n, thereby expressions
such as EeitS+

n and finally by summation the desired transforms. However,
the weaknesses of the approach should also be apparent. As an example,
one needs only to think of the M/M/1 waiting time W , where W

D= M
with F doubly exponential (cf. III.6), and it was found in III.9 that W is
exponential. The simplicity of this result should be compared with the effort
required to compute first the F ∗n and next (4.3), and it is strongly indicated
that for even only slightly more general GI/G/1 queues the computational
difficulties are formidable.

Proof of Theorem 4.1. We let r be fixed throughout and define

βn(t) = E
[
eitSn ; τ+ = n

]
, γn(t) = E

[
eitSn ; τ+ > n

]
,

β(t) =
∞∑

n=1

rnβn(t) = E
[
rτ+eitSτ+

]
, γ(t) =

∞∑
n=1

rnγn(t).

With F̂ the characteristic function of F , we then have

βn(t) + γn(t) = E
[
eitSn ; τ+ ≥ n

]
= F̂ [t]γn−1(t),

and since γ0 = 1, it follows by multiplying by rn and summing that β+γ =
r(1 + γ)F̂ . Equivalently, 1 − rF̂ = (1 − β)/(1 + γ), and taking logarithms
and expanding we get

∞∑
n=1

rn

n
F̂n =

∞∑
n=1

βn

n
−

∞∑
n=1

(−1)n γn

n
(4.4)

if r is so small, say |r| < r0, that |β(t)| < 1 and |γ(t)| < 1 for all t. Ob-
viously, β and γ are the characteristic functions of bounded measures ϕ̃, ψ̃
supported by (0,∞), resp. (−∞, 0]. Thus also ϕ =

∑∞
1 ϕ̃∗n/n is supported

by (0,∞) and ψ =
∑∞

1 (−1)nψ̃∗n/n by (−∞, 0], and we may rewrite (4.4)
as Ĥ = ϕ̂ − ψ̂ where H =

∑∞
1 rnF ∗n/n. By the uniqueness theorem, it
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therefore follows that H and ϕ coincide on (0,∞). Taking transforms yields
∞∑

n=1

rn

n
E
[
eitSn ; Sn > 0

]
= ϕ̂(t) =

∞∑
n=1

βn(t)
n

= − log
(
1 − β(t)

)
which is the same as (4.1). The truth of (4.1) for r0 ≤ |r| < 1 follows by
an analytic continuation argument. �

By just the same argument:

Corollary 4.3 The formula (4.1) remains valid if the pair of qualifiers
(τ+, Sn > 0) is replaced by any of (τw

+ , Sn ≥ 0), (τ−, Sn ≤ 0), (τ s
−, Sn < 0).

Corollary 4.4 1 − Erτ+ = exp
{
−

∞∑
n=1

rn

n
P(Sn > 0)

}
, |r| < 1.

Furthermore

1
Eτ−

= 1 − ‖G+‖ = exp
{
−

∞∑
n=1

1
n

P(Sn > 0)
}

(4.5)

and the assertions (i) Sn
a.s.→ −∞, (ii) M < ∞, (iii) ‖G+‖ < 1 and (iv)∑∞

1 P(Sn > 0)/n < ∞ are equivalent.

Proof. The first statement follows just by letting t = 0 in (4.1). The first
identity in (4.5) has been shown in Theorem 2.4, and the second follows
from ‖G+‖ = limr↑1 Erτ+. Finally the last statement follows from Theorem
2.4 and (4.5). �

Proof of (4.2). Define

An,k =
{
Sk = Mn; S� < Mn, � = 0, . . . , k − 1

}
, k ≤ n,

ψn(t) = E
[
eitSn ; An,0

]
= E

[
eitSn ; Mn = 0

]
.

Then

E
[
eitMn exp {iu(Sn − Mn)}] =

n∑
k=0

E
[
eitSk exp {iu(Sn − Sk)} ; An,k

]
=

n∑
k=0

ψn−k(u)E
[
eitSk ; Ak,k

]
.

Letting u = 0 we obtain
∞∑

n=0

rnEeitMn =
∞∑

n=0

rnψn(0) ·
∞∑

k=0

rkE
[
eitSk ; Ak,k

]
= A1 · A2(t)

(say). Here

A1 =
∞∑

n=0

rnP(Mn = 0) =
∞∑

n=0

rnP(τ+ > n) =
1

1 − r
(1 − Erτ+)
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= exp
{ ∞∑

n=1

rn

n

(
1 − P(Sn > 0)

)}
(using Corollary 4.4),

A2(t) =
∞∑

n=0

E
[
rτ+(n)eitSτ+(n)

]
=

∞∑
n=0

(
E
[
rτ+eitSτ+

])n

=
(
1 − E

[
rτ+eitSτ+

])−1

= exp
{ ∞∑

n=1

rn

n
E
[
eitSn ; Sn > 0

]}
and the proof is completed by observing that

P(Sn ≤ 0) + E[eitSn ; Sn > 0] = EeitS+
n . �

Proof of (4.3). If M < ∞, then (iv) of Corollary 4.4 permits us to let r ↑ 1
and use dominated convergence in (4.1) to get

1 − Ĝ+[t] = 1 − EeitSτ+ = exp
{
−

∞∑
n=1

1
n

E
[
eitSn ; Sn > 0

]}
(4.6)

and since the characteristic function of M is
(
1 − Ĝ+[0]

)
/
(
1 − Ĝ+[t]

)
by

Theorem 2.2, (4.3) follows easily. �

In the further development of the theory, one discovers that a certain
care is needed to give rigorous proofs of expected results. For example,
one might ask whether (4.6) also holds when ‖G+‖ = 1, whether, say, the
Laplace transform is obtained by replacing it by β < 0 and whether the
expressions for the moments which come out by formal differentiation are
correct. We shall not go into these points, but give a direct proof of a result
of the last type:

Proposition 4.5 EMn =
n∑

k=1

1
k

ES+
k , EM =

∞∑
k=1

1
k

ES+
k .

Proof. Letting Fn = {Sn > 0}, Gn = {Mn > 0, Sn ≤ 0} we have with K =
max {Sk − S1 : k = 1, . . . , n} that

EMn = E[Mn; Mn > 0] = E[Mn; Fn] + E[Mn; Gn]
= E[X1; Fn] + E[K; Fn] + E[Mn; Gn].

By symmetry arguments, the two first terms are E[Sn; Fn]/n = ES+
n /n

and E[Mn−1; Fn], respectively, whereas the last is

E[Mn−1; Gn] = E
[
Mn−1; Mn−1 > 0, Sn ≤ 0

]
= E[Mn−1; Sn ≤ 0].

Hence EMn = ES+
n /n+EMn−1, and the desired expression for EMn follows

by iteration. For EM , let n ↑ ∞ and use monotone convergence. �

Note that even simple conditions for EM to be finite are not at all
apparent from Proposition 4.5. We return to the problem in X.2.
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Problems

4.1 Show that (4.6) also holds if ‖G−‖ < 1. [Hint: Find first 1 − Ĝ− and use
Wiener–Hopf factorization.]
4.2 Let ĝ+(r, t) denote the expression (4.1) and ĝ−(r, t) the same thing with τ+

replaced by τ−. Show that 1 − rF̂ [t] = ĝ+(r, t)ĝ−(r, t).

Notes The results of this section were found by Baxter and Spitzer around

1960. Good references are Feller (1971, Chs. XII and XVIII), Chung (1974),

Spitzer (1976), Woodroofe (1982) and Siegmund (1985). For a more recent study

in the area, see Grübel (1988).

5 Explicit Examples. M/G/1, GI/M/1, GI/PH/1

5a. Lattice Distributions
5b. Skip–Free Distributions. M/G/1 and GI/M/1
5c. Distributions with a Rational Laplace Transform
5d. Phase–Type Distributions. GI/PH/1

We consider a random walk with µ = EX < 0, as is the typical case in
queueing theory (the case µ > 0 is essentially symmetric, whereas some
modifications may be required when µ = 0). We shall in some cases be
satisfied by evaluating either G+ or G−, since it is then obvious how to
proceed for, say, the distribution of M .

The following simple observation is often the key:

Lemma 5.1 Let F (z) denote the distribution of the overshoot X |X > z

over z, F
(z)

(x) = F (x + z)/F (z). Then G+ is a (defective) mixture of the
F (z), z > 0. If X = U − T with U, T > 0 independent with distributions A,
resp. B, then G+ is a (defective) mixture of the B(z).

Proof. Conditioning upon X1, . . . , Xn−1 gives for x > 0 that

P(Sτ+ > x) =
∞∑

n=1

P(Sτ+ > x, τ+ = n)

=
∞∑

n=1

E
[
F (x − Sn−1); τ+ > n − 1

]
=

∞∑
n=1

E

[
F (−Sn−1)F

(−Sn−1)(x); τ+ > n − 1
]
.

Hence G+ =
∫∞
0 F (z) ν(dz) where

ν(A) =
∞∑

n=1

E
[
F (−Sn−1); τ+ > n − 1,−Sn−1 ∈ A

]
, A ⊆ (0,∞).
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For the last statement, just note that F (z) must be a mixture of the B(y),
y > z. �

5a Lattice Distributions

We consider first the lattice case where w.l.o.g. we may assume F to be
aperiodic on Z with point probabilities fk = P(X = k). Then also G+, G−
are concentrated on Z, and we write g+,k, g−,k for the point probabilities.
In order for explicit results to come out, we will assume F to have bounded
support in one direction, but one can in fact generalize to a discrete phase–
type form in one direction along the lines of Sections 5c, 5d.

We first present a classical argument based on transforms, in this context
the generating functions F̂ [s] = EsX , Ĝ+[s], Ĝ−[s]. Here F̂ [s] is always
defined for |s| = 1 but may have larger domain, whereas Ĝ+[s] is always
defined for s in the closed unit disc ∆ = {s ∈ C : |s| ≤ 1} and Ĝ−[s] for
s−1 ∈ ∆.

The essence of the argument is to recognize the form of either G+ or
G− by a probabilistic argument (cf. Lemma 5.1) and identifying some key
constants via the relation between the roots of the equations F̂ [s] = 1,
Ĝ+[s] = 1, Ĝ−[s] = 1 provided by the Wiener–Hopf factorization identity
(3.1) stating that 1− F̂ [s] = (1− Ĝ+[s])(1− Ĝ−[s]). Here we shall say that
the equation ϕ(s) = 0 (where ϕ : D → C is a continuous function on a
complex domain D ⊆ C) has the roots α1, . . . , αr in D1 ⊆ D if ϕ(s) =
(z − α1) · · · (z − αr)ψ(z) with α1, . . . , αr ∈ D1 and ψ continuous and non-
zero on D1. Note that some αi may coincide, corresponding to multiple
roots.

Theorem 5.2 Assume that fr > 0, fr+1 = fr+2 = · · · = 0 for some
r = 1, 2, . . .. Then the equation F̂ [s] = 1 has exactly r roots α1, . . . , αr

∈ C\∆ outside the unit circle, and these determine G+ by means of

1 − Ĝ+[s] =
(

1 − s

α1

)
· · ·

(
1 − s

αr

)
. (5.1)

Proof. Clearly, G+ is concentrated on {1, . . . , r} with g+,r ≥ fr > 0. Thus
Ĝ+[s] is a polynomial of degree r with Ĝ+[0] = 0 so that we may write
1 − Ĝ+[s] in the form (5.1). Further, for α ∈ ∆ we have

∣∣Ĝ+[α]
∣∣ ≤ P(τ+ <

∞) < 1, so that taking s = αk in (5.1) shows that αk 
∈ ∆.
The factorization identity (3.1) now takes the form

1 − F̂ [s] =
(
1 − Ĝ−[s]

) r∏
k=1

(1 − s/αk).

Since G− is concentrated on {0,−1,−2, . . .}, 1− Ĝ−[s] is finite, continuous
and nonzero in C\∆. This shows the assertion concerning the roots of
F̂ [s] = 1. �
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Theorem 5.3 Assume that f−r > 0, f−r−1 = f−r−2 = · · · = 0 for some
r = 1, 2, . . .. Then the equation F̂ [s] = 1 has exactly r roots α1, . . . , αr ∈ ∆
in the unit disc, one of which is 1 and the rest are inside the unit circle,
say αr = 1, α1, . . . , αr−1 ∈ int(∆). These roots determine G− by means of

1 − Ĝ−[s] =
(−1)r+1f−r

α1 · · ·αr−1

(
1 − 1

s

)(
1 − α1

s

)
· · ·

(
1 − αr−1

s

)
. (5.2)

Proof. Clearly, G− is concentrated on {0,−1, . . . ,−r} with g−,−r = f−r >

0 (note that Sτ− = −r can only occur if X1 = −r). Thus Ĝ−[s] is a
polynomial of degree r in 1/s with coefficient f−r to s−r so that we may
write 1 − Ĝ−[s] in the form (5.2); that one αk is 1 follows since G− has
mass Ĝ−[1] = 1, and that not more than one is has absolute value 1 follows
by aperiodicity. The rest of the proof is similar to that of Theorem 5.2. �

We next present a martingale approach, going back to Wald, which
gives the point probabilities of G+, G− using matrix inversion rather than
transform inversion.

Theorem 5.4 In the set–up of Theorem 5.2,⎛⎜⎝ g+,1

...
g+,r

⎞⎟⎠ =

⎛⎜⎝ α1 α2
1 . . . αr

1
...

...
αr α2

r . . . αr
r

⎞⎟⎠
−1 ⎛⎜⎝ 1

...
1

⎞⎟⎠ . (5.3)

Proof. From F̂ [αk] = 1 it follows (cf. III.8.8–8.9) that
{
αSn

k

}
is a (complex–

valued) martingale. Letting g+,j,n = P(Sτ+ = j, τ+ ≤ n), optional stopping
at τ+ ∧ n yields

1 = αS0
k = Eα

Sτ+∧n

k = E
[
αSn

k ; τ+ > n
]

+
r∑

j=1

αj
kg+,j,n.

However, since Sn ≤ 0 on {τ+ > n}, it follows from |αk| > 1, Sn
a.s.→ −∞

and dominated convergence that the first term converges to zero and since
g+,j,n ↑ g+,j, we get 1 =

∑r
1 αj

kg+,j . The solution of the r linear equations
obtained by letting k vary is indeed as asserted. �

5b Skip–Free Distributions. M/G/1 and GI/M/1

A particular simple and important case is the skip–free one. We say that
{Sn} is upward skip–free or right–continuous if r = 1 in the setting of The-
orem 5.2, and downward skip–free or left–continuous if r = 1 in Theorem
5.3.

Corollary 5.5 In the upward skip–free lattice case:
(a) G+ is concentrated at 1. The point mass θ = ‖G+‖ can be evaluated as
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the unique solution < 1 of

1 = F̂ [1/θ] =
1
θ
f1 + f0 + θf−1 + θ2f−2 + · · · ; (5.4)

(b) The distribution of M is geometric with parameter θ, P(M = n) =
(1 − θ)θn, n = 0, 1, . . .;
(c) G− is given by the point probabilities g−,n =

∑n
−∞ θn−kfk, n =

0,−1,−2, . . .

Proof. Part (a) follows immediately either from Theorem 5.2 (use ‖G+‖ =
Ĝ+[1] = 1/α1) or from Theorem 5.4 (use g+,1 = 1/α1). Then U+ =∑∞

0 G∗n
+ has point mass θn at n, from which (b) follows by Theorem 2.2

and (c) by G− = (U+ ∗ F )
∣∣
(−∞,0]

, cf. Corollary 3.2(b), which yields

g−,n =
∞∑

�=0

θ�fn−� =
n∑

k=−∞
θn−kfk, n = 0,−1,−2, . . . . �

Corollary 5.6 In the downward skip–free lattice case:
(a) G− is concentrated at {−1, 0} with point probabilities g−,−1 = f−1,
g−,0 = 1 − f−1.
(b) G+ is given by the point probabilities g+,n = rn/f−1, n = 1, 2, . . .,
where rn = fn + fn+1 + · · ·; furthermore ‖G+‖ = 1 + µ/f−1.
(c) The point probabilities νn = P(M = n) are given by ν0 = −µ/f−1,

νn =
rn

f−1
ν0 +

rn−1

f−1
ν1 + · · · + r1

f−1
νn−1, n ≥ 1.

Proof. That g−,n = 0 for n = −2,−3, . . . is clear by left–continuity, which
also implies that Sτ− = −1 can only occur if X1 = −1. This shows (a).
Noting that the expected number of visits of

{
Sτ−(n)

}
to any k = 0,−1, . . .

is geometric, we then obtain U−(
{
k
}
) =

∑∞
1 n(1 − f−1)n−1f−1 = 1/f−1,

The first part of (b) then follows from G+ = (U− ∗ F )
∣∣
(0,∞)

, cf. Theorem
3.1(b), and the second from (2.1) and ESτ− = −f−1. For (c), it is now clear
that ν0 = 1 − ‖G+‖ = −µ/f−1, and the recursion formula for ν1, ν2, . . .
follows since by Theorem 2.2 {νn} is proportional to the renewal sequence
governed by the {g+,n}, cf. I.(2.1). �

An important example to which Corollary 5.5 applies is the number of
customers in GI/M/1 just before arrivals, cf. III.6.2, and similarly Corol-
lary 5.6 provides a road to the distribution of the number of customers in
M/G/1 just after departures, cf. Problem III.6.3.

For continuous distributions, there may at a first sight appear to be no
natural analogue of the concept of skip–freeness. However, if one thinks
more specifically in terms of queues, the netput process of the M/G/1
workload process (a compound Poisson process with drift) has properties
similar to a downward skip–free lattice random walk, and obviously its
ladder height distribution is the same as that of the random walk driving the
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Lindley process describing the waiting times. This motivates that one gets a
simple solution in this context (the random walk setting can be generalized
as in Problem 5.1 at the cost of somewhat more lengthy computations).
Recall that B0 is the stationary recurrence time distribution from renewal
theory, i.e. the distribution with density b0(x) = B(x)/µB .

Theorem 5.7 Consider the M/G/1 queue with arrival intensity β, service
time distribution B and ρ = βµB < 1. Then:
(a) Consider a random walk with Xn = Un−Tn where Un is the nth service
time and Tn the nth interarrival time. Then G+ is absolutely continuous
with density g+(x) = βB(x) = ρb0(x).
(b) In the steady state, the actual waiting time W and the workload V
have a common distribution given by

P(W ≤ x) = P(V ≤ x) = (1 − ρ)
∞∑

n=0

ρnB∗n
0 (x). (5.5)

Equivalently, W
D= V

D= Y1+· · ·+YN where N, Y1, Y2, . . . are independent
such that N is geometric with P(N = n) = (1 − ρ)ρn and Y1, Y2, . . . are
i.i.d. with common distribution B0. In particular, writing µ

(k)
B = EUk

n , the
two first moments are

EW = EV =
ρµ

(2)
B

2(1 − ρ)µB
, (5.6)

EW 2 = EV 2 =
ρµ

(3)
B

3(1 − ρ)µB
+

β2µ
(2)2

B

2(1 − ρ)2
. (5.7)

Proof. Sign reversion in Lemma 5.1 shows that G− is exponential with
intensity β, so that the descending ladder height renewal process is Poisson
on (−∞, 0) (and as always has an epoch at 0). Therefore U−(dx) = δ0+βdx.

The form of Xn shows that F has a density f(x) for x > 0 and that

f(x) =
∫ ∞

x

βe−β(y−x) B(dy),

F (x) =
∫ ∞

x

(
1 − e−β(y−x)

)
B(dy) = B(x) − f(x)/β.

Hence by Theorem 3.1(b), g+(x) is given by

U− ∗ f(x) = f(x) +
∫ ∞

0

f(x + z)β dz = f(x) + βF (x) = βB(x)

for x > 0, showing (a). That W
D= V is a consequence of PASTA, see VII.6

(cf. also III.9.2), and (5.5) then follows from (a) and Theorem 2.2. Since
the mean of B0 is µ

(2)
B /2µB, (5.5) then gives

EW = (1 − ρ)
∞∑

n=0

ρnnµ
(2)
B /2µB,
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which is the same as (5.6). The proof of (5.7) is similar (though a little
more lengthy) and left to the Problems. �

The formula (5.5) (or its transform version, Problem 5.2, or sometimes
just (5.6)) is commonly referred to as the Pollaczeck–Khinchine formula.

Theorem 5.8 Consider the GI/M/1 queue with service intensity δ, inter-
arrival time distribution A and ρ = (δµA)−1 < 1. Then:
(a) Consider a random walk with Xn = Un−Tn where Un is the nth service
time and Tn the nth interarrival time. Then the equation

1 = F̂ [η] = EeηXn = Eeη(Un−Tn) =
δ

δ − η

∫ ∞

0

e−ηy A(dy) (5.8)

has a unique positive solution. Further G+ is defective exponential with
intensity δ and total mass θ = 1 − η/δ =

∫∞
0

e−ηy A(dy). That is, the
density is θδe−δx.
(b) In the steady state, the distribution of the actual waiting time W is
given by P(W > x) = θe−ηx.

Proof. The existence and uniqueness of η is easy. It follows from Lemma
5.1 that G+ is defective exponential with intensity δ and mass say θ̃. The
factorization identity (3.1) then means

0 = 1 − F̂ [η] =
(
1 − Ĝ+[η]

)(
1 − Ĝ−[η]

)
=

(
1 − θ̃

δ

δ − η

)(
1 − Ĝ−[η]

)
.

Here Ĝ−[η] < 1 since η > 0 so that the first factor on the r.h.s. must be 0
which yields θ̃ = (δ − η)/δ = θ, showing (a).

A ladder step terminates with intensity δ and is the last w.p. 1 − θ.
Hence the failure rate of W given W > 0 is δ(1 − θ) = η, and since clearly
P(W > 0) = θ, (b) follows. �

Problems

5.1 Assume F has a density on (−∞, 0] of the form αeβx with α < β. Show that
G− is exponential with intensity β and that G+(x) = F (x) + β[µ− ∫∞

x
F (y) dy],

x > 0, ‖G+‖ = 1 + µβ.

5.2 Find the m.g.f. Ĝ+ in M/G/1, both directly from Theorem 5.7(a) and by
Wiener–Hopf factorization. Show hereby that the m.g.f. EesW is (1 − ρ)s/(s −
β + βB̂[s]).
5.3 Show (5.7).

5c Distributions with a Rational Laplace Transform

We now assume X = U − T with U, T independent, U having distribu-
tion B ∈ RLT (cf. III.4) and T having a general distribution. We write
the m.g.f. (not Laplace transform!) B̂[s] of B as p(s)/q(s) where p, q are
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polynomials without common roots and degree say d of q; we can assume
w.l.o.g. that the coefficient to sd in q(s) is 1, q(s) = sd +qd−1s

d−1+ · · ·+q0.
The radius of convergence of B̂[s] is finite, cf. (5.9) below, but p(s)/q(s) is
an analytic continuation of B̂[s] to the domain ΩB = {s ∈ C : q(s) 
= 0}.
Since Â[−s] is always defined when �(s) > 0, Â[−s]p(s)/q(s) is therefore
an analytic continuation of F̂ [s] = Â[−s]B̂[s] to Ω = {s ∈ ΩB : �(s) > 0}.
Lemma 5.9 For any z > 0, the conditional distribution of U given U > z
has a m.g.f. of the form p(z)(s)/q(s) where p(z) is a polynomial.

Proof. If we write q(s) = (s− t1)d1 · · · (s− tk)dk where di > 0, d1 + · · ·+ dk

= d, fractional expansion of p(s)/g(s) and transform inversion shows that
the density b(x) of B has the form

k∑
i=1

di∑
j=1

cijx
j−1etix. (5.9)

To get the density b(z)(x) of U given U > z, we must replace x by x+z and
divide by P(U > z) which after expanding (x+z)j−1 shows that b(z)(x) has
a similar form, only with changed cij . Therefore the m.g.f. has the asserted
form. �

Theorem 5.10 Assume µ = EX = EU − ET < 0 and that the function

1 − F̂ [s] = 1 − Â[−s]B̂[s] = 1 − Â[−s]
p(s)
q(s)

(5.10)

has d roots s1, . . . , sd in Ω. Then Ĝ+[s] = 1 − 1
q(s)

d∏
i=1

(s − si).

Proof. By Lemmas 5.1, 5.9 , 1 − Ĝ+[s] must be of the form p+(s)/q(s)
where p+ is a polynomial. From Ĝ+[s] → 0, s → −∞ and q(s) = sd + · · · it
then follows that p+(s) = sd + · · ·, i.e. we can write p+(s) =

∏d
i=1(s − s̃i).

The Wiener–Hopf factorization identity 1− F̂ [s] =
(
1− Ĝ−[s]

)(
1− Ĝ+[s]

)
(valid by analytic continuation for all s ∈ Ω) becomes

ψ(s)
d∏

i=1

(s − si) =
(
1 − Ĝ−[s]

) 1
q(s)

d∏
i=1

(s − s̃i)

for a suitable function ψ, cf. the definition preceding Theorem 5.2. Since∣∣Ĝ−[s]
∣∣ < 1 for �(s) > 0, the result follows easily (cf. also the parallel proof

of Theorem 5.3). �

5d Phase–Type Distributions. GI/PH/1

In the setting of the preceding subsection, we next strengthen the assump-
tion of B having a rational transform to B being phase–type, say with
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representation (E, α, T ). Of course, Theorem 5.10 applies to this case as
well, but we shall present an alternative more probabilistic approach.

Proposition 5.11 G+ is (defective) phase–type with representation (α+, T )
for some vector α+ = (α+;j).
[defective means α+1 < 1.]

Proof. By Lemma 5.1, G+ =
∫∞
0

B(z) ν(dz) for some measure ν. But by
Problem III.4.4, B(z) is phase–type with representation (β(z), T ) for some
β(z) [in fact, β(z) = αeT z/αeT z1]. This is easily seen to imply the assertion
with α+ =

∫∞
0

β(z) ν(dz). �

Thus, the problem is to evaluate α+. To this end, we define a process
{mx} as in Fig. 5.1.

Figure 5.1

In Fig. 5.1, we have assumed two phases represented by thick and thin
lines. The process depicted, say {Rt}, is the netput process for the work-
load, i.e. the process that jumps by the service time when a customer arrives
and decreases linearly between arrivals; obviously, {Rt} has the same as-
cending ladder height distribution as the given random walk {Sn}, which
corresponds to the values just after jumps. The thin and thick lines in the
jumps correspond to the phases in the Markov processes generating the
service times, and mx is the phase in which level x is upcrossed. We let ω+

be the time of the first upcrossing of level 0 so that Sτ+ = Rω+ .
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Theorem 5.12 (a) α+ is the (defective) distribution of m0;
(b) {mx} is a (terminating) Markov process on E, with intensity matrix Q
given by Q = T + tα+;
(c) α+ satisfies α+ = ϕ(α+), where

ϕ(α+) = αÂ[T + tα+] = α

∫ ∞

0

e(T+tα+)yA(dy). (5.11)

(d) α+ can be computed by iteration of (5.11), i.e. by α+ = limn→∞ α
(n)
+

where

α
(0)
+ = 0, α

(1)
+ = ϕ

(
α

(0)
+

)
, α

(2)
+ = ϕ

(
α

(1)
+

)
, . . . . (5.12)

Proof. Part (a) is clear. The proof of (b) is similar to that used for phase–
type renewal processes in III.5: in between ladder heights, {mx} is governed
by T . The vector of intensities generating ladder heights in the different
states is t, and {mx} either terminates at a ladder height or is restarted
according to α+. Collecting terms, (b) follows.

For (c), we condition upon T1 = y and define {m∗
x} from {Rt+y − Ry−}

in the same way as {mx} is defined from {Rt}; cf. Fig. 5.1. Then {m∗
x}

is Markov with the same transition intensities as {mx}, but with initial
distribution α rather than α+. Also, obviously m0 = m∗

y. Since the con-
ditional distribution of m∗

y given T1 = y is αeQy, it follows by integrating
y out that the distribution α+ of m0 is given by the final expression in
(5.11).

In (d), note first that the term tβ in ϕ(β) represents feedback with
rate vector t and feedback probability vector β. Hence ϕ(β) (defined on
the domain of subprobability vectors β) is an increasing function of β. In
particular, α

(1)
+ ≥ 0 = α

(0)
+ implies

α
(2)
+ = ϕ

(
α

(1)
+

) ≥ ϕ
(
α

(0)
+

)
= α

(1)
+

and (by induction) that
{
α

(n)
+

}
is an increasing sequence such that

limn→∞ α
(n)
+ exists. Similarly, 0 = α

(0)
+ ≤ α+ yields

α
(1)
+ = ϕ

(
α

(0)
+

) ≤ ϕ (α+) = α+

and by induction that α
(n)
+ ≤ α+ for all n. Thus, limn→∞ α

(n)
+ ≤ α+.

To prove the converse inequality, we let Fn = {T1 + · · · + Tn+1 > ω+}
be the event that {Rt} has at most n arrivals in [T1, ω+], and let α̃

(n)
+;i =

P(m∗
T1

= i; Fn). Obviously, α̃
(n)
+ ↑ α+, so to complete the proof it suffices

to show that α̃
(n)
+ ≤ α

(n)
+ for all n. For n = 0, both quantities are just 0.

Assume the assertion shown for n − 1, and define a subexcursion of {Rt}
as the segment from just after an arrival time, say σk (here σ0 = 0), until
level Rσk

is upcrossed again (thus on Fig. 5.1 there are two subexcursions in
[0, ω+]). Then each subexcursion before time ω+ can contain at most n− 1
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arrivals (n arrivals are excluded because of the initial arrival at time T1).
It follows that on Fn the feedback to {m∗

x} after each ladder step cannot
exceed α̃

(n−1)
+ so that

α̃
(n)
+ ≤ α̃

∫ ∞

0

e(T+tα̃
(n−1)
+ )yA(dy)

≤ α

∫ ∞

0

e(T+tα
(n−1)
+ )yA(dy) = ϕ

(
α

(n−1)
+

)
= α

(n)
+ .

�

Corollary 5.13 The maximum M of the random walk or, equivalently,
the GI/PH/1 waiting time, is the lifetime of {mx}. In particular, P(M =
0) = 1 − α+1 and M is absolutely continuous on (0,∞) with density
α+e(T+tα+)x.

Corollary 5.14 Consider the M/PH/1 queue with arrival intensity β and
phase representation (α, T ) of the service time distribution B. Then the
steady–state waiting time W is phase–type with representation (α+, Q)
where α+ = −βαT−1, Q = T + tα+. In particular, P(W = 0) = 1− α+1
and W is absolutely continuous on (0,∞) with density α+eQx.

Proof. By III.5.3, the stationary excess distribution B0 is phase–type with
representation (ν, T ) where ν = −αT−1/µB. Since G+ = ρB0 by Theorem
5.7(a), it follows that α+ = ρν = −βαT−1. �

We finally give the link to Theorem 5.10. Let d denote the number of
phases.

Corollary 5.15 Suppose µ < 0, that the equation F̂ [s] = 1 has d distinct
roots ρ1, . . . , ρd in the domain �(s) > 0, and define hi = (−ρiI − T )−1t,
Q = DC−1 where C is the matrix with columns h1, . . . ,hd, D that with
columns −ρ1h1, . . . ,−ρdhd. Then G+ is phase-type with representation
(α+, T ) with α+ = α(Q−T )/αt. Further, letting νi be the left eigenvector
of Q corresponding to −ρi and normalized by νihi = 1, Q has diagonal
form

Q = −
d∑

i=1

ρi νi ⊗ hi = −
d∑

i=1

ρi hiνi . (5.13)

Proof. Since �(ρi) > 0 and G− is concentrated on (−∞, 0), we have∣∣Ĝ−[ρi]
∣∣ < 1 , and hence Ĝ+[ρi] = 1 by the Wiener-Hopf factorization iden-

tity (3.1), which according to Proposition 5.11 means that α+(−ρiI−T )−1t
= 1. Hence

Qhi = (T + tα+)hi = T (−ρiI − T )−1t + t

= (T + ρiI − ρiI)(−ρiI − T )−1t + t = −t − ρih + t = −ρih .

It follows that the matrix Q in Theorem 5.12 has the d distinct eigenvalues
−ρ1, . . . ,−ρd with corresponding right eigenvectors h1, . . . ,hd. This imme-
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diately implies that Q has the form DC−1 and the last assertion on the
diagonal form. Given T has been computed, we get

1
αt

α(Q − T ) =
1

αt
αtα+ = α+ . �

Notes Results like those of the present section have a long history. In partic-
ular, some early references are Wald (1947) for Section 5a and Täcklind (1942)
and Smith (1953) for Section 5c. An ingredient that is often met is Rouché’s the-
orem, a classical result from complex analysis giving a criterion for two complex
functions to have the same number of zeros within the unit circle.

This complex plane approach is often met with criticism for a number of reasons
such as to lack probabilistic interpretation and to only give transform solutions.
In queueing theory, an alternative approach (the matrix–geometric method) has
been developed largely by M.F. Neuts and his students, starting around 1975.
For surveys, see Neuts (1981, 1989) and Latouche and Ramaswami (1999) (we
cover the basics in XI.3–4). Here phase-type assumptions are essential, but the
models solved are basically Markov chains and processes with countably many
states (e.g. queue length processes). Asmussen (1992a) modified some of the ideas
to deal with waiting times and workloads, and Section 5d is from that paper (the
GI/PH/1 waiting time was studied earlier by Sengupta, 1989, by different means;
see further XI.3d).

Concerning further explicit distributions of ladder heights, random walk max-
ima, etc. it is remarkable that even the case of a Gaussian F presents major
difficulties so that the available results (Lotov, 1996, Chang and Perez, 1997) are
recent and not of a very simple form.



IX
Lévy Processes, Reflection and Duality

1 Lévy Processes

By a Lévy process we understand a real–valued continuous–time stochastic
process {Xt}t≥0 with stationary independent increments and X0 = 0, cf.
III.7. Simple examples are: Brownian motion with drift θ and variance
constant σ2, for which

EXt = tθ, VarXt = tσ2, EeαXt = etκ(α) (1.1)

where κ(α) = θα+σ2α2/2; and a compound Poisson process
∑Nt

1 Ui. Here
{Nt} is a Poisson process with rate β and the Ui are independent, mutually
and of {Nt}, with common distribution B, and

EXt = tβEU, VarXt = tβEU2, EeαXt = etκ(α) (1.2)

where κ(α) = β(B̂[α] − 1), B̂[α] = EeαU . Of course, a linear combination
of independent Lévy processes is again a Lévy process.

Recall that a probability measure µ is called infinitely divisible (i.d.)
if for each n = 1, 2, . . . there exists µn such that µ = µ∗n

n (the nth–fold
convolution of µn). If {Xt} is a Lévy process, then for each t the distribution
of Xt is i.d., since the terms in the expansion Xt =

∑n
1 (Xtk/n −Xt(k−1)/n)

are i.i.d. This connection plays a crucial role in the theory of Lévy processes.

Lemma 1.1 If µ is i.d., then the ch.f. µ̂[it] =
∫

eitxµ(dx) is nonzero for
each real t, and there exists a unique continuous complex function κ(·) such
that µ̂[it] = eκ(it).
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Proof. If µ is i.d., then the symmetrized distribution µ# defined by
µ#(A) =

∫
µ(A + x)µ(dx) is i.d. corresponding to µ#

n = (µn)#. Since
µ̂# = |µ̂|2, it follows that

I(µ̂[it] 
= 0) = lim
n→∞

∣∣µ̂[it]
∣∣2/n = lim

n→∞ µ̂#
n [it].

Thus I(µ̂[it] 
= 0) is limit of ch.f.’s, and since I(µ̂[it] 
= 0) is continuous at
t = 0 because a ch.f. is continuous and 1 at 0, I(µ̂[it] 
= 0) is a ch.f., cf. e.g.
Chung (1974) p. 161. The continuity of a ch.f. and µ̂[0] = 1 therefore implies
that I(µ̂(it) 
= 0) must be identically 1. The last statement concerning κ(·)
follows from general facts on the complex logarithm. �

In view of this result, we can define the Lévy exponent κ(·) of a Lévy
process by taking µ as the distribution of X1 (that is, κ(α) = log EeαX1),
and extend κ(·) to Θ =

{
α ∈ C : Ee�(α)X1 < ∞}

in such a way that
EeαX1 = eκ(α) not only for �(α) = 0 but for all α ∈ Θ (cf. Problem
1.2).

Proposition 1.2 For a Lévy process, the following statements are equiv-
alent: (i) the distribution of Xt is a measurable function of t; (ii) {Xt}
is stochastically continuous; (iii) {Xt} has a version with D–paths; (iv)
EeαXt = etκ(α) for all t ≥ 0 and all α ∈ Θ.

Proof. Recall that {Xt} being stochastically continuous means that for all
t, Xs

P→ Xt as s → t; for a Lévy process, this is easily seen to be equivalent
to Xs

P→ 0 as s → 0. In conjunction with the spatial homogeneity, the
implication (ii)⇒(iii) then follows by general Markov process theory (see,
e.g., Sato, 1999, p. 59) and also (i) holds generally in D so that (iii)⇒(i).

For (i)⇒(iv), let f(t) = EeαXt . Then under (i), f(·) is measurable, and
the functional equation f(s + t) = f(s)f(t) (which holds because of the
stationary independent increments) then implies f(t) = f(1)t = etκ(α).
Finally, (iv)⇒(ii) is trivial. �

We will usually assume that a Lévy process satisfies one of the minor
equivalent conditions in Proposition 1.2.

Recall the Lévy–Khintchine representation of an i.d. distribution:

Theorem 1.3 Let µ be i.d. with κ(·) as in Lemma 1.1. Then there exists
θ ∈ R, σ ≥ 0 and a nonnegative measure ν on R with∫ ε

−ε

x2 ν(dx) < ∞, ν([−ε, ε]c) =
∫
{x: |x|>ε}

ν(dx) < ∞ (1.3)

for all ε > 0, such that

κ(α) = θα + σ2α2/2 +
∫ ∞

−∞

[
eαx−1−αxI(|x| ≤ 1)

]
ν(dx), α ∈ Θ. (1.4)

[I(|x| ≤ 1) could be replaced by I(|x| ≤ ε) for any ε > 0 by changing θ
appropriately]. The proof is given below. The measure ν is referred to as



246 IX. Lévy Processes, Reflection and Duality

the Lévy measure and (ν, θ, σ2) to as the characteristic triplet. The Lévy
measure is unique and additive under convolutions, as is θ and σ2. Note
that if ν satisfies the stronger requirement∫ ε

−ε

|x| ν(dx) < ∞, ν([−ε, ε]c) < ∞, (1.5)

then (1.4) can be rewritten in the form

κ(α) = θα + σ2α2/2 +
∫ ∞

−∞
[eαx − 1] ν(dx), α ∈ Θ (1.6)

(replace θ by θ − ∫ 1

−1
x ν(dx)). Here the first two terms correspond to a

Brownian motion with drift θ and variance constant σ2 and, when |ν| < ∞,
the last to an independent compound Poisson process with β = |ν|, B =
ν/|ν|, cf. (1.1), (1.2). We proceed to the construction and interpretation of
the process in the general case.

Proposition 1.4 Let ν be a nonnegative measure satisfying (1.5) and let
M(dt, dx) be a Poisson process on [0,∞) × R with intensity measure dt ⊗
ν(dx). Then

Xt =
∫ t

0

∫
R

xM(ds, dx) (1.7)

is a Lévy process with D–paths and Lévy exponent
∫∞
−∞[eαx − 1] ν(dx).

Proof. By the additivity property noted above, we may write {Xt} as an in-
dependent sum of terms corresponding to components of ν concentrated on
different subsets, say {|x| ≥ 1}, {−1 < x < 0} and {0 < x < 1}. The first
term is compound Poisson and the assertion is trivial, so by symmetry,
we can assume w.l.o.g. that ν is concentrated on (0, 1). Then the expec-
tation of the r.h.s. of (1.7) is t

∫ 1

0 x ν(dx), which is finite by (1.5). Hence
Xt is welldefined and finite, and the property of D–paths follows by mono-
tone convergence in (1.7). Finally, if we let X

(ε)
t =

∫ t

0

∫ 1

ε xM(ds, dx), then{
X

(ε)
t

}
is compound Poisson and hence by (1.2) and monotone convergence,

log EeαX1 = lim
ε↓0

log EeαX
(ε)
1 = lim

ε↓0

∫ 1

ε

[eαx − 1] ν(dx)

=
∫ 1

0

[eαx − 1] ν(dx).

�

The interpretation of (1.7) is that {Xt} moves by jumps alone, that a
jump of size x occurs with intensity ν(dx), and that jumps of different sizes
are independent. In the general case (1.3), the situation is more complicated
since the r.h.s. of (1.7) need not converge, and one needs to subtract means
and go to the limit (this procedure is known as compensation).
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Proposition 1.5 Let ν be a nonnegative measure satisfying (1.3), let
ν(ε)(A) = ν

(
A ∩ [−ε, ε]c

)
, µ(ε) =

∫
{x: ε<|x|≤1} x ν(dx) and let

{
Y

(ε)
t

}
be

a compound Poisson process with Lévy measure ν(ε), X
(ε)
t = Y

(ε)
t − tµ(ε).

Then Xt = limε↓0 X
(ε)
t exists a.s. and is a Lévy process with Lévy exponent∫∞

−∞
[
eαx − 1 − αxI(|x| ≤ 1)

]
ν(dx).

Proof. Assume w.l.o.g. that ν is concentrated on [−1, 1]. Then by (1.2),
VarX

(ε)
t = t

∫
{x: ε<|x|≤1} x2 ν(dx). Also, clearly EX

(ε)
t = 0 and hence the

family
{
X

(ε)
t

}
ε>0

is L2–bounded. The existence of a limit Xt as ε ↓ 0
therefore follows by verifying that it is a backward martingale, i.e. that

E
[
X

(ε1)
t

∣∣X(ε2)
t

]
= X

(ε2)
t (1.8)

when 0 < ε1 < ε2. But by general results on Poisson thinning, Y
(ε2)
t is

independent of Y
(ε1)
t − Y

(ε2)
t which is readily seen to imply (1.8). The rest

of the proof is easy by limit arguments. �

We now turn to the proof of Theorem 1.3.

Lemma 1.6 For any i.d. distribution µ, there exists a stochastically
continuous Lévy process {Xt} such that X1 has distribution µ.

Proof. For each t, define λ̂(t)[is] = etκ(is). The nth root µn of µ is unique
and has ch.f. µ̂[is]1/n = λ̂(1/n)[is] by Lemma 1.1 and its proof. Taking k–
fold convolutions and writing t as limit of rationals of the form k/n shows
that λ̂(t)[·] is a limit of ch.f.’s, hence (since λ̂(t)[·] is continuous) the ch.f.
of a probability distribution λ(t). Since the ch.f.’s are multiplicative in t,
we have λ(s+t) = λ(s) ∗ λ(t). Hence if for 0 = t0 < t1 < · · · < tm we
define the distribution Pt0,...,tm of (Xt0 , . . . , Xtm) by the requirement that
Xt0 = 0 a.s. and that the Xtk

− Xtk−1 are independent with distributions
λ(tk−tk−1), we get a consistent family, the Kolmogorov extension of which
is the distribution of a Lévy process. Stochastic continuity follows since
λ̂(t)[is] → 1 as t ↓ 0 and hence Xt

D→ 0, and that X1 has distribution µ is
clear from λ̂(1)[is] = µ̂[is]. �

Lemma 1.7 Let {Xt} be a Lévy process such that the absolute value of a
jump is bounded. Then Θ = R.

Proof. Assume w.l.o.g. that |Xt − Xt−| ≤ 1 for all t. Define τ0 = 0, τk+1 =
inf {t > 0 : |Xt+τk

− Xτk
| ≥ 1}, k = 0, 1, . . .. Then by the strong Markov

property (Problem 1.1), the τk are i.i.d., with common distribution say F ,
and since |Xt+τk

− Xτk
| ≤ 2, we get

P
(|Xt| ≥ 2n

) ≤ P(τ1 + · · · + τn ≤ t) = F ∗n(t) .

For fixed t, F ∗n(t) decreases faster than any exponential, cf. V.2.5. From
this, it follows that EeαX(t) < ∞ for all α. �
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Lemma 1.8 A Lévy process {Xt} with continuous sample paths is
Brownian motion (θ, σ2) for some θ, σ2.

Proof. By Lemma 1.7, all cumulants of Xt exist (and are necessarily linear
functions of t) so we may assume w.l.o.g. that EXt = 0, VarXt = t and
then have to show that X1 is standard normal. Writing X1 as a sum of
n i.i.d. terms distributed as Xh (h = 1/n), this follows from the Feller–
Lindeberg theorem provided we can show E[X2

h; |Xh| > ε] = o(h) for each
ε > 0. Let τ(δ) = inf {t > 0 : |Xt| ≥ δ}. Then by stochastic continuity,
there is a constant c1 such that P(|Xh| ≥ δ) ≥ c1P(τ(2δ) ≤ h) for all small
h. By Chebycheff, the l.h.s. can be bounded by c2h, so that P(τ(ε) ≤ h),
being bounded by P(τ(ε/2) ≤ h)2 because of continuity, is O(h2). We then
get

E
[
X2

h; |Xh| > ε
]

≤ E
[
X2

h; τ(ε) ≤ h
]

= E
[
ε2 + Var(Xh|τ(ε) ≤ h); τ(ε) ≤ h

]
≤ [

ε2 + O(h)
]
P(τ(ε) ≤ h) = O(h2).

�

Given the i.d. distribution µ, we can find a Lévy process {Xt} with D–
paths such that X1 has distribution µ, cf. Lemma 1.6 and Proposition 1.2.
Let Nt(A) be the number of jumps of size in A before t, N

(ε)
t = Nt

(
[−ε, ε]c

)
,

Z
(ε)
t =

∫ t

0 Xs dN
(ε)
s (the sum of jumps of absolute size > ε) and Y

(ε)
t =

Xt − Z
(ε)
t . If 0 
∈ A, then Nt(A) < ∞ for all t, and since {Nt(A)} is a

point process without multiple points and having stationary independent
increments, {Nt(A)} must be Poisson with rate ν(A) for some ν(A); that
the set function ν(·) is a measure is clear from ν(A) = EN1(A), and it
is also obvious that ν([−ε, ε]c) < ∞. Similarly,

{
Z

(ε)
t

}
must be compound

Poisson, and we denote its jump size distribution by F (ε).

Lemma 1.9
{
Z

(ε)
t

}
and

{
Y

(ε)
t

}
are independent for each ε > 0.

Proof. Clearly,
{
Y

(ε)
t

}
0≤t≤T

has stationary independent increments con-

ditionally upon N
(ε)
T = 0, and accordingly, there exists κ(ε)(·) such

that

E

[
eαY

(ε)
t

∣∣∣ N
(ε)
T = 0

]
= eκ(ε)(α), 0 ≤ t ≤ T.

Now for T > 0 and a given n, define Jk =
(
(k − 1)T/n, kT/n

]
, Y

(ε)
Jk

=

Y
(ε)
kT/n − Y

(ε)
(k−1)T/n, etc. Then

E

[
eisY

(ε)
T ; N

(ε)
T = 1, Z

(ε)
T ≤ x

]
(1.9)

=
n∑

k=1

E

[
eisY

(ε)
T ; N

(ε)
Jk

= 1, N
(ε)
J�

= 0, � 
= k, Z
(ε)
Jk

≤ x
]
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= e(n−1)T/n·κ(ε)(is)
n∑

k=1

E

[
eisY

(ε)
Jk ; N

(ε)
Jk

= 1, N
(ε)
J�

= 0, � 
= k, Z
(ε)
Jk

≤ x
]
.

Define Mn = sup
{|eis(Y (ε)

u −Y (ε)
v ) − 1|} where the sup extends over all u, v ≤

T such that |u − t| ≤ 1/n, |v − t| ≤ 1/n for some epoch t of
{
N

(ε)
t

}
. Then

since each such t must be a continuity point of
{
Y

(ε)
t

}
, we have Mn

a.s.→ 0,
n → ∞, and hence by dominated convergence,

∆n =

∣∣∣∣∣
n∑

k=1

E

[
eisY

(ε)
Jk − 1; N

(ε)
Jk

= 1, N
(ε)
J�

= 0, � 
= k, Z
(ε)
Jk

≤ x
]∣∣∣∣∣

≤ E
[
Mn; N

(ε)
T = 1

] → 0.

It follows that (1.9) is

eTκ(ε)(is)
n∑

k=1

P

(
N

(ε)
Jk

= 1, N
(ε)
J�

= 0, � 
= k, Z
(ε)
Jk

≤ x
)

+ o(1)

= eTκ(ε)(is)P

(
N

(ε)
T = 1, Z

(ε)
T ≤ x

)
.

Similar arguments apply first to the case N
(ε)
T = m > 1, showing that Z

(ε)
T

and Y
(ε)
T are independent, and next to the independence of Z

(ε)
I1

, Y
(ε)
I1

, . . . ,

Z
(ε)
Ir

, Y
(ε)
Ir

for disjoint intervals I1, . . . , Ir. �

Proof of Theorem 1.3. Let ν(ε) be the restriction of ν to [−ε, ε]c. Applying
Lemma 1.9 repeatedly yields easily that

{
Z

(ε)
t

}
is a Lévy process with Lévy

measure ν(ε) and independent of
{
Y

(ε)
t

}
for each ε > 0, in particular for

ε = 1. Let Ỹ
(ε)
t = Y

(ε)
t − tθ(ε) where θ(ε) = EY

(ε)
1 (note that both the mean

and the variance exist by Lemma 1.7) and J
(ε)
t = Ỹ

(1)
t − Ỹ

(ε)
t , 0 < ε < 1.

Then as above,
{
J

(ε)
t

}
is a Lévy process, which is independent of

{
Y

(ε)
t

}
and where the Lévy measure is the restriction of ν to {x : ε < |x| ≤ 1}.
Hence

VarY
(1)
t = VarJ

(ε)
t + VarY

(ε)
t ≥ VarJ

(ε)
t = t

∫
ε<|x|≤1

x2ν(dx).

Since the l.h.s. is finite, we can make two conclusions: that
∫ 1

−1
x2ν(dx) <

∞, so that ν is a legitimate Lévy measure; and that
{
J

(ε)
t

}
ε>0

is a back-

ward martingale having an a.s. limit J
(0)
t (combine with the arguments

around (1.8)). Therefore also Wt = lim Ỹ
(ε)
t exists. But obviously, {Wt}t≥0

is continuous and since the property of stationary independent increments
is easily seen to carry over in an a.s. limit, we conclude from Lemma 1.8 that
{Wt} is Brownian motion with suitable drift θ and suitable variance σ2.
Finally in the decomposition Xt = Wt +θ(1)t+J

(0)
t +Z

(1)
t , the components
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are independent Lévy processes with Lévy exponents

θα + α2σ2/2, θ(1)α,

∫ 1

−1

(eαx − 1 − αx)ν(dx),
∫
|x|>1

(eαx − 1)ν(dx).

Adding shows that µ has a c.g.f. of the form given by the Lévy–Khintchine
representation. �

Problems

1.1 Show that a Lévy process with D–paths is strong Markov.
1.2 Show that EeαX1 �= 0 whenever the expectation is welldefined.

Notes Standard references on Lévy processes are Protter (1990), Bertoin
(1996) and Sato (1999). A good impression of the many directions in which the
topic has been developed and applied can be obtained from the volume edited
by Barndorff–Nielsen et al. (2001).

An important special case is α–stable processes (0 < α < 2), where ν(dx) =

c±x−α−1 with c+ for x > 0 and c− for x < 0, see Samorodnitsky and Taqqu

(1994), another subordinators defined as nondecreasing Lévy processes (here θ ≥
0, σ2 = 0 and one has spectral positivity, i.e. ν(dx) = 0, x < 0).

2 Reflection and Loynes’s Lemma

2a. Local Time and Reflection
2b. The Skorokhod Problem
2c. Stationarity and Loynes’s Lemma
2d. Reflected Lévy Processes

2a Local Time and Reflection

Let {St} be a real–valued stochastic process with a discrete or continuous
nonnegative time parameter t ∈ T and S0 = 0. For x ≥ 0, we want to
define and study the reflected (at 0) version {Vt(x)} of {St} starting from
V0(x) = x.

In discrete time, we can just as in III.6 define the increment as Xn =
Sn − Sn−1 and let V0(x) = x,

Vn+1(x) =
(
Vn(x) + Xn

)+ (2.1)

(the Lindley recursion). Some more care is needed to incorporate also the
continuous–time case. Here we define

Lt = − inf
0≤v≤t

Sv = sup
0≤v≤t

−Sv, Lt(x) = (Lt − x)+,

Vt(x) = x + St + Lt(x) = St + x ∨ Lt. (2.2)
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The process {Lt} is called the local time and is nonnegative and increasing
(in particular of bounded variation). It follows immediately that Lt(x) =
−x − infτ−(x)≤v≤t Sv for t ≥ τ−(x) where τ−(x) = inf {t > 0 : St ≤ −x},
and Lt(x) = 0 for t < τ−(x). When the initial value x is unimportant, we
write Vt instead of Vt(x).

Define the additively shifted version
{
S

(T )
t

}
t≥0

by S
(T )
t = St+T − ST ,

and let L
(T )
t (y), etc. be defined in terms of

{
S

(T )
t

}
rather than {St}.

Proposition 2.1 Vt+T (x) = VT (x) + S
(T )
t + L

(T )
t

(
VT (x)

)
.

Proof. The stated expression for Vt+T = Vt+T (x) is the same as

S
(T )
t + VT ∨ L

(T )
t = St+T − ST + (ST + x ∨ LT ) ∨

(
ST − inf

0≤v≤t
Sv+T

)
= St+T + x ∨

(
sup

0≤v≤T
−Sv

)
∨
(

sup
0≤v≤t

−Sv+T

)
= St+T + x ∨

(
sup

0≤v≤t+T
−Sv

)
= Vt+T .

�

The result shows that Vt+T is constructed from
{
S

(T )
t

}
, VT in the same

way as VT (x) is constructed from {St}, x. If in discrete time we take t = 1,
T = N , Proposition 2.1 takes the form

VN+1 = VN + XN+1 + (X−
N+1 − VN )+ = (VN + XN+1)+,

so that we are back to (2.1).

2b The Skorokhod Problem

An alternative characterization of the reflected process is as the solution
to a so–called Skorokhod problem:

Proposition 2.2 Let {L∗
t } be any nondecreasing right–continuous process

such that (a) the process {V ∗
t } given by V ∗

0 = x, V ∗
t = St + L∗

t satisfies
V ∗

t ≥ 0 for all t, (b) {L∗
t } can increase only when V ∗

t = 0, i.e.
∫ T

0
V ∗

t dL∗
t

= 0 for all T . Then L∗
t = Lt(x), V ∗

t = Vt(x).

Proof. Let Dt = Lt − L∗
t , ∆Ds = Ds − Ds−. The integration–by–parts

formula for a right–continuous process of bounded variation gives

D2
t = 2

∫ t

0

DsdDs −
∑
s≤t

(∆Ds)2

= 2
∫ t

0

(Ls − L∗
s)dLs − 2

∫ t

0

(Ls − L∗
s)dL∗

s −
∑
s≤t

(∆Ds)2

= 2
∫ t

0

(Vs − V ∗
s )dLs − 2

∫ t

0

(Vs − V ∗
s )dL∗

s −
∑
s≤t

(∆Ds)2
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= −2
∫ t

0

V ∗
s dLs − 2

∫ t

0

VsdL∗
s −

∑
s≤t

(∆Ds)2 .

Here the two first integrals are nonnegative since V ∗
s , Vs are so, and also

the sum is clearly so. Thus D2
t ≤ 0, which is only possible if Lt ≡ L∗

t . �

2c Stationarity and Loynes’s Lemma

We will extend the framework slightly by including some supplementary
variables. We call a E × R–valued process {(Jt, St)}t≥0 stationary marked
additive if {(

J
(T )
t , S

(T )
t

)}
t≥0

D= {(Jt, St)}t≥0 , T > 0, (2.3)

where J
(T )
t = Jt+T . A doubly infinite version is defined by the requirement

that the time parameter is −∞ < t < ∞ and that (2.3) holds also for
T < 0 (it is inherent in the definition that one must have S0 = 0 also for a
doubly infinite version).

Proposition 2.3 A stationary marked additive process has always a
doubly infinite version.

Proof. For T > 0, t ≥ −T define J̃
(−T )
t = Jt+T , S̃

(−T )
t = St+T − ST . A

standard construction based upon Kolmogorov’s consistency theorem then
shows that there exists a unique probability measure µ on D(R, E × R)
such that the restriction of µ to GT = σ(Jt, St : t ≥ −T ) is the same as
the distribution of

{
(J̃ (−T )

t , S̃
(−T )
t )

}
t≥−T

. Now just take the doubly infinite
version as a process with distribution µ. �

Remark 2.4 In discrete time, the doubly infinite version can be con-
structed by taking a doubly infinite version of {(Jn, Xn)}n∈Z (exists
because obviously {(Jn, Xn)}n∈N is stationary) and letting S0 = 0,

Sn =
{ −Xn+1 − · · · − X−1 − X0 n < 0,

X1 + · · · + Xn n > 0.

To see this, just note that the process constructed in this way satisfies
S

(T )
n = XN+1 + · · · + Xn+N (consider the cases n + N < 0, = 0 and > 0

separately). �

Theorem 2.5 Let
{
(Jt, St)

}
t∈R

be a doubly infinite stationary marked ad-
ditive process and define V ∗

T = sup
−∞<t≤T

(ST − St). Then
{
(Jt, V

∗
t )

}
is a

doubly infinite stationary version of
{
(Jt, Vt)

}
.

Proof. Stationarity is clear, so that by Proposition 2.1, all that needs to be
checked is Vt+T = VT + S

(T )
t + L

(T )
t (VT ). But the r.h.s. is the same as
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S
(T )
t + VT ∨ L

(T )
t which in turn equals

St+T − ST +
(

sup
−∞<v≤T

(ST − Sv)
)
∨
(
ST − inf

0≤v≤t
Sv+T

)
= St+T + sup

−∞<v≤t+T
−Sv = Vt+T .

�

In the doubly infinite situation, define S∗
t = −S−t−, J∗

t = −J−t−. We
refer to {(J∗

t , S∗
t )} as the reversed version of the marked additive process.

Note that in discrete time, we have S∗
n = X0 + X−1 + · · ·+ X−n+1, n > 0.

Corollary 2.6 Assume St
a.s.→ −∞, t → ∞. Then M∗ = supt≥0 S∗

t is finite
a.s., and the distribution of (J∗

0 , M∗) = (J0, M
∗) is the unique stationary

distribution for
{
(Jt, Vt)

}
. Further, for all x ≥ 0,

(
Jt, Vt(x)

) → (J0, M
∗)

in total variation.

Proof. By coupling: let y be another (possibly random) initial value and
τ = inf {t > 0 : St ≤ −x ∨ y}. Then τ < ∞ a.s. by assumption (as well as
M∗ < ∞). Since Lτ = −Sτ ≥ x ∨ y, we have

Vτ (x) = Sτ + x ∨ Lτ = Sτ + Lτ = 0

and similarly Vτ (y) = 0. Proposition 2.1 then implies Vt(x) = Vt(y) for all
t ≥ τ . Now just consider the doubly infinite stationary situation and take
y = V0 which has the same distribution as M ∗. �

The following alternative representation is often useful:

Corollary 2.7 Define τ∗(x) = inf {t > 0 : S∗
t ≥ x}. Then Pe(Jt ∈ A, Vt ≥

x) = P(J∗
0 ∈ A, τ∗(x) < ∞). In particular, if E is discrete and πi =

Pe(J∗
0 = i) = Pe(J0 = i), Pi = Pe(· | J∗(0) = i), then Pe(Jt = i, Vt ≥ x) =

πiPi(τ∗(x) < ∞).

2d Reflected Lévy Processes

We now assume that {St} is a Lévy process as in Section 1.

Corollary 2.8 A reflected Lévy process {Vt} is strong Markov. Further,
Pe(Vt ≥ x) = P(supt≥0 St ≥ x) = P(τ(x) < ∞) where τ(x) =
inf {t > 0 : St ≥ x}.
Proof. The Markov property follows immediately from Proposition 2.1. For
the strong Markov property, combine with I.8.3 and an easy continuity
argument, cf. Problem 1.1. For the last statement, just note that the time–
reversion in Corollary 2.7 does not change the distribution. �

We next continue a study initiated in III.7: how does a reflected Lévy
process leave 0? Throughout, Vt = Vt(0).
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Lemma 2.9 Assume that {St} is a pure jump Lévy process with Lévy
measure ν satisfying

∫ |x| ∧ 1 ν(dx) < ∞. Then St/t
a.s.→ 0 as t ↓ 0.

Proof. Denote by Z = Z(ν) the limit (if it exists) of St/t so that we must
show Z(ν) = 0 a.s. This is obvious if {St} is compound Poisson, and since
clearly Z(ν) is additive in ν, we may assume that ν is concentrated on
(0, 1].

Now note that {St/t}0<t≤1 is a backward martingale (by the standard
random walk analogue, this holds for

{
Sk/n/(k/n)

}
k=1,...,n

; use an easy
continuity argument or mimic the proof). Hence by the martingale conver-
gence theorem in continuous time Z(ν) exists and satisfies EZ(ν) ≤ ES1.
Now if ν(n) denotes the restriction of ν to (0, 1/n] and S

(n)
t denotes the

sum of the jumps ≤ 1/n before t, we have Sn = S
(n)
t for all small t, and

hence Z(ν) = Z(ν(n)),

EZ(ν) = lim
n→∞ EZ

(
ν(n)

) ≤ lim
n→∞

∫ 1/n

0

y ν(dy) = 0,

so that Z(ν) = 0. �

Example 2.10 Let St = θt−Yt where θ > 0 and {Yt} is a pure jump Lévy
process whose Lévy measure is infinite and concentrated on (0,∞). Then
by Lemma 2.9, we have Sv > 0 for all small v, say 0 < v ≤ v0, and hence
Lt = 0 and Vt = St for t ≤ v0. That is, {Vt} leaves state 0 instantaneously
and in the same way as {St}. �

Example 2.11 Let θ > 0, say θ = 1 and let {Yt} be as in Example 2.10,
but take now St = Yt − θt. We shall see that this case is much more com-
plicated than Example 2.10 in the sense that τ+ = inf {t > 0 : Vt > 0}
is still zero but that for any ε > 0 the Lebesgue measure of Aε =
{t ∈ [0, ε] : Vt = 0} is nonzero. To this end, we let Y

(n)
t , V

(n)
t etc. refer to

the case where all jumps ≤ 1/n have been neglected. Clearly, Y
(n)
t − Y

(n)
v

↑ Yt − Yv for v < t and hence V
(n)
t ↑ Vt. Now since

{
Y

(n)
t

}
is compound

Poisson, each
{
V

(n)
t

}
is simply of M/G/1 workload form, i.e. decreases at

a unit rate in states > 0 and has the same upward jumps as
{
Y

(n)
t

}
. From

this it is obvious that

V
(n)
t = Y

(n)
t −

∫ t

0

I(V (n)
t > 0) ds,

and we may pass to the limit n → ∞ to get

Vt(0) = Yt −
∫ t

0

I(Vt > 0) ds. (2.4)

Now let ε > 0 satisfy Yt ≤ t/2, t ≤ ε, and assume |Aε| = 0. Then (2.4)
yields Vε = Sε = Yε − ε < 0, which is impossible. Also, τ+ = 0 a.s. follows,



3. Martingales and Transforms for Reflected Lévy Processes 255

since if {Yt} jumps say δ at time t, then Vt ≥ δ; further, since ν is infinite,
the jump times have 0 as accumulation point. �

Notes Theorem 2.5 and the many variants such as Corollaries 2.6 and 2.7,
which are around, are often referred to as Loynes’s lemma after Loynes (1962).

For Skorokhod problems, see e.g. example Rogers and Williams (1994), Revuz

and Yor (1999) and Whitt (2002). The theory is more difficult in multidimensions.

Tanaka (1979) is a classical reference for diffusions. A special problem on so–

called oblique reflection comes up in connection with the heavy–traffic limits for

queueing networks mentioned in the Notes to IV.5 and can be formulated as

follows: for a given matrix R and a given D–function x(t) with values in RK and

xi(0) ≥ 0 for all i = 1, . . . , K, find functions v(t) and �(t) (and show they are

unique) such that v(0) = x(0), v(0) ≥ 0, v(t) = x(t) + R�(t) ≥ 0, and each

i(t) in nondecreasing and can only increase when vi(t) = 0. It is easily seen that

conditions on R are required for this problem to be meaningful. See e.g. Harrison

and Reiman (1981) and Chen and Yao (2001).

3 Martingales and Transforms for Reflected
Lévy Processes

Let {St} be a Lévy process with Lévy exponent κ(α). The Wald martingale
is then Mt = eαSt−tκ(α); for some typical applications of this martingale,
see III.8d and VIII.5.4. We now study a martingale obtained as a stochastic
integral w.r.t. {Mt} and which has a somewhat different range of applica-
tions; in particular, it allows for a more direct study of aspects of reflected
Lévy processes.

Theorem 3.1 Let {St} be a Lévy process with Lévy exponent κ(α), let

Yt =
∫ t

0

dY c
s +

∑
0≤s≤t

∆Ys

be an adapted process of locally bounded variation with continuous part
{Y c

t }, D–paths and jumps ∆Ys = Ys − Ys−, and define Zt = x + St + Yt.
For each t, let Kt be the r.v.

κ(α)
∫ t

0

eαZs ds + eαx − eαZt + α

∫ t

0

eαZs dY c
s +

∑
0≤s≤t

eαZs(1 − e−α∆Ys).

Then {Kt} is a local martingale whenever α ∈ Θ.

Proof. Let Bt = eαYt+tκ(α). Then, by the general theory of stochastic in-
tegration, K∗

t =
∫ t

0
Bs− dMs is a local martingale. Using the formula for

integration by parts (see Protter, 1990, p. 60, for a version sufficiently
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general to deal with the present case) yields

MtBt − M0B0 =
∫ t

0

Ms− dBs + K∗
t +

∑
0≤s≤t

∆Ms∆Bs.

Inserting∑
0≤s≤t

∆Ms∆Bs =
∫ t

0

∆Ms dBs =
∫ t

0

(Ms − Ms−) dBs,

it follows that

−K∗
t =

∫ t

0

Ms dBs + M0B0 − MtBt. (3.1)

Using MsBs = eαZs and dBs = Bs(α dY c
s + κ(α)ds + 1 − e−α∆Ys) shows

that the r.h.s. of (3.1) reduces to Kt. �

Let as in Section 2 Lt = inf0≤v≤t Sv denote the local time, Lt(x) =
(Lt − x)+, and Vt = Vt(x) = x + St + Lt(x) the reflected version of {St}
starting from V0 = x. For simplicity, we will present most of the applications
of Theorem 3.1 in the following setting:

Corollary 3.2 Let {St} be a Lévy process with no negative jumps,
ν(−∞, 0) = 0. Let x ≥ 0 and consider Vt = Vt(x). Then for κ(α) < ∞, the
process {K ′

t} defined by

K ′
t = κ(α)

∫ t

0

eαVs ds + eαx − eαVt + αLt(x)

is a martingale. More generally, for any β < 0

K ′′
t = κ(α)

∫ t

0

eαVs+βLs ds − eαx + eαVt+βt + (1 + α/β)(eβLt − 1)

defines a martingale. If τ is a stopping time, then a sufficient condition
that either of K ′

τ , K ′′
τ are integrable with mean 0 is that supt≤τ eαVt and

τ supt≤τ eαVt are both integrable.

For the proof, we need:

Lemma 3.3 (a) If κ(α) < ∞, then Ex sup0≤s≤t eαVs < ∞ for all t;
(b) if E|S1| < ∞, then also EVt < ∞ and ELt < ∞ for all t.

Proof. It is easy to see that 0 ≤ Vt(x)−Vt(0) ≤ x so we may assume x = 0.
Then by Corollary 2.7, we have

P0(Vt ≥ z) = P(τ(z) ≤ t) (3.2)

where τ(z) = inf {t : St ≥ z}. Choose ε, y > 0 with P(Lt ≤ y) ≥ ε and let
τ = inf {t : Vt > z + y}. Then

P(St > z − y) ≥ P(τ(z) ≤ t, St − Sτ(z) > −y)
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≥ εP(τ(z) ≤ t) = εP0(Vt ≥ z) ≥ εP(τ ≤ t, St − Sτ > −y)
≥ ε2P(τ ≤ t) = ε2P0

(
sup

0≤s≤t
Vs > z + y

)
.

That E0 sup0≤s≤t eαVs < ∞ now follows from EeαSt < ∞ by using integra-
tion by parts which also yields E0Vt < ∞ and hence E0Lt = E0Vt−ESt < ∞
when E|S1| < ∞. �

Proof of Corollary 3.2. Consider {K ′′
t } (the case of {K ′

t} is similar but
easier), where we take Yt = (1+β/α)Lt(x). Note that {Lt} has continuous
paths in the case of no negative jumps so that the last term in the definition
of Kt in Theorem 3.1 vanishes, and that Lt(x) only increases when Vt = 0
so that the term involving dY c

s is

α

∫ t

0

eβLs(x)(1 + β/α) dLs(x)

= (α + β)
∫ t

0

eβLs(x) dLs(x) = (1 + α/β)(eβLt(x) − 1) .

Therefore K ′′
t = Kt. That {K ′′

t } is a martingale and not just a local mar-
tingale follows since sups≤t K ′′

s is integrable by Lemma 3.3 (see Protter,
1990, p. 35).

For the optional stopping problem, one has as always that EK ′′
τ∧t = EK ′′

0

= 0. However, by dominated convergence

E

∫ τ∧t

0

eαVs+βLs ds → E

∫ τ

0

eαVs+βLs ds, EeαVτ∧t+βLτ∧t → EeαVτ +βLτ

where both limits are finite. This implies 0 = EK ′′
τ∧t → EK ′′

τ . �

Recall the Pollaczeck–Khinchine formula in Problem VIII.5.2 for the
m.g.f. of the steady–state M/G/1 workload. Here is a more general version:

Corollary 3.4 Consider a Lévy process with no negative jumps and nega-
tive drift, −∞ < µ = κ′(0) = ES1 < 0. Then the limit V in distribution of
Vt exists and for �α < 0 one has EeαV = αµ/κ(α).

Proof. The existence of V was noted in Section 2. Take β = 0 and choose
V0 = V ∗ as a r.v. distributed as V and independent of {St}. Then {Vt} is
stationary and we get

0 = EK ′
1 = κ(α)EeαV − EeαV ∗

+ EeαV1 + αEL1 = κ(α)EeαV + αEL1,

so that it only remains to show that in a stationary process ELt = −tµ.
However, if EV < ∞, this follows from Vt = V0 + St + Lt and EVt =
EV0 = EV in stationarity. The general case follows by an easy truncation
argument; see Problem X.2.3. �
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Example 3.5 Let {St} be Brownian motion with drift µ < 0 and variance
1 and {Vt} the reflected version. We then get

EeαV =
αµ

αµ + α2/2
=

2|µ|
2|µ| − α

,

which shows that V is exponential with intensity 2|µ|.
It is instructive to compare with an alternative proof using the Wald

martingale and the limiting case P(V ≥ y) = p where p = P(τ(y) < ∞) of
(3.2). We have to show p = e−2|µ|y. Since γ = −2µ solves κ(γ) = 0, letting
α = γ yields Mt = e−2µSt and

1 = EMτ(y)∧t = e−2µyP(τ(y) ≤ t) + E
[
e−2µSt ; τ(y) > t

]
.

Since St
a.s.→ −∞ and −2µSt ≤ 2|µ|y on {τ(y) > t}, dominated convergence

yields 1 = e−2µyp + 0 and the desired conclusion. �

Example 3.6 Let {St} be Brownian motion with drift µ and variance 1
and {Vt} the two–sided reflected version on [0, K], Vt = V0+St+L

(0)
t −L

(K)
t

where L
(0)
t , L

(K)
t are the local times at 0, resp. K as defined as the solution

to an obvious generalization of the Skorokhod problem (see further XIV.3).
Letting Yt = L

(0)
t − L

(K)
t , we get

K ′
t = κ(α)

∫ t

0

eαVs ds − eαx + eαVt + αL
(0)
t − αeαKL

(K)
t

and equating the expectation in stationarity to 0 (x = V ∗ as above) yields

0 = (αµ + α2/2)EeαV + α�(0) − αeαK�(K)

where �(0) = EL
(0)
t /t, �(K) = EL

(K)
t /t. In particular, taking α = −2µ we

get �(K) = e2µK�(0). Also, EVt = EV0 = EV gives �(0) − �(K) + µ = 0. It
follows by easy algebra that �(0) = µ/(e2µK −1), �(K) = µe2µK/(e2µK −1),
and hence

EeαV =
µeαK+2µK − µ

(e2µK − 1)(µ + α/2)
,

which is readily seen to be the m.g.f. of a truncated exponential distribution
with density 2µe2µx/(e2µK − 1), 0 ≤ x ≤ K. �

Wald’s identity µEτ = ESτ allows to find an expected stopping time
when the distribution of Sτ is accessible. Here is a similar formula for the
reflected case (by stopping time, we mean stopping time for {St}):
Corollary 3.7 Consider a reflected Lévy process with no negative jumps
and V0 = x. Assume that a γ 
= 0 with κ(γ) = 0 exists. Let τ be a stopping
time such that supt≤τ eγVt and τ supt≤τ eγVt are both integrable. Then

Exτ =
γExVτ − ExeγVτ + eγx − γx

γκ′(0)
.
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Proof. Taking α = γ and using optional stopping (ExK ′
τ = 0) in Corollary

3.2 yields 0 = eγx − ExeγVτ + γExLτ (x). On the other hand, from Wald’s
identity

Exτ =
ExSτ

κ′(0)
=

ExVτ − x − ExLτ (x)
κ′(0)

. �

Example 3.8 Let {Vt} be reflected Brownian motion with drift µ 
= 0
and variance 1, and let τ = inf {t > 0 : Vt = 1}. Then κ(α) = αµ + α2/2
which shows that γ = −2µ solves κ(γ) = 0. Hence E[τ |V0 = 0] = (2µ +
e−2µ − 1)/(2µ2); cf. VI.2c. �

Example 3.9 For an example involving negative jumps, consider the
M/M/1 queue length process {Qt} with arrival intensity β and service in-
tensity δ and the problem of evaluating Exτ where τ = inf {t > 0 : Qt = n}.
We will assume x = Q0 < n and then τ can be interpreted as the first buffer
overflow time

Take {St} as the independent difference between two independent Pois-
son processes with intensities β, resp. δ (then κ(α) = β(eα−1)+ δ(e−α−1)),
and Yt = Lt(x). Then Zt = Qt in Theorem 3.1. Taking α = γ = log δ−logβ,
we have κ(γ) = 0, e−γ = ρ, and the martingale is

Kt = 0 − eγx + eγQt + 0 + Lt(x)(1−e−γ) = −ρ−x +ρ−Qt +Lt(x)(1−ρ)

(for the form of the last term note that Lt(x) is the number of dummy
service events in the idle state before t so that the jumps are 1 and only
occurs at times where Qt = 0). As in the proof of Corollary 3.7 we therefore
get

0 = −ρ−x + ρ−n + ExLτ (x)(1 − ρ),

Exτ =
ExSτ

κ′(0)
=

ExQτ − x − ExLτ (x)
β − δ

=
(1 − ρ)(n − x) − ρ−x + ρ−n

(1 − ρ)(β − δ)
.

�

Theorem 3.10 Let {St} be a Lévy process with no negative jumps, let
x ≥ 0 and consider Vt = Vt(x). Then for each α, β < 0 and δ > 0,∫ ∞

0

e−δsExeαVs+βLs(x) ds =
eαx(ρ + β) − eρx(α + β)

(δ − κ(α))(ρ + β)
(3.3)

where ρ = ρ(δ) is the negative root of κ(ρ) = δ.

Proof. Let I denote the l.h.s. of (3.3) and let T be exponential with intensity
δ and independent of {St}. Then

Ex

∫ T

0

eαVs+βLs(x) ds = I = δ−1ExeαVT +βLT (x).
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Taking Yt = (1 + β/α)Lt and using optional stopping at T in Theorem 3.1
(justified when α, β < 0) therefore yields

0 = (κ(α) − δ)I + eαx + (α + β)
∫ ∞

0

EeβLs(x)−δs dLs.

Replacing α by ρ shows that the last integral is −eρx/(ρ + β). �

Problems

3.1 Discuss the case x > n in Example 3.9.
3.2 Find Eeβτ in Example 3.9. Do the same if instead of the M/M/1 queue
length process one considers reflected Brownian motion or the M/M/1 workload
process.
3.3 Let {St} be Brownian motion with drift µ and variance 1 and T an inde-
pendent exponential r.v. with intensity δ. Show that LT and VT = ST + LT are
independent exponential r.v.’s with intensities

√
µ2 + 2δ−µ, resp.

√
µ2 + 2δ+µ.

3.4 Show III.(8.13).

Notes Theorem 3.1 is from Kella and Whitt (1992); more or less related mar-
tingale techniques allowing to incorporate local time appear in Baccelli and
Makowski (1989) and Revuz and Yor (1999), Ch. VI.2.4. Further references on
martingale techniques in queueing theory include Robert (2000) and Rougham
and Pearce (2002).

Corollary 3.7 is from Asmussen and Kella (2001) (their conditions for optional
stopping are somewhat sharper than here). Corollary 3.4 and Theorem 3.10 are
classical for Lévy processes, see e.g. Prabhu (1980, pp. 76–77) and Bertoin (1999).

A restriction of the approach of this section is that in many problems one

needs to control the distribution of Vτ which often is only possible for processes

that are skip–free or have only exponential jumps in one direction. The Markov

additive extension in Asmussen and Kella (2000) allows, however, for phase–type

jumps.

4 A More General Duality

We are concerned with extensions in two directions of the relations

P(Wn ≥ x) = P(Mn ≥ x) = P(τ(x) ≤ n), (4.1)
P(W ≥ x) = P(M ≥ x) = P(τ(x) < ∞) (4.2)

for the reflected version {Wn} of a random walk {Sn} (here τ(x) =
inf {n ≥ 1 : Sn ≥ x} is the ruin probability), cf. III.6 and the Loynes
analogue in Section 2.

The first extension is to more general Markov processes. Let T = N or
T = [0,∞), let {Vt}t∈T be Markov with state space E = [0,∞) or E = N,
and let Vt(x) be the version starting from V0 = x. Then {Vt} is stochastically
monotone if x ≤ y implies Vt(x) ≤so Vt(y) (stochastical ordering, cf. A4)
for all t ∈ T, i.e. if Px(Vt ≥ z) ≤ Py(Vt ≥ z) for all t and z.
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Proposition 4.1 The existence of a Markov process {Rt}t∈T on E ∪ {∞}
such that

Px(Vt ≥ y) = Py(Rt ≤ x) (4.3)

is equivalent to (i) {Vt} is stochastically monotone and (ii) Px(Vt ≥ y) is a
right–continuous function of x for all t and y.

Proof. If {Rt} exists, the l.h.s. of (4.3) is nondecreasing and right–
continuous in x and so necessity of (i), (ii) is clear. If conversely (i),
(ii) hold, then the r.h.s. of (4.3) defines a probability measure P t(y, ·)
(thus P t(y, {∞} = 1 − limx→∞ Px(Vt ≥ y)), and we shall show that the
Chapman–Kolmogorov equations P t+s = P tP s hold; cf. I.8. This follows
since

P t+s
(
y, [0, x]

)
= Px(Vt+s ≥ y) =

∫
E

Px(Vt ∈ dz)Pz(Vs ≥ y)

=
∫

E

Px(Vt ∈ dz)
∫ z

0

P s(y, du) =
∫ z

0

P s(y, du)Px(Vt ≥ u)

=
∫ z

0

P s(y, du)P t
(
u, [0, x]

)
= (P tP s)

(
y, [0, x]

)
.

�

Theorem 4.2 The state 0 is absorbing for {Rt}. Furthermore, letting τ =
inf {t > 0 : Rt(x) ≤ 0} = inf {t > 0 : Rt(x) = 0}, one has

P0(VT ≥ x) = Px(τ ≤ T ), (4.4)

and if Vt converges in total variation, say to V , then

P0(V ≥ x) = Px(τ < ∞), (4.5)

Proof. Taking x = y = 0 in (4.3) yields P0(Rt ≤ 0) = P0(Vt ≥ 0) = 1 so
that indeed 0 is absorbing for {Rt}. We then get

Px(τ ≤ T ) = Px(RT ≤ 0) = P0(VT ≥ x). �

We turn to the second extension of (4.1) which does not require the
Markov property but, however, works more easily when T = N than when
T = [0,∞). We there assume that {Vn}n∈N is generated by a recursion of
the form

Vn+1 = f(Vn, Un), (4.6)

where {Un} (the driving sequence) is a stationary sequence of random el-
ements taking values in some arbitrary space F and f : E × F → E is
a function. The (time–homogeneous) Markov case arises when the Un are
i.i.d. (w.l.o.g., uniform on F = (0, 1)), but also much more general examples
are incorporated. We shall need the following easily proved lemma.
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Lemma 4.3 Assume that f(x, u) is continuous and nondecreasing in x for
each fixed u ∈ F and define g(x, u) = inf {y : f(y, u) ≥ x}. Then for fixed u
g(x, u) is left–continuous in x, nondecreasing in x and strictly increasing on
the interval {x : 0 < g(x, u) < ∞}. Further, f(y, u) = sup {x : g(x, u) ≤ y}
and

g(x, u) ≤ y ⇐⇒ f(y, u) ≥ x. (4.7)

W.l.o.g., we can take {Un} with doubly infinite time, n ∈ Z, and define
the dual process {Rn}n∈N by

Rn+1 = g(Rn, U−n), n ∈ N; (4.8)

when the initial value x = R0 is important, we write Rn(x).

Theorem 4.4 Equations (4.3) and (4.5) also hold in the set–up of (4.6)
and (4.8).

Proof. For T ∈ N, define V
(T )
0 (y) = y,

V
(T )
1 (y) = f

(
V

(T )
0 (y), U−(T−1)

)
, . . . , V

(T )
T (y) = f

(
V

(T )
T−1(y), U0

)
.

We shall show by induction that

V
(T )
T (y) ≥ x ⇐⇒ RT (x) ≤ y (4.9)

(from this (4.3) follows by taking expectations and using the stationarity;
since g(0, u) = 0, (4.4) then follows as above). The case T = 0 of (4.9) is
the tautology y ≥ x ⇐⇒ x ≤ y. Assume (4.9) shown for T . Replacing y
by f(y, U−T ) then yields

V
(T )
T

(
f(y, U−T )

) ≥ x ⇐⇒ RT (x) ≤ f(y, U−T ).

But V
(T )
T

(
f(y, U−T )

)
= V

(T+1)
T+1 (y) and by (4.7),

RT (x) ≤ f(y, U−T ) ⇐⇒ RT+1(x) = g(RT (x), U−T ) ≤ y.

Hence (4.9) holds for T + 1. �

Example 4.5 Consider a reflected random walk Vn+1 = (Vn +Xn)+ with
increments X0, X1, . . . which are i.i.d. or, more generally, stationary.

In the set–up of Proposition 4.1 and Theorem 4.2, we need (for the
Markov property) to assume that X0, X1, . . . are i.i.d. We take E = [0,∞)
and for y > 0, we then get

Py(R1 ≤ x) = Px(V1 ≥ y) = P(x + X0 ≥ y) = P(y − X0 ≤ x).

For y = 0, we have P0(R1 = 0) = 1. These two formulas show that {Rn}
evolves as a random walk with increments −X0,−X1, . . . as long as Rn > 0,
i.e. Rn(x) = x − Sn, n < τ , Rn(x) = 0, n ≥ τ ; when (−∞, 0] is hit, the
value is instantaneously reset to 0 and {Rn} then stays in 0 forever. We
see further that in the setting of (4.1) we can identify τ and τ(x), and thus
(4.5), (4.4) are the same as (4.1), (4.2).
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Consider instead the approach via Theorem 4.4 (which allows for incre-
menst that are just stationary). We let again E = [0,∞), take Uk = Xk

and f(x, u) = (x + u)+. It is easily seen that g(y, u) = (y − u)+ and so
{Rn} evolves as a random walk with increments −X0,−X−1, . . . as long
as Rn > 0, while 0 is absorbing. With S̆n = −X0 − X−1 − · · · − X−n+1,
S∗

n = −S̆n it follows that τ = inf
{
n : x + S̆n ≤ 0

}
= inf {n : S∗

n ≥ x}, and
this last expression shows that (4.4) is the same as in Loynes’ lemma in the
form of Corollary 2.7. �

Example 4.6 Consider again the setting of Example 4.5 but now with
two reflecting barriers 0 and B > 0. That is,

Vn+1 = min
[
B, (Vn + Xn)+

]
. (4.10)

For Theorem 4.2, we take X0, X1, . . . i.i.d. and E = [0,∞) (not [0, B]!).
For y > B, we then get

Py(R1 ≤ x) = Px(V1 ≥ y) ≤ Px(V1 > B) = 0

for all x, i.e. Py(R1 = ∞) = 1. For 0 ≤ y ≤ B, Py(R1 ≤ x) = Px(V1 ≥ y)
becomes

P
(
(x + X0)+ ≥ y

)
=

{
1 y = 0,

P(y − X0 ≤ x) 0 < y ≤ B.

Combining these facts show that {Rn} evolves as a random walk with
increments −X0,−X1, . . . as long as Rn ∈ (0, b]. States 0 and ∞ are
absorbing, and from y > B {Rn} is in the next step absorbed at ∞.
Thus for R0 = x ∈ (0, B], absorbtion at 0 before N , i.e. τ ≤ N , can-
not occur if (B,∞) is entered and with Sn = X0 + · · · + Xn−1, τ [u, v) =
inf

{
n ≥ 0 : Sn 
∈ [u, v)

}
, u ≤ 0 < v, we get

P0(VN ≥ x) = Px(τ ≤ N)
= P

(
τ [x − B, x) ≤ N, Sτ [x−B,x) ≥ x

)
, (4.11)

P(V ≥ x) = P(Sτ [x−B,x) ≥ x) (4.12)

(note that τ [x − B, x) is always finite). �

Example 4.7 Let {Vt} be a diffusion on [0,∞) with differential generator
Af(y) = a(y)f ′′(y)/2 + b(y)f ′(y) (the domain will not be specified but
certainly contains the class K of all C2 functions with compact support
contained in (0,∞)). It seems reasonable to guess that {Rt} is again a
diffusion, and we shall verify that indeed the differential generator B is

Bf(x) =
1
2
a(x)f ′′(x) +

[1
2
a′(x) − b(x)

]
f ′(x). (4.13)

To this end, let f, g ∈ K. Then

0 − 0 = [fg]∞0 =
∫ ∞

0

f ′(x) dx =
∫ ∞

0

g′(y) dy, (4.14)
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0 − 0 = [fg]∞0 =
∫ ∞

0

(f ′g + fg′), (4.15)

∫ ∞

0

f ′(x)Exg(Rt) dx =
∫ ∞

0

f ′(x) dx

∫ ∞

0

g′(y)Px(Rt > y) dy

=
∫ ∞

0

f ′(x) dx

∫ ∞

0

g′(y)
(
1 − Py(Vt ≥ x)

)
dy

= −
∫ ∞

0

f ′(x) dx

∫ ∞

0

g′(y)Py(Vt ≥ x) dy = −
∫ ∞

0

g′(y)Eyf(Vt) dy.

Inserting Exg(Rt) = g(x)+ tBg(x)+ o(t), Eyf(Vt) = f(y)+ tAf(y)+ o(t),
t ↓ 0, and using (4.14), (4.15) yields∫ ∞

0

f ′(x)Bg(x) dx = −
∫ ∞

0

g′(y)Af(y) dy

= −
∫ ∞

0

g′(y)
[1
2
a(y)f ′′(y) + b(y)f ′(y)

]
dy

=
∫ ∞

0

{
−b(y)f ′(y)g′(y) +

1
2
[
a(y)g′′(y) + a′(y)g′(y)

]
f ′(y)

}
dy

(evaluating
∫
(ag′)f ′′ by integration by parts in the last step and using

[ag′f ′]∞0 = 0 − 0 as in (4.15)). This is the same as
∫

f ′B∗g, where B∗g
denotes the r.h.s. of (4.13), and the truth of this for all f ∈ K implies
(4.13). �

Problems

4.1 Assume that {Vn} is a Markov chain on N with transition probabilities pij .
Find the transition probabilities for {Rn} [you should not expect a particularly
simple answer!].
4.2 Derive (4.11), (4.12) via the recursive approach.

Notes We will see further important examples of duality in XIV.3 and XIV.5.
The Markov process approach of Theorem 4.2 is from Siegmund (1976a), and

the theory is often referred to as Siegmund duality, whereas the recursive approach
of Theorem 4.4 is from Asmussen and Sigman (1996). None of the approaches
generalizes readily to higher dimension, as illustrated by Blaszczyszyn and Sig-
man (1999) in their study of many–server queues. For stochastic recursions in
general, see Brandt et al. (1990) and Borovkov and Foss (1992).

The two–barrier formula (4.12) is implicit in Lindley (1959) and explicit in
Siegmund (1976a), but has often been overlooked so that there are a number of
alternative treatments of two–barrier models around. We treat such models in
more detail in XIV.3.

When applying Siegmund duality when T = [0,∞), it is often difficult to

rigorously identify {Rt}, as illustrated by Example 4.7 which is somewhat at

the heuristical level (but see Cox and Rössler, 1984). Asmussen (1995) gives

a Markov–modulated generalization for T = [0,∞), and there is some general

theory for the recursive setting in Ryan and Sigman (2000).



Part C:
Special Models and Methods



X
Steady-State Properties of GI/G/1

1 Notation. The Actual Waiting Time

We consider the (FIFO) GI/G/1 queue in the notation of III.1b. That is,
the customers are numbered n = 0, 1, 2, . . ., Un is the service time of n, Tn

the time between the arrivals of n and n + 1 and A(x) = P(Tn ≤ x) is the
interarrival distribution, B(x) = P(Un ≤ x) the service-time distribution
(we assume A(0) = P(Tn = 0) = 0, B(0) = P(Un = 0) = 0). We let
µA = ETn denote the interarrival mean and µB = EUn the mean service
time (µA, µB are assumed finite throughout). Then ρ = µB/µA is the traffic
intensity. Unless otherwise stated, it is assumed that customer 0 has just
arrived at time t = 0 to an empty queue.

Some basic tools in the analysis of the system are: random walks that
yield information on the waiting–time distribution; regenerative processes
that permit conclusions to be made on the existence of limits of other
functionals such as queue lengths; and rate conservation that will provide
relations between the limits and in particular express the distributions of
workload and queue size in terms of the waiting-time distribution.

Some of the basic facts on the waiting times have already been touched
upon, but will now be put together. Define Xn = Un − Tn, µ = EXn =
µB − µA, S0 = 0, Sn = X0 + · · · + Xn−1, Mn = max0≤k≤n Sk, M =
max0≤k<∞ Sk. Then the cases µ < 0, µ = 0 and µ > 0 correspond to
ρ < 1, ρ = 1, resp. ρ > 1, and III.6 yields:
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Proposition 1.1 The (actual) waiting time process {Wn} is a Lindley
process generated by {Sn}, i.e. Wn+1 = (Wn + Xn)+. In particular,

Wn = max
(
Sn, Sn − S1, . . . , Sn − Sn−1, 0

)
(1.1)

D= Mn (1.2)

and if ρ < 1, then a limiting steady–state distribution exists and is given
by Pe(Wn ≤ x) = P(M ≤ x).
[The formulas (1.1) and (1.2) require slight variants for W0 
= 0, cf. III.6.
However, the limit result still holds true.]

Our interest in the following is centered around the so–called stable case
ρ < 1 and we shall only briefly as a digression indicate the typical behaviour
for ρ ≥ 1.

Proposition 1.2 (i) If ρ = 1, σ2 = VarXn < ∞, then the limiting distri-
bution of Wn/

√
n exists and is that of the absolute value of a normal r.v.

with mean zero and variance σ2; (ii) if ρ > 1, then Wn/n
a.s.→ µ = µA(ρ−1).

Proof. In case (i), it is well known that Mn/
√

n has the asserted limit prop-
erties (the easiest proof is presumably by Donsker’s theorem, Billingsley,
1968, Ch. 2; for a direct proof, see Chung, 1974, pp. 217–222). In case (ii),
we have Sn/n

a.s.→ µ > 0. Hence by (1.1), Wn > 0 eventually. Hence if η is
the last n with Wn = 0, we have Wn = Sn − Sη, n ≥ η, from which we get
Wn/n ∼ Sn/n ∼ µ. �

Now define σ(0) = 0, σ = inf {n ≥ 1 : Wn = 0} , σ(1) = σ, σ(k + 1) =
inf {n > σ(k) : Wn = 0}. Since W0 = 0, we may interpret σ as the number
of customers served in the first busy period and σ(k) as the index of the
customer initiating the kth busy cycle.

Proposition 1.3 The σ(k) are regeneration points for the waiting–time
process. We have P(σ < ∞) = 1 if and only if ρ ≤ 1. Hence for ρ ≤
1, {Wn} is aperiodic regenerative with imbedded renewal sequence {σ(k)}.
Furthermore, σ = σ(1) coincides with the weak descending ladder epoch,
σ = τ− = inf {n ≥ 1 : Sn ≤ 0}. We have

Wn = Sn = U0 + · · ·+ Un−1 −T0 − · · ·−Tn−1, n = 0, . . . , σ − 1, (1.3)

−Sσ = −Sτ− = I (1.4)

where I is the idle period corresponding to the first busy cycle, and
furthermore Eσ < ∞ if and only if ρ < 1.

Proof. By the Lindley process property, we have Wn = Sn, n = 0, . . . , σ−1,
and this makes it clear that σ = τ−. Also I is the amount by which the last
interarrival time exceeds the residual work at the time of the last arrival in
the cycle,

I = Tσ−1 − (Wσ−1 + Uσ−1) = −Sσ = −Sτ− .
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It is clear that the σ(k) are regeneration points, and by general random
walk results we have finally σ = τ− < ∞ a.s. if and only if µ = EXn ≤ 0,
i.e. ρ ≤ 1, and Eτ− = ESτ−/µ < ∞ if and only if µ < 0, i.e. ρ < 1. Finally
aperiodicity follows from P(σ = 1) = P(U ≤ T ) > 0. �

For the sake of easy reference, some of the main r.v.’s occurring in the
rest of the chapter will now be introduced.

Definition 1.4 Suppose ρ < 1. Then throughout this chapter:
(i)W will denote a random variable having the steady–state distribution H,
say, of Wn, H(x) = P(W ≤ x) = Pe(Wn ≤ x); similarly,
(ii) V , Q have the steady state distributions of the workload Vt, resp. the
queue length Qt (which will be shown to exist if the interarrival distribution
A is nonlattice);
(iii) QA

n , QD
n denote the queue length just prior to the nth arrival and just

after the nth departure, and QA, QD the corresponding steady–state quan-
tities;
(iv) U, T, X,

{
T (k)

}∞
0

have the distributions of Un, Tn, Xn = Un − Tn,
{T0 + · · · + Tk−1}∞0 , respectively, and are mutually independent and inde-
pendent of W , V , Q, QA, etc.; similar conventions apply for
(v) U∗, T ∗ having densities dB0(x)/dx = B(x)/µB and dA0(x)/dx =
A(x)/µA.

The distributions B0, A0 are familiar from renewal theory, V.3. Also, from
the independence of Wn and Un, it is seen that we may identify W + U by
the sojourn time in the steady state.

A main problem for the study of the actual waiting time is obviously to
study the distribution of W . Various expressions are available for H(x) =
P(W ≤ x). From Proposition 1.1 and VIII.2.2 we have

H(x) =
(
1 − ‖G+‖)U+(x) =

(
1 − ‖G+‖) ∞∑

n=0

G∗n
+ (x), (1.5)

whereas Proposition 1.3 and VI.(1.5) yield

H(x) =
1

Eσ
E

σ−1∑
n=0

I(Wn ≤ x) =
1

Eσ
E

σ−1∑
n=0

I(Sn ≤ x) . (1.6)

These formulas are, however, not intrinsically different in view of VIII.2.3(b).
A somewhat different characterization of H is as the unique solution to
Lindley’s integral equation III.(6.6) with

F (x) = P(Xn ≤ x) = P(Un − Tn ≤ x) =
∫ ∞

0

B(x + y)A(dy), x ∈ R.

Also, the characteristic function has been found in VIII.4 but is obviously
quite complicated.
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The representation (1.5) will turn out to be particularly useful when
combined with VIII.3.1(b) stating that

G+(A) = U− ∗ F (A) =
∫ 0

−∞
F (A − x)U−(dx), A ⊆ (0,∞). (1.7)

Proposition 1.5 W
D= (W + X)+, whereas the conditional distribution of

(W + X)− given W + X ≤ 0 coincides with the common distribution of
−Sτ− and I. In particular, for f : [0,∞) → [0,∞)

Ef
(
(W + X)−

)
=

Ef(−Sτ−)
Eτ−

= −EX
Ef(I)

EI
, (1.8)

E(W + X)− = −EX. (1.9)

Proof. The first statement was noted previously in III.6.6 and yields in
particular

P(W +X ≤ 0) = P
(
(W +X)+ = 0

)
= P(W = 0) = 1−‖G+‖ = 1/Eτ−,

cf. VIII.2.3(c). Also, by VIII.3.2(b),

Ef
(
(W + X)−

)
=

∫ 0

−∞
f(−x)H ∗ F (dx) =

(
1 − ‖G+‖) ∫ 0

−∞
f(−x)U+ ∗ F (dx)

=
(
1 − ‖G+‖) ∫ 0

−∞
f(−x)G−(dx) =

1
Eτ−

Ef(−Sτ−)

= P(W + X ≤ 0)Ef(−Sτ−).

Recalling ESτ− = Eτ−EX and (1.4), the proof is complete. �

Problems

1.1 Give a direct proof of (1.9) by using W + X = (W + X)+ − (W + X)−.

2 The Moments of the Waiting Time

The problem is to study conditions for the existence of EW p, p > 0, and, as
far as possible, to derive an explicit expression. In view of W

D= M , this is
really a random walk problem (as in the case for many other aspects of the
behaviour of the waiting time, cf. e.g. Sections 6 and 7) and can therefore be
formulated in that setting alone. The queueing interpretation may, however,
require some slight reformulations: for example, in the following existence
result, E(X+)p+1 = E

(
(U − T )+

)p+1
< ∞ is readily seen to be equivalent

to EUp+1, whereas EX− < ∞ is automatic in view of ET = µA < ∞.
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Theorem 2.1 Consider a random walk with µ = EX < 0 and let p > 0.
Then EMp < ∞ provided that E(X+)p+1 < ∞. Conversely, if EMp < ∞
and E X− < ∞, then E(X+)p+1 < ∞.

Proof. We first note that the pth moment νn of a sum Y1 + · · · + Yn of
nonnegative i.i.d. summands with EY p

1 < ∞ is O(np). Indeed, if p ≤ 1
Jensen’s inequality gives νn ≤ (nEY )p, whereas for p ≥ 1 we have

ν1/p
n =

[
E(Y1 + · · · + Yn)p

]1/p = ‖Y1 + · · · + Yn‖p ≤ n‖Y ‖p.

Hence if α = E
[
Sp

τ+
; τ+ < ∞]

< ∞,

EMp =
(
1 − ‖G+‖) ∞∑

n=0

∫ ∞

0

xpG∗n
+ (dx) =

(
1 − ‖G+‖) ∞∑

n=0

‖G+‖nO(np)

will be finite in view of ‖G+‖ < 1, whereas if α = ∞ then the term
corresponding to n = 1 in the sum is infinite and hence EM p = ∞.

Write U(y) = U−[−y, 0]. Then by VIII.3.1(b)

α

p
=

∫ ∞

0

xp−1P
(
Sτ+ > x, τ+ < ∞)

dx =
∫ ∞

0

xp−1U− ∗ F (x,∞) dx

=
∫ ∞

0

F (dy)
∫ y

0

xp−1U(y − x) dx . (2.1)

By the elementary renewal theorem (the proof is valid also if the interarrival
distribution has an atom at 0 as G−) we have for suitable c1, c2 that U(z) ≤
c1 + c2z, and since for large y∫ y

0

xp−1
[
c1 + c2(y − x)

]
dx

=
1
p
ypc1 +

1
p
yp+1c2 − 1

p + 1
yp+1c2 ∼ c2

p(p + 1)
yp+1 (2.2)

it follows that E(X+)p+1 < ∞ implies α < ∞ and hence EMp < ∞.
Conversely, if EX− < ∞, then ESτ− = Eτ−EX > −∞ and hence U(z) ≥
d1 + d2z with d2 > 0. If EMp < ∞, then α < ∞ and combining (2.1) and
(2.2) yields E(X+)p+1 < ∞ . �

Not even the moments of M (if they exist) can be found very explicitly.
For example, VIII.4.5 and (1.5) yield the expressions

EM =
∞∑

n=1

1
n

ES+
n =

E[Sτ+ ; τ+ < ∞]
1 − ‖G+‖ . (2.3)

A further important relation is the following:

Theorem 2.2 If E|X |p+1 < ∞ for some p = 1, 2, . . ., then
p∑

q=0

(
p + 1

q

)
EM qEXp+1−q = E

[−(M + X)−
]p+1 =

ESp+1
τ−

Eτ−
. (2.4)
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(Note that in the queueing setting, we may rewrite the r.h.s. of (2.4) as
(−1)pEXEIp+1/EI; cf. (1.8).)

Proof. The last identity in (2.4) follows from (1.8). To show the remaining
part of the theorem, first suppose E(X+)p+2 < ∞. Then

EMp+1 < ∞, E
[
(M + X)−

]p+1 ≤ E|X |p+1 < ∞,

and since (M + X)+(M + X)− = 0 we get

(M + X)p+1 =
[
(M + X)+ − (M + X)−

]p+1

=
[
(M + X)+

]p+1 +
[−(M + X)−

]p+1
,

E(M + X)p+1 =
p+1∑
q=0

(
p + 1

q

)
EM qEXp+1−q

= E
[
(M + X)+

]p+1 + E
[−(M + X)−

]p+1

= EMp+1 + E[−(M + X)−]p+1

and cancelling EMp+1, (2.4) follows. In the general case, replace Xn by
X

(k)
n = Xn ∧ k and let M (k) be defined in terms of the X

(k)
n rather than

the Xn. Then E(X(k)+)p+2 < ∞, hence
p∑

q=0

( p + 1
q

)
EM (k)q

EX(k)p+1−q
= E[−(M (k) + X(k))−]p+1 < ∞ .

But clearly, M (k) ≤ M and M (k) ↑ M as k → ∞. Hence the desired
conclusion follows by monotone convergence as k → ∞. �

Rewriting in queueing notation, we get in particular for the mean waiting
time (p = 1) that

2E(−X)EW = EX2 − E
[
(W + X)−

]2 = VarX − Var(W + X)−

= EX2 − ES2
τ−

Eτ−
= EX2 − E(−X)EI2

EI
(2.5)

(here the second equality follows from (1.9)). Considerable effort has been
put into converting these expressions into bounds or approximations that
are more explicit in the sense that only the distribution of X (or U , T ) is
invoked, and preferably only even the first few moments. We return to the
approximations in Section 7 and XIII.6, and here present only some of the
roughest bounds,

EU2 − EUET ≤ 2E(−X)EW ≤ Var X = Var U + Var T . (2.6)

(The lower bound may be negative and hence trivial. The upper bound is
in fact sharp in an asymptotic sense; cf. Section 7.) Here the upper bound
is obvious from Var(W + X)− ≥ 0. For the lower bound, rewrite (2.5) as

EU2 − 2EUET + ET 2 − E[(W + X)−]2 = EU2 − 2EUET + E(CD)
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where C = T + (W + X)−, D = T − (W + X)−. Here

D = T + W + X − (W + X)+ = W + U − (W + X)+

so that

E(CD) = E
[
T
(
W − (W +X)+

)]
+ETEU +E

[
(W +X)−(W +U)

]
(2.7)

The two last terms in (2.7) are obviously nonnegative, and thus it is suf-
ficient to show that the first one is so too. But f(T ) = T and g(T ) =
W − (W + U −T )+ are both nondecreasing in T for fixed W , U . Hence by
a well–known inequality (Problem 2.2)

E
[
f(T )g(T )

∣∣W, U
] ≥ E

[
f(T )

∣∣W, U
] · E

[
g(T )

∣∣W, U
]

= ET · E
[
W − (W + X)+

∣∣W, U
]
,

E
[
T
(
W − (W + X)+

)] ≥ ET · E
[
W − (W + X)+

]
= ET · 0 = 0.

�

Problems

2.1 Consider a random walk with ‖G+‖ = ‖G−‖ = 1. Show that ESτ+ < ∞,
ESτ− > −∞ if and only if EX2 < ∞, EX = 0, and that then EX2 =
−2ESτ+ESτ− . [Hint: Necessity and the stated identity follows by Wiener–Hopf
factorization of the ch.f.]
2.2 (chebycheff’s covariance inequality) Let X be a r.v. and f, g non-
decreasing functions. Show that E[f(X)g(X)] ≥ Ef(X)Eg(X) [Hint: Reduce to
the case Ef(X) = 0 and consider E[f(X)(g(X) − g(b))] where b is the point at
which f changes sign.]
2.3 Carry out the last step in the proof of Corollary IX.3.4.

Notes Theorem 2.1 goes back to Kiefer & Wolfowitz (1956) and there are many
proofs around. As one of many applications of (2.5), we mention in particular the
observation by Minh and Sorli (1983) that when estimating EW by simulation,
the only unknown quantities are EI and EI2, and that simulating these rather
than EW increases precision. Bounds for EW and related quantities are surveyed
in Stoyan (1983) and Daley et al. (1994). For Problem 2.2, see also Thorisson
(2000), p. 2.

3 The Workload

In continuous time, there is a regenerative structure similar to the one in
Proposition 1.3: the instants with a customer entering an empty queue are
regeneration points. Letting C be the first such instant after t = 0 and
recalling that we start with customer 0 having just arrived, it is seen that
C is just the length of the first busy cycle. Furthermore, C < ∞ a.s. is
equivalent to σ < ∞ a.s., i.e. to ρ ≤ 1 (cf. Proposition 1.3). In fact, there
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is a close relation between σ, C and the first busy period G: since precisely
the customers 0, 1, . . . , σ − 1 are served in the first busy period, we have
G = U0 + · · · + Uσ−1 and the first busy cycle ends at the arrival time
C = T0 + · · · + Tσ−1 of customer σ. One checks immediately that {σ ≤ n}
is independent of Tn, Tn+1, . . . , Un, Un+1, and hence Wald’s identity yields
the first part of

Proposition 3.1 Suppose ρ ≤ 1. Then the mean busy cycle is EC =
µBEσ, the mean busy period is EG = µAEσ and the mean idle period is
EI = EC−EG = −µEσ. Furthermore the mean busy period is nonlattice if
and only if the interarrival distribution A is so, and spread out if and only
if A is so.

The second part is often stated to be obvious, but some care is needed
(cf. Problem 3.3), and we give the proof (when ρ < 1) in the form of the
following more general result:

Proposition 3.2 Let T0 > 0, T1 > 0, . . . be i.i.d. with common distribution
A with µA < ∞, and let σ ≥ 1 be a random time such that Eσ < ∞ and
Tn, Tn+1, . . . are independent of {σ ≤ n} for all n. Then then distribution
K of C = T0 + · · · + Tσ−1 is nonlattice if and only if A is so, and spread
out if and only if A is so.

Proof. By Wald’s identity, we have EC < ∞. Also by an obvious iterative
procedure we may assume that random times σ(1) = σ < σ(2) < · · ·
have been constructed such that

{
T0 + · · · + Tσ(k)−1

}
is a renewal process

governed by K. Then, in the obvious notation, the renewal measures satisfy
UA ≥ UK . Suppose K was lattice, say aperiodic on N, but A not. Then by
Blackwell’s renewal theorem,

h

µA
= lim

n→∞
[
UA(n) − UA(n − h)

] ≥ lim
n→∞

[
UK(n) − UK(n − h)

]
=

1
µK

for all h < 1, which is impossible. Similarly, assume that A is spread out
but K not. Then UK is concentrated on a Lebesgue null set N , and Stone’s
decomposition shows that the UA–measure of N is finite, whereas the UK–
measure is infinite, contradicting UA ≥ UK .

If, conversely, A is not spread out, then UA is concentrated on a Lebesgue
null set N . Hence UK is concentrated on N , and K cannot be spread out.
That K is lattice if A is so is even more trivial. �

The remaining part of Proposition 3.1 now follows immediately when
ρ < 1. When ρ = 1, replace B by an equivalent (in the sense of null sets)
and stochastically smaller distribution B̃. Then the busy cycle distributions
are equivalent, and since ρ̃ < 1, Proposition 3.2 applies to C̃.
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Corollary 3.3 Suppose ρ < 1 and that A is nonlattice. Then a limiting
steady–state distribution of the workload Vt exists and is given by

Ef(V ) =
1

EC
E

∫ C

0

f(Vs) ds. (3.1)

If A is spread out, then Vt → V in total variation.

Proof. For ρ < 1, we have Eσ < ∞. Hence Proposition 3.1 ensures that
the basic limit theorems for regenerative processes in VI.1 and VII.1 are
applicable. �

As a first application of (3.1), note that the time spent by {Vt} in state 0
in the time interval [0, C) is the just the idle period. Thus combining with
Proposition 3.1, we get

P(V = 0) =
1

EC
E

∫ C

0

I(Vs = 0) ds

=
EI

EC
=

(µA − µB)Eσ

µAEσ
= 1 − ρ . (3.2)

[Note that this is always explicit in contrast to P(W = 0) = 1/Eσ.]
We next express the distribution of V in terms of the steady–state waiting

time distribution (for the meaning of U ∗, T ∗, see Definition 1.4):

Theorem 3.4 The conditional distribution of V given V > 0 is the same
as the distribution H ∗ B0 of W + U∗. Equivalently,

P(V ≤ x) = 1 − ρ + ρP(W + U∗ ≤ x) = 1 − ρ + ρH ∗ B0(x), (3.3)

cf. (3.2). An alternative characterization is V
D= (W + U − T ∗)+.

Proof. Let Xt = (Vt − x)+. Then {Xt} has derivative −1 when Vt > x
and 0 otherwise, whereas the jump at the arrival of customer n is (Wn +
Un − x)+ − (Wn − x)+. Hence the rate conservation law VII.6.6 applied to
a stationary version yields

P(V > x) =
1

µA

[
E(W +U −x)+−E(W −x)+

]
=

µB

µA
P
(
U∗ > (W −x)−

)
where the last identity follows from

E
[
(U + a)+ − a+

]
=

∫ ∞

a−
B(u) du = µBP(U∗ > a−) (3.4)

(integration by parts) by conditioning upon a = W −x. Hence P(V > x) =
ρP

(
U∗ > (x − W )+

)
which (since U∗ > 0) is the same as P(V > x) =

ρP(U∗ > x − W ), x ≥ 0, and (3.3) follows.
For V

D= (W + U − T ∗)+, consider Xt =
∫ Mt

t
I(Vs > x) dx where Mt

is the next arrival instant after t. The process {Xt} decreases linearly at
unit rate on intervals where Vs > x, is 0 at the nth arrival instant and then
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jumps to
∫ Tn

0
I(Wn + Un − s > x) ds. It follows by rate conservation that

for x ≥ 0

P(V > x) =
1

µA

∫ ∞

0

A(s)I(W + U − s > x) ds = P(T ∗ < W + U − x)

= P(W + U − T ∗ > x) = P
(
(W + U − T ∗)+ > x

)
.

�

Note that in the M/G/1 case, we have T ∗ D= T and hence

V
D= (W + U − T ∗)+ D= (W + U − T )+ D= W

so that we obtain another proof that V
D= W in M/G/1, as found already

in III.9 and VII.6.
Since EU∗ = EU2/2µB, it follows also by combining with (3.2) that:

Corollary 3.5 EV = ρ

{
EU2

2µB
+ EW

}
.

It is instructive to consider the following two direct proofs of Corollary 3.5.
The first uses rate conservation applied to Xt = V 2

t . Here in steady state,
EX ′

t = E[2V ; V > 0] = 2EV , so by rate conservation EV is

1
2µA

E
[
(W + U)2 − W 2

]
=

1
2µA

[
EU2 + 2µBEW

]
= ρ

{
EU2

2µB
+ EW

}
(if EU3 = ∞ so that EW 2 = ∞, use a truncation argument as in the proof
of Theorem 2.2). The second proof uses a sample part decomposition of a
regenerative cycle, cf. the partitioning of the subgraph of {Vt}0≤t<C into
triangles and parallelograms in Fig. 3.1.
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Figure 3.1

The area is U2
n/2 of the nth triangle and WnUn of the nth parallelogram,

hence

EV =
1

EC
E

∫ C

0

Vs ds =
1

EC
E

σ−1∑
n=0

[
U2

n/2 + WnUn

]
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=
1

EC
E

∞∑
n=0

E
[
U2

n/2 + WnUn; σ > n
∣∣Uk, Tk, k = 0, . . . , n − 1

]
=

1
EC

E

∞∑
n=0

E
[
U2/2 + WnU ; σ > n

]
=

1
µAEσ

{
1
2

EU2Eσ + µBE

σ−1∑
n=0

Wn

}

= ρ

{
EU2

2µB
+

1
Eσ

E

σ−1∑
n=0

Wn

}
= ρ

{
EU2

2µB
+ EW

}
.

Problems

3.1 Define Rt as the residual service time of the customer being served at time
t (Rt = 0 if the server is idle). Show that P(R ≤ x) = 1 − ρ + ρB0(x).
3.2 Let {Bt} be the forward recurrence time of the arrival process. Show that
{(Bt, Vt)} is strong Markov.
3.3 Show that the assumption Eσ < ∞ of Proposition 3.2 is indispensable.
[Hint: Tn = 1 + θZn where θ ∈ (0, 1) is irrational, Zn = ±1 w.p. 1/2 and σ =
inf {n ≥ 1 : Z0 + · · · + Zn−1 = 0}.]

Notes Since rate conservation holds in a more general stationary setting, it is

clear that many results of the present section have parallels in such situations too,

sometimes at a cost of a slightly more complicated formulation. See e.g. Sigman

(1995).

4 Queue Length Processes

In the same way that the (actual) waiting time process is obtained by
observing the virtual waiting time (workload) just before arrival times, it
is sometimes of interest to look at the queue length (number in system)
at certain random times. In particular, seen from the point of view of the
arriving customer, the queue length at the time of arrival is a basic quantity
and motivates the study of

{
QA

n

}
n∈N

; cf. Definition 1.4. To distinguish from{
QA

n

}
,
{
QD

n

}
, we use the terminology “at an arbitrary point of time” when

considering {Qt}t≥0 in the steady state, and Q in Definition 1.4 refers to
this case (i.e. P(Q = k) = limt→∞ P(Qt = k)). We start by an elementary
but celebrated result:

Theorem 4.1 (little’s law) Suppose ρ < 1 and that A is nonlattice.
Then the arrival rate λ = µ−1

A , the mean steady–state queue length � = EQ
at an arbitrary point of time and the mean steady–state sojourn time w =
E(W + U) are related by � = λw.
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Proof. By reference to Proposition 3.1, regenerative processes apply to
{Qt}t≥0 exactly as to the workload to show that a limiting steady–state
r.v. Q exists (the convergence is always in t.v. since the state space N is
discrete) and has distribution given by

Ef(Q) =
1

EC
E

∫ C

0

f(Qs) ds. (4.1)

Letting f(x) = x, it is seen that each of the customers n = 0, 1, . . . , σ − 1
provide a contribution Wn + Un to

∫ C

0
Qs ds. Hence

� =
1

EC
E

∫ C

0

Qs ds =
1

µAEσ
E

σ−1∑
n=0

(Wn + Un) = λE(W + U) = λw.

�

Theorem 4.2 (distributional little’s law) Let {N ∗(t)} be a time–
stationary version of the renewal arrival process that is independent of
W, U , etc. Then Q

D= N∗(W + U), i.e. P(Q = 0) = ρ and

P(Q ≥ k) = P(N∗(W + U) ≥ k) = P
(
W + U > T ∗ + T (k−1)

)
for k = 1, 2, . . .. An alternative characterization is

P(Q ≥ k) = P
(
V > T (k−1)

)
= ρP

(
W + U∗ > T (k−1)

)
, (4.2)

P(Q = k) =
∫ ∞

0

[
A∗(k−1)(t) − A∗k(t)

]
H ∗ B0(dt).

Proof. Let τn = T0 + · · ·+Tn−1 be the arrival time of customer n. Then his
service interval is [τn +Wn, τn +Wn+Un), and the time during this interval
where Qt ≥ k is the intersection with [τn+k−1,∞) which has length

rn = (τn + Wn + Un − τn+k−1)+ − (τn + Wn − τn+k−1)+.

Since τn+k−1 − τn is independent of Wn, Un, {σ > n} and distributed as
T (k−1), it follows that

P(Q ≥ k) =
1

EC
E

∫ C

0

I(Qs ≥ k) ds

=
1

µAEσ
E

∫ C

0

I(Qs ≥ k) ds =
1

µAEσ
E

σ−1∑
n=0

rn

=
1

µAEσ
E

σ−1∑
n=0

[
(Wn + Un − T (k−1))+ − (Wn − T (k−1))+

]
.

But conditionally upon T (k−1) = x, this last expression is of the same form
as (3.4) and so becomes

ρP
(
U∗ > T (k−1) − W

)
= ρP

(
V > T (k−1)

∣∣V > 0
)

= P
(
V > T (k−1)

)
(4.3)

= P
(
W + U − T ∗ > T (k−1)

)
= P

(
N∗(W + U) ≥ k

)
, (4.4)
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where we used the first part of Theorem 3.4 for (4.3) and the last for (4.4).
The first part of the present theorem now follows from (4.4) and the last
from (4.3). �

Theorem 4.3 Suppose ρ < 1. Then QA, QD are welldefined and have the
same distribution given by

P(QA ≥ k) = P(QD ≥ k) = P
(
W + U ≥ T (k)

)
. (4.5)

If either A or B is continuous, this may be rewritten as

P(QA = 0) = P(QD = 0) = P(W = 0) = H(0), (4.6)
P(QA ≥ k) = P(QD ≥ k) = P

(
W > T (k−1)

)
, k = 1, 2, . . . , (4.7)

P(QA = k) = P(QD = k) = P
(
T (k−1) < W < T (k)

)
, (4.8)

P(QA = k) = P(QD =k) =
∫ ∞

0+

[
A∗(k−1)(t) − A∗k(t)

]
H(dt). (4.9)

Proof. Clearly,
{
QA

n

}
,
{
QD

n

}
are regenerative w.r.t. the renewal sequence

{σ(k)} and hence the existence of the limiting distribution is immediate.
That the distributions are equal follow by rate conservation applied to
Xt = I(Qt ≥ k + 1), since upward jumps occur at arrival epochs with
QA

n = k and downward at departure epochs with QD
n = k.

As in the proof of Theorem 4.2, we have{
QA

n+k ≥ k
}

=
{
τn+k ≤ τn + Wn + Un

}
.

From this (4.5) follows by taking probabilities and letting n → ∞. If either
A or B is continuous, then so is the distribution of W + U − T so that for
k ≥ 1 (4.5) becomes

P
(
W + U > T (k)

)
= P

(
W + U − T > T (k−1)

)
= P

(
W > T (k−1)

)
(using W

D= (W + U − T )+). From this (4.6)–(4.9) follow by easy manip-
ulations (in (4.9), 0 must be excluded from the domain of integration to
deal with the case k = 1 where T (k−1) = 0). �

Problems

4.1 Consider the set–up of Theorem 4.3. Explain that if P(U = T ) > 0, it may
happen that P(QA = 0) is effectively smaller than P(W = 0).
4.2 Derive the distribution of QD by a direct argument similar to the one used
for QA.

Notes It is clear as in Section 3 that much of the analysis carries over be-

yond the independence assumptions in GI/G/1. In particular, this is the case for

Little’s law which basically does not require anything more than the existence

of limits of the Cesaro averages of the number of customers in continuous time

and of the sojourn times in discrete time. The literature is extensive; see e.g.
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Sigman (1995) and El–Taha and Stidham (1999). A series of papers by Glynn

and Whitt, e.g. Glynn and Whitt (1986, 1989), deal with broader interpretations

of  = λw. For an extension H = λG that has been studied extensively, see e.g.

Sigman (1995); it is essentially equivalent to the rate conservation law and applies

typically to the same kind of problems.

5 M/G/1 and GI/M/1

Most of the steady–state characteristics of M/G/1 and GI/M/1 have al-
ready been found at various places; see in particular Sections 3, 4 and
VIII.5. We collect here some of the main facts, give some complements and
sketch some alternative approaches.

Theorem 5.1 Consider the GI/M/1 queue with interarrival distribution
A, service intensity δ and ρ = (δµA)−1 < 1. Then in the steady state:
(a) The distribution of the waiting time W is a mixture of an atom at 0 and
an exponential distribution with intensity η on (0,∞) with weights 1 − θ,
resp. θ. Here θ = Ee−ηT = 1 − η/δ, where η is the solution > 0 of

1 = Eeη(Un−Tn) =
δ

δ − η

∫ ∞

0

e−ηx A(dx) . (5.1)

(b) The distribution of the workload V is a mixture of an atom at 0 and
an exponential distribution with intensity η on (0,∞) with weights 1 − ρ,
resp. ρ.
(c) The distribution of the queue length Q at an arbitrary point of time is
modified geometric and given by P(Q = 0) = 1 − ρ, P(Q ≥ k) = ρθk−1,
k = 1, 2, . . ..
(d) The common distribution of the queue lengths QA, QD just before ar-
rivals, resp. just after departures, is geometric with parameter θ, i.e. with
point probabilities πn = (1 − θ)θn.

Proof. (a) was shown in VIII.5.8. When U is exponential, we have U ∗ D= U ,
and we get the Laplace transform of W + U ∗ as[

1 − θ + θ
η

η + s

] δ

δ + s
=

[η + (1 − θ)s]δ
(η + s)(δ + s)

=
ηδ + ηs

(η + s)(δ + s)
=

η

η + s

which proves (b); cf. Theorem 3.4. For (c) and (d), note first that
conditioning upon T (k−1) in (4.7) yields

P
(
W > T (k−1)

)
= θEe−ηT (k−1)

= θ
[
Ee−ηT

]k−1
= θk,

and (d) follows. (c) is obtained similarly from (4.2) and P
(
V > T (k−1)

)
=

ρθk−1. �

Imbedded Markov chain analysis plays an important historical role in the
proof of results like (c) and (d) and is also applicable to a number of further
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models. We therefore next present the main steps of this approach, though
it is certainly neither the shortest nor the most elegant one for simple
queues such as GI/M/1 (and M/G/1 below). It was found in III.6.2 that
the Markov chain

{
QA

n

}
has transition matrix

P =

⎛⎜⎜⎜⎝
r0 q0 0 0 . . .
r1 q1 q0 0
r2 q2 q1 q0

...
. . .

⎞⎟⎟⎟⎠ ,

where qk =
∫∞
0

e−δt (δt)k

k! A(dt) and rn = qn+1 + qn+2 + · · ·. By direct
insertion it is now seen that πn = (1 − θ)θn solves πP = π, provided that
θ satisfies (i)

∑∞
0 rnθn = 1, (ii)

∑∞
0 qnθn = θ. An elementary calculation

shows that (i) follows from (ii). If η, θ are connected by η = δ(1 − θ),
θ = 1 − η/δ, we may rewrite (ii) as

1 − η

δ
=

∞∑
n=0

qnθn =
∫ ∞

0

e−ηt A(dt),

which is the same as (5.1). Alternatively, π can be derived by remarking
that

{
QA

n

}
is a Lindley process governed by f1 = q0, f0 = q1, f−1 = q2, . . .,

hence the stationary distributions is that of the random walk maximum M
which was found in VIII.5.5(b).

To proceed from QA to Q, we use semi–regeneration; cf. VII.5. The cycle
length is an interarrival time T and we let Ek refer to the case where k
customers were present just before the start of the interarrival interval. The
imbedded Markov chain in VII.5 is just

{
QA

n

}
with stationary distribution

π, and thus by VII.(5.1), we have

P(Q = j) =
1
m

∞∑
k=0

πk Ek

∫ T

0

I(Qt = j) dt,

where m =
∑∞

0 πkEkT = µA. If {Ns} is a Poisson process with intensity δ
and j ≤ k + 1, integration by parts yields

Ek

∫ T

0

I(Qt = j) dt =
∫ ∞

0

P(Nt = k + 1 − j)A(t) dt

=
∫ ∞

0

e−δt (δt)k+1−j

(k + 1 − j)!
A(t) dt =

∫ ∞

0

δ−1
∞∑

�=k+2−j

e−δt (δt)
�

�!
A(dt)

which equals δ−1rk+1−j . For j > k + 1, we get 0 and hence

P(Q = j) =
1

µA

∞∑
k=j−1

πkδ−1rk+1−j = ρ
∞∑

i=0

(1 − θ)θj−1θiri

= ρ(1 − θ)θj−1
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(using (i) above) and (c) is shown. For an alternative proof using rate con-
servation, let Xt = I(Qt ≥ j + 1). The rate of upward jumps is µ−1

A πj and
the rate of downward jumps is δP(Q = j+1). Equating these two quantities
yields P(Q = j + 1) = ρπj which shows that (c) follows immediately from
(d).

Theorem 5.2 Consider the M/G/1 queue with interarrival intensity β,
service time distribution B, and ρ = βµB < 1. Then in the steady state:
(a) The distributions of the waiting time W and the workload V are the
same and given as H = (1− ρ)

∑∞
0 ρnB∗n

0 , where B0(x) = µ−1
B

∫ x

0 B(y) dy
is the stationary excess distribution.
(b The distributions of the queue lengths Q, QA, QD at an arbitrary point,
just before arrivals, resp. just after departures, are the same, say π, which
can be expressed in terms of H and the Poisson distribution by π0 = 1− ρ,

πk =
∫ ∞

0+
e−βt (βt)k−1

(k − 1)!
H(dt) = ρ

∫ ∞

0

e−βt (βt)k−1

(k − 1)!
H ∗ B0(dt) , (5.2)

k = 1, 2, . . .. In particular,

EQ = ρ
[
1 + β(EW + EU∗)

]
= ρ + βEW = ρ +

ρ2µ
(2)
B

2(1 − ρ)µ2
B

. (5.3)

Proof. For W
D= V , see III.9.2, VII.6.7 and Section 3. Further, H = (1 −

ρ)
∑∞

0 B∗n
0 is just the Pollaczeck–Khinchine formula VIII.(5.5).

In (b), Q
D= QA D= QD follows from W

D= V and Theorems 4.3 and 4.2.
Also, Theorem 4.3 yields P(Q = 0) = 1 − ρ and

P(Q ≥ k) = P
(
W > T (k−1)

)
=

∫ ∞

0+

∞∑
�=k−1

e−βt (βt)�

�!
H(dt) ,

from which the first part of (5.2) follows; the second follows since (a) shows
that ρ H ∗ B0 coincides with H on (0,∞). The proof of (5.3) is now easy.

�

The alternative approach of imbedded Markov chain analysis for M/G/1
starts by noting that

QD
n+1 = (QD

n − 1)+ + Kn (5.4)

where Kn is the number of customers arriving while customer n is being
served. Clearly,

{
QD

n

}
is a Markov chain with transition matrix

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

q0 q1 q2 q3 . . .
q0 q1 q2 q3 . . .
0 q0 q1 q2 . . .
0 0 q0 q1 . . .
0 0 0 q0 . . .
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,



282 X. Steady-State Properties of GI/G/1

where qk = P(Kn = k) =
∫∞
0

e−βt (βt)k

k! B(dt). Irreducibility is obvious
since all qk > 0, and also EKn is the expected number βµB = ρ of arriving
customers in a service interval. Thus EiQ

D
1 = ρ + i − 1 for i ≥ 1, and it

is a matter of routine to check from Foster’s criteria in I.5 that we have
recurrence when ρ ≤ 1 and ergodicity when ρ < 1 (when ρ = 1, there is in
fact null recurrence, and when ρ > 1 there is transience; cf. Problem 5.4).

Assume in the following that ρ < 1. Then the equation πP = π becomes

π0 = π0q0 + π1q0,

π1 = π0q1 + π1q1 + π2q0,

π2 = π0q2 + π1q2 + π2q1 + π3q0 (5.5)
...

Letting rn = qn+1 + qn+2 + · · ·, it follows by adding equations 0, . . . , n and
solving for πn+1q0 that

π1q0 = π0r0,

π2q0 = π0r1 + π1r1,

π3q0 = π0r2 + π1r2 + π2r1 (5.6)
...

If we sum these equations and note that
∑∞

0 rn = ρ, we get

(1 − π0)q0 = π0ρ + (1 − π0)(ρ − r0),

from which it easily follows that π0 = 1 − ρ. The remaining πn are then
recursively determined by (5.6), but cannot be found in closed formulas.

However, many properties of π can be derived directly from equations
(5.4)–(5.6). Let us look at (5.4) which in the limit becomes

QD D= (QD − 1)+ + K = QD − I(QD > 0) + K (5.7)

(in obvious notation). Taking squared expectations yields

EQD2
= EQD2

+P(QD > 0)+EK2−2EQD+2EQD EK−2P(QD > 0)EK.

Eliminating EQD2 and solving for EQD using EK = ρ, P(QD = 0) = 1−π0

= ρ and

EK2 =
∫ ∞

0

∞∑
k=0

k2e−βt (βt)k

k!
B(dt) =

∫ ∞

0

[βt+(βt)2] B(dt) = ρ+β2µ
(2)
B

then easily yields the same expression as in (5.3) (QD D= Q will be shown
in a moment). Also the generating function π̂[s] =

∑∞
0 snπn = EsQD

can
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be found in the same way. In fact, (5.7) yields

π̂[s] = EsQD−I(QD>0)EsK = (π0 + π1 + sπ2 + s2π3)
∞∑

n=0

snqn,

sπ̂[s] =
[
π̂[s] + π0(s − 1)

]
q̂[s] =

[
π̂[s] + (1 − ρ)(s − 1)

]
q̂[s],

π̂[s] =
(1 − ρ)(1 − s)q̂[s]

q̂[s] − s
(5.8)

where, letting B̂[·] denote the Laplace transform of B,

q̂[s] =
∫ ∞

0

∞∑
k=0

e−βt (sβt)k

k!
B(dt) =

∫ ∞

0

e−βt(1−s) B(dt) = B̂
[
β(1−s)

]
.

To proceed from QD to Q, we use again semi–regeneration. The imbedded
Markov chain is

{
QD

n

}
with stationary distribution π, and a cycle C started

by QD
n = k ≥ 1 is just a service interval of length U ; for k = 0 we have

to add the idle period of expected length 1/β. It follows that for j ≥ 1 we
have

P(Q = j) =
1
m

∞∑
k=0

πk Ek

∫ C

0

I(Qt = j) dt,

where

m = π0 (1/β + µB) +
∞∑

i=1

πiµB =
1 − ρ

β
+ µB =

1
β

.

For j ≥ 1 fixed, write αk = Ek

∫ C

0 I(Qt = j)dt. Then α0 = α1. For k > j
we have αk = 0, whereas for 1 ≤ k ≤ j we get

αk =
∫ ∞

0

e−βt (βt)j−k

(j − k)!
B(t) dt =

∫ ∞

0

β−1
∞∑

�=j−k+1

e−βt (βt)�

�!
B(dt)

= β−1rj−k.

It follows that

P(Q = j) = β
∞∑

k=0

πkαk = π0rj−1 +
j∑

k=1

πkrj−k = πj ,

where the last equality follows from (5.6). The truth of this for all j ≥ 1
implies Q

D= QD.
For an alternative proof using rate conservation, let Xt = I(Qt ≥ j + 1).

The rate of upward jumps is βP(Q = j) and the rate of downward jumps
is βP(QD = j) (interpret β as the departure rate). Equating these two
quantities yields Q

D= QD.
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Problems

5.1 Derive the steady–state characteristics of the GI/G/1 queue where U − 1 is
exponential with rate say δ and T ≥ 1.
5.2 Check that the formulas for EW (see VIII.5.7) and EQ in M/G/1 are in
agreement with Little’s formula, and that EW = EV in agreement with Corollary
3.5.
5.3 Show that EW and EQ in M/G/1 are minimized by M/D/1 subject to the
constraints that β and µB are fixed. See further XI.5.
5.4 Show by a modification of the derivation of π0 = 1 − ρ from (5.6) that the
stationary measure is infinite for ρ = 1 and that therefore

{
QD

n

}
is null recurrent.

Show also that there is transience for ρ > 1. [Hint: Yn+1 ≥ Yn − 1 + Kn.]
5.5 Give a direct derivation of (5.8) by multiplying equation n in (5.6) by sn+1

and summing over n. Check the formula for the mean by differentiation.
5.6 Let Rt denote the attained service of the customer in service at time t (if
any) and define Dn(x) = P(R ≤ x,Q = n), n = 1, 2, . . . (thus ‖Dn‖ = πn). Show
that Dn has density

βB(x)e−βt

{
(π0 + π1)

(βt)n−1

(n − 1)!
+

n−2∑
k=0

πn−k
(βt)k

k!

}
.

Notes A further classical topic for the M/G/1 queue is the connection of the

busy period to branching processes. This is most readily understood in the pre-

emptive LCFS setting (where the busy period distribution is the same as for

FCFS). Here one defines the children of a particular customer as the customers

who arrived while he was in service. A simple example of the connection is then

that the number of customers served in the busy period is the same as the total

number of progeny of the customer initiating the busy period. A fairly general

formulation is in Shalmon (1988) who also gives references to earlier work (to

which we add Neuts, 1969). A recent generalization goes from the compound

Poisson M/G/1 case to Lévy processes, see LeGall and Le Yan (1998).

6 Continuity of the Waiting Time

We consider here and in the next two sections a family of GI/G/1 queue-
ing systems indexed by k = 0, 1, 2, . . . with service time distribution B(k),
interarrival distribution A(k) and U

(k)
n , T

(k)
n , X

(k)
n , S

(k)
n , W

(k)
n , W (k), etc.

defined the obvious way. The problem, stated in a rough form, is to study
the limiting behaviour of W (k) as k → ∞ under appropriate conditions,
assuming that ρk < 1 for k = 1, 2, . . . and that A(k) w→ A(0), B(k) w→ B(0)

(weak convergence). In Sections 7, 8 we consider the extreme cases where
the limit has traffic intensity ρ0 = 1 or ρ0 = 0, whereas the situation here
is 0 < ρ0 < 1. It is then reasonable to ask for conditions under which
W (k) D→ W (0). This is denoted as a continuity (or stability or robustness)
property of the waiting time, and is of importance for example to justify



6. Continuity of the Waiting Time 285

the approximation of a queueing system with given A(0), B(0) by systems
with A(k), B(k) of phase type (cf. III.4).

To facilitate notation, we suppress from now on indices n and k = 1, 2, . . .
whenever convenient (thus, e.g. EU → EU (0) or limk→∞ EU = EU (0) means
EU

(k)
n → EU

(0)
n ).

We shall first state and prove the main result in random walk terms, and
thereafter reformulate in terms more natural for queues.

Theorem 6.1 Consider random walks {Sn}n∈N,
{
S

(0)
n

}
n∈N

with µ =

EX < 0, F
w→ F (0), k → ∞, µ0 = EX

(0)
n < 0. Then M

D→ M (0) provided
that the X+ are uniformly integrable or equivalently that EX+ → EX(0)+.

The key step of the proof is

Lemma 6.2 Define Kn = maxr≥n Sr. Then lim
n→∞ lim

k→∞
P(Kn > 0) = 0.

Proof. By general results on weak convergence, EX+ → EX(0)+ is equiv-
alent to the uniform integrability of the X+ since X+ D→ X(0)+ . Choose
c < 0 such that E

[
X(0)+∨c

]
< 0 and define X̆n = Xn∨c. Then X̆n

D→ X̆(0),
S̆n ≥ Sn, K̆n ≥ Kn. Hence for the proof it is no restriction to assume that
the X are uniformly bounded below, say by c. Then the X themselves are
uniformly integrable, hence µ = EX → µ0 < 0. Now for µ < 0,

P(Kn > 0) = P

(
max
r≥n

Sr

r
> 0

)
= P

(
max
r≥n

{
Sr

r
− µ

}
> −µ

)
≤ 1

|µ|E
∣∣∣∣Sn

n
− µ

∣∣∣∣,
using the fact that {Sr/r − µ}r=n,n+1,... is a backward martingale and

Kolmogorov’s inequality. Decompose Sn − nµ as S̃n + ˜̃
Sn, where

X̃n = XnI(Xn ≤ d)−E[Xn; Xn ≤ d], ˜̃
Xn = XnI(Xn > d)−E[Xn; Xn > d]

with d satisfying P(X (0)
n = d) = 0, E[Xn; Xn > d] < ε for all k. Then σ̃2 =

VarX̃n → σ̃2
0 = VarX̃

(0)
n since the X̃ are bounded uniformly in k, so that

E|Sn/n − µ| ≤ E|S̃n/n| + E| ˜̃Sn/n| ≤ σ̃/
√

n + 2ε,

using the Cauchy–Schwarz inequality. Hence

lim
n→∞ lim

k→∞
P(Kn > 0) ≤ lim

n→∞
1

|µ0|
[
σ̃0/

√
n + 2ε

]
=

2ε

|µ0| ,

and since ε is arbitrary, the proof is complete. �

Proof of Theorem 6.1. From X
D→ X(0) it follows that {Xr}n

r=0
D→{

X
(0)
r

}n

r=0
and hence by the continuous mapping theorem Mn

D→ M
(0)
n .
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Now let x > 0 satisfy P(M (0) = x) = 0. Then also P(M (0)
n = x) = 0 for

each n and hence

lim sup
k→∞

P(M (k) > x) ≤ lim sup
k→∞

[
P(M (k)

n > x) + P(K(k)
n > 0)

]
= P(M (0)

n > x) + lim sup
k→∞

P(K(k)
n > 0),

lim inf
k→∞

P(M (k) > x) ≥ lim inf
k→∞

P(M (k)
n > x) = P(M (0)

n > x).

Letting n → ∞ yields P(M > x) → P(M (0) > x). Hence M
D→ M (0) (note

that x = 0 is not a continuity point of M). �

Apparently the point mass of M at zero is of particular interest, but
P(M = 0) → P(M (0) = 0) does not follow alone from M

D→ M (0). However:

Proposition 6.3 If in addition to the assumptions of Theorem 6.1 the
distribution F (0) of X(0) is continuous, then P(M = 0) → P(M (0) = 0).

Proof. The assumptions ensure that P(S(0)
n = 0) = 0 for each n ≥ 1 and

hence P(Mn = 0) → P(M (0)
n = 0). Now argue exactly as above. �

Corollary 6.4 Consider for k = 0, 1, 2, . . . GI/G/1 queues with A
w→ A(0),

B
w→ B(0), ρ0 < 1. Then W

D→ W (0) provided that the U are uniformly
integrable, or equivalently, that EU → EU (0). If in addition either A(0) or
B(0) is continuous, then also P(W = 0) → P(W (0) = 0).

Proof. Appealing to the interpretation X = U − T , W
D= M , it is straight-

forward to check the assumptions of Theorem 6.1 and Proposition 6.3 (the
uniform integrability of the X+ follows from X+ ≤ U and the uniform
integrability of the U). �

Problems

6.1 Let F (k) be concentrated at −1, k with point masses 1− 1/2k, 1/2k and let
F (0) = lim F (k). Show that

P(M (k) ≥ 1) ≥ P(Xn = k for some n = 1, . . . , k) → e−1/2

and deduce that M (k) D→ M (0) does not hold.

Notes Continuity problems are treated e.g. in Borovkov (1976), Stoyan (1983),

Brandt et al. (1990) and Kalashnikov (1994). A classical reference for Markov

chains is Karr (1975).

7 Heavy Traffic Limit Theorems

If, in the set–up of Section 6, the limiting traffic intensity ρ0 is 1 rather
than < 1, we are in the situation of heavy traffic where all queueing systems
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are heavily congested. We expect again W = W (k) D→ W (0), but now
W (0) = ∞ a.s. It will turn out that a more precise result can be obtained,
namely that under weak conditions |µ|W is approximately exponentially
distributed. We start again by formulating this for the random walk setting
(σ2 denotes VarX).

Theorem 7.1 Consider random walks {Sn}n∈N,
{
S

(0)
n

}
n∈N

with µ < 0,
µ → 0, limk→∞ σ2 > 0, and the X2 uniformly integrable. Then Y =
|µ|M/σ2 is approximately exponentially distributed with intensity 2, i.e.
P(Y > y) → e−2y. Furthermore, EY → 1/2.

Remark 7.2 The conditions of Theorem 7.1 are not intrinsically different
from the apparently stronger

X
D→ X(0), σ2 → σ2

0 > 0, µ0 = 0. (7.1)

Indeed, the uniform integrability ensures that {F} = {F (k)} is tight.
Thus every subsequence {k′} has a weakly convergent subsequence {k′′},
i.e. X(k′′) D→ X(0) for some X(0). But then by uniform integrability,
µ0 = limµk′′ = 0, σ2

0 = lim σ2
k′′ > 0. Furthermore, a standard analyti-

cal argument shows that if we can show the asymptotic exponentiality for
{k′′}, then it will hold for {k′} as well. Hence for the proof we can (and
shall) assume that (7.1) holds. Also, by rescaling, we may take σ2 = 1; then
Y = |µ|M = −µM . �

Two approaches to Theorem 7.1 will be considered, the first being based
on characteristic functions ϕY (y) = EeiyY . Thus we have to show ϕY (y) =
ϕM (−µy) → (1 − iy/2)−1. In the proof, we let µ2 = EX2 (thus µ2 → 1
since µ → 0, σ2 → 1).

Lemma 7.3 For each y, it holds as k → ∞ that

ϕX(−µy) = 1 − iµ2y − µ2y2

2
+ o(µ2). (7.2)

Proof. Define g(z) = eiyz − 1 − iyz + y2z2/2. Then for each ε > 0, we can
bound |g(z)| by cε|z3| for |z| ≤ ε and by dε|z2| for |z| > ε. Hence∣∣Eg(−µX)

∣∣ ≤ cεE
[|− µX

∣∣3; ∣∣−µX
∣∣ ≤ ε] + dεE

[
(µX)2;

∣∣−µX
∣∣ > ε]

≤ µ2
{
εcεEX2 + dεE

[
(µX)2; | − µX | > ε

]}
and therefore lim supk→∞ µ−2|Eg(−µX)| ≤ εcε by uniform integrability.
Since cε remains bounded as ε ↓ 0, it follows that

ϕX(−µy) −
(
1 − iµ2y − µ2y2

2
µ2

)
= Eg(−µX) = o(µ2),

and the lemma follows since µ2 → 1. �
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Proof of Theorem 7.1. We first note that as in Section 6 we have M
D→ ∞.

But

E
[
(M + X)−

]2 ≤ E(X−)2P(M ≤ c) + E[X2; X < −c].

Letting first k → ∞ and next c → ∞ yields

E
[
(M + X)−

]2 → 0 (hence E(M + X)− → 0). (7.3)

From this EY → 1/2 is clear from (2.5). Now for each z, eiyz+
= eiyz + 1−

e−iyz−
. Letting Z = M + X and taking expectations we get

ϕM (y) = ϕM (y)ϕX(y)+1−ϕ−(M+X)−(y) =
1 − ϕ−(M+X)−(y)

1 − ϕX(y)
. (7.4)

Since eiz − 1 − iz = z2O(1) for z real, we get

ϕ−(M+X)−(−µy) = 1 + iµyE(M + X)− + O(1)µ2y2E
[
(M + X)−

]2
= 1 − iµ2y + o(µ2),

using (1.9) and (7.3). Hence by Lemma 7.3 and (7.4),

ϕM (−µy) =
iµ2y + o(µ2)

iµ2y + µ2y2/2 + o(µ2)
→ 1

1 − iy/2
. �

The second proof of Theorem 7.1 involves more advanced tools (weak
convergence in function space) but is perhaps more illuminating and yields
additional information, namely asymptotics of the M

(k)
n . We let {Bξ(t)}t≥0

denote Brownian motion with unit variance and drift ξ. The inverse Gaus-
sian distribution function G(t; ξ, c) with parameters ξ ∈ R, c > 0 is the
c.d.f. of the first passage time τ(ξ, c) = inf {t > 0 : Bξ(t) ≥ c},

G(T ; ξ, c) = P(τ(ξ, c) ≤ T ) = P

(
max

0≤t≤T
Bξ(t) ≥ c

)
. (7.5)

This distribution (defective for ξ < 0) can in fact be found explicitly. We
defer the derivation to XIII.4 and here use only the formula∥∥G(·; ξ, c)

∥∥ = P

(
max

0≤t<∞
Bξ(t) ≥ c

)
= e2ξc, ξ < 0. (7.6)

Proposition 7.4 Under the conditions of Theorem 7.1, it holds for any
T < ∞ that

|µ|
σ2

M�Tσ2/µ2
D→ max

0≤t≤T
B−1(t), P

( |µ|
σ2

M�Tσ2/µ2 > y

)
→ G(T ; −1, y).

Proof. We may again assume that (7.1) holds with σ2
0 = 1. Let {c} =

{
c(m)

}
be any sequence with c(m) → ∞ and define

B(t) = B(m)(t) =
1√
c

[
S�ct −  ct!µ] .
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It then follows from the invariance principle (Donsker’s theorem) in its
standard form (e.g. Billingsley, 1968, Ch. 3) that B

D→ B0 in D. Taking
c = µ−2 we have  ct!µ/

√
c → −t, i.e.{|µ|S�t/µ2

}
0≤t<∞ =

{
B(t) +  ct!µ/

√
c
}

0≤t<∞
D→ {B0(t) − t}0≤t<∞

D= B−1.

Hence, since f → sup0≤t≤T f(t) is continuous a.e. on D w.r.t. any proba-
bility distribution concentrated on the continuous functions, it follows from
the continuity of B−1 that

|µ|M�T/µ2 = sup
0≤t≤T

|µ|S�t/µ2
D→ max

0≤t≤T
B−1(t)

which yields the desired conclusion in view of σ2 → 1. �

Proof of Theorem 7.1. We assume again σ2 → 1 and write

Y = Y1 ∨ Y2 =
(|µ|M�T/µ2

) ∨ (
sup

n>T/µ2
|µ|Sn

)
.

Here by (7.6) and Proposition 7.4,

lim
T→∞

lim
k→∞

P(Y1 > y) = lim
T→∞

G(T ; −1, y) = e−2y, (7.7)

whereas
{
(Sn − nµ)2

}
is a backward submartingale, hence

P(Y2 > 0) = P

(
max

n>T/µ2
(Sn/n − µ) > −µ

)
≤ 1

µ2
E
[
S�T/µ2/�T/µ2 − µ

]2 =
σ2

µ2 T/µ2! ,

lim
T→∞

lim
k→∞

P(Y2 > 0) ≤ lim
T→∞

1
T

= 0. (7.8)

Combining (7.7) and (7.8), the desired conclusion is obtained exactly as in
the proof of Theorem 6.1. �

Corollary 7.5 Consider GI/G/1 queueing systems with A
w→ A(0), B

w→
B(0), where A(0), B(0) are not both degenerate, ρ < 1, ρ → ρ0 = 1 and
the U2, T 2 uniformly integrable. Then Y = |µ|W/σ2 is approximately ex-
ponentially distributed with intensity 2 and EY → 1/2. Here µ = EX =
EU − ET , σ2 = VarX. Furthermore, for each T

P

( |µ|
σ2

W�Tσ2/µ2 > y

)
→ G(T ; −1, y).

The proof is a routine application of Theorem 7.1 and is omitted.
Results of the type in Corollary 7.5 are of high potential relevance, since

the heavy traffic situation occurs widely in practice (when designing a ser-
vice facility, one usually avoids for economical reasons to keep the server
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idle for a large proportion of the time). Given a queue with ρ smaller than
but close to 1, we may imbed the system in the set–up of Corollary 7.5,
writing A = A(k), B = B(k) for some large k. It is then suggested that the
following approximations may be used:

EW ≈ VarX/2E(−X), P(W > y) ≈ exp
{−2E(−X)y/VarX

}
. (7.9)

Note that when EX ≈ 0, we have EX2 ≈ VarX and one may thus re-
place VarX by EX2 in (7.9). However, inspection of (2.5) shows that
EX2/2E(−X) and VarX/2E(−X) are both upper bounds for EW and
hence VarX/2E(−X) is the best approximation.

We return to a special aspect of heavy traffic approximations in XIII.6,
but finally we mention that in view of the formulas of Sections 3 and 4, it
is straightforward to derive analogues of Corollary 7.5 for workload, queue
length and so on (cf. Problem 7.1).

Problems

7.1 Show that under the conditions of Corollary 7.5 the steady–state workload
V has the same limiting distribution as W . Show similarly, using the results of
Section 4, that |µ|Q/σ2, |µ|QA/σ2 have limiting exponential distributions with
intensities 2µA.
7.2 Show (7.6) by optional stopping of the martingale {e−2ξBξ (t)} at τ (ξ, c)∧T .

Notes Heavy traffic limit theory was largely initiated by Kingman in the 1960s,
with the functional CLT point of view being developed by Iglehart and Whitt.
For surveys, see Glynn (1990) and Whitt (2002).

Without second moments, one often gets a stable rather than a Brownian limit.
See e.g. Furrer et al. (1997) and Heath et al. (1999) for recent papers in the area,
and Whitt (2002) for a survey and references.

A notable recent development is heavy traffic limit theory for queueing net-
works, where the limit is reflected Brownian motion in an orthant. See further
the Notes to IV.6 and IX.2.

8 Light Traffic

Intuitively, light traffic means that the generic interarrival time T is much
larger than the generic service time U , implying that typically the system
is idle in the steady state. When considering the GI/G/1 queue at an
arbitrary point of time, the idleness probability is 1 − ρ = P(Q = 0) =
P(V = 0), so that light traffic certainly requires ρ to be close to 0. A
more refined question is to study the behaviour of Q, V given {Q > 0} =
{V > 0}. To this end, we consider a sequence of GI/G/1 queues in the
notation of Sections 6 and 7, assuming throughout that the interarrival time
T = T (k) satisfies T

D→ ∞, k → ∞, and that the service time distribution B
is fixed, i.e. does not depend on k = 1, 2, . . . (this certainly implies ρ → 0).
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Proposition 8.1 As k → ∞, it holds without further conditions that (a)
W→0 in t.v., (b) V conditionally upon V > 0 converges to the equilibrium
service time U∗ in t.v., (c) Q conditionally upon Q > 0 converges to 1 in
t.v.
[For basic facts about total variation convergence, see A8.]

Proof. Let Zε denote a r.v. that is 0 w.p. ε and ε−1 w.p. 1− ε. Then T (k) is
stochastically larger than Zε for all large k so that W ≤so Mε (stochastical
order), the maximum of a random walk with increments distributed as
U − Zε. Since Mε ≤so Mδ

D= when ε < δ, we get

Mε
D= (Mε + U − Zε)+ ≤so (Mδ + U − Zε)+

which converges in t.v. to 0 as ε ↓ 0. Hence P(Mε > 0) → 0 and therefore
P (W > 0) → 0, proving (a). It follows by Theorem 3.4 that

P(V ∈ A |V > 0) = P(W + U∗ ∈ A) ∼ P(U∗ ∈ A)

uniformly in A ⊆ (0,∞), showing (b). For (c), (4.2) then yields

P(Q ≥ 2) = ρP(W + U∗ > T ) ∼ ρP(U∗ > T ) = o(ρ),

P(Q = 1 |Q > 0) = 1 − P(Q ≥ 2 |Q > 0) = 1 − o(ρ)
ρ

→ 1. �

The intuitive content of Proposition 8.1(b),(c) is that a busy cycle in
light traffic with high probability only contains one customer and that
if we observe the system at an arbitrary point of time and see it busy,
it is because we sample the single service time in the cycle rather than
the following idle period. The situation at arrival instants is different: if a
customer has to wait (W > 0), we expect him to be customer n = 1 in the
cycle, not n = 0 who does not have to wait, so that W given W > 0 should
most often be the residual service time U0 − T0 of the previous customer
given it is positive. To rigorously verify this intuition as well as to derive
precise asymptotics of P(W > 0) is, however, more difficult than in the
case of V and will occupy the rest of this section.

We start again in a triangular array random walk setting, where we are
given random walks {Sn} = {S(k)

n } with increments X0, X1, . . ., increment
distributions F (x) = P(X ≤ x), maxima M = maxn=0,1,... Sn etc. (indexed
by k = 1, 2, . . .). Call two families {R} = {R(k)}, {S} = {S(k)} of r.v.’s
with values in [0,∞) light traffic equivalent if

P(R > 0) → 0, P(S > 0) → 0,
P(R > 0)
P(S > 0)

→ 1 (8.1)

as k → ∞ and the conditional t.v. distance converges to 0,∥∥P(R ∈ · |R > 0) − P(S ∈ · |S > 0)
∥∥ → 0. (8.2)
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Theorem 8.2 Assume that X
D→ −∞ as k → ∞, and that

0 = lim
a↑∞

lim
k→∞

E[X ; X > a]
p+

= lim
a↑∞

lim
k→∞

∫∞
a

xF (dx)
p+

(8.3)

where p+ = P(X > 0) =
∫∞
0

F (dx). Then M and X+ are light traffic
equivalent.

Remark 8.3 Let F+ denote the conditional distribution of X given X > 0.
Then (8.3) means that the family {F+} is uniformly integrable. This should
be compared with the unconditional uniform integrability conditions for
heavy traffic in Section 7. �

The key step in the proof is (take Sτ+ = 0 when τ+ = ∞):

Lemma 8.4 The ascending ladder heights Sτ+ and the X+ are light traffic
equivalent.

Proof. By (1.7), we can write G+ = L+K where L, K are the restriction to
(0,∞) of F , resp. F ∗∑∞

1 G∗n
− (L is the contribution from the atom of U−

at zero). For simplicity of notation, let R = R(k) be the measure R(dx) =∑∞
1 G∗n

−
(
d(−x)

)
on (0,∞). Then for z ≥ 0,

K(z) =
∞∑

n=1

∫ 0

−∞
F (z − x)G∗n

− (dx) =
∫ ∞

0

F (z + x)R(dx)

=
∫ ∞

z

R(y − z)F (dy) ≤
∫ ∞

z

R(y)F (dy). (8.4)

To proceed from (8.4), we will need the estimate

R(t) ≤ ϕ(t)(1 + t), (8.5)

where ϕ(t) is bounded uniformly in k, nondecreasing and tends to 0 for any
fixed t as k → ∞. First X

D→ −∞ implies Sτ−
D→ −∞ (with high probability

Sτ− coincides with X0). In particular, G−(−t) → 0 for all t > 0. Since
R(1) ≤ G−(−1)

(
1 + R(1)

)
, this implies that R(1) is bounded. Similarly,

R(n − 1, n] ≤ G(−n)
(
1 + R(1)

)
so that R(n) ≤ G−(−n)n

(
1 + R(1)

)
, and

from these estimates (8.5) follows.
Letting z = 0 in (8.4), we get

lim sup
k→∞

P
(
Sτ+ > 0, Sτ+ 
= X+

0

)
p+

= lim sup
k→∞

K(0,∞)
p+

≤ lim sup
k→∞

∫∞
0

ϕ(y)(1 + y)F (dy)
p+

≤ lim sup
k→∞

{
(1 + a)ϕ(a) + 2ϕ(∞)

∫∞
a yF (dy)

p+

}
= lim sup

k→∞
2ϕ(∞)

∫∞
a yF (dy)

p+
.
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Letting a → ∞, this converges to 0 according to (8.3), which easily yields
the assertion. �

Proof of Theorem 8.2: Just note that P(M > 0) = P(Sτ+ > 0),

P(M 
= Sτ+ |M > 0) = P
(
τ+(2) < ∞ ∣∣ τ+ < ∞)

= P(Sτ+ > 0) → 0

and appeal to Lemma 8.4. �

We next consider GI/G/1 queues. In view of W
D= M , Theorem 8.2

states that W and (U −T )+ are light traffic equivalent provided X = U −T
satisfies (8.3). It remains to carry out the relevant translation to conditions
in terms of A, B, and to give some examples.

The first example is thinning of the arrival process where the results are
in terms of Γ(t) =

∑∞
1 A∗n(t) (the renewal function except that the n = 0

term is not included).

Corollary 8.5 Given a GI/G/1 queueing system specified in terms of
U, T , define for each k = 1, 2, . . . another GI/G/1 system by thinning of the
arrival process with retention probability 1/k. That is, T = T0 + · · ·+TN−1

where N is independent of T0, T1, . . . with P(N = �) = (1 − 1/k)�−1/k,
� = 1, 2, . . . Then W and (U −T )+ are light traffic equivalent provided that
EU2 < ∞. Writing Γ =

∑∞
1 A∗n, one then has

P(W > 0) ∼ p+ = P(U − T > 0) ∼ 1
k

EΓ(U). (8.6)

Proof. Obviously,

P(U − T > y) =
∫ ∞

y

∞∑
�=1

1
k
(1 − 1/k)�−1A∗�(u − y)B(du)

for y > 0 so that

kP(U − T > y) ↑
∫ ∞

y

Γ(u − y)B(du), k → ∞. (8.7)

Taking y = 0 gives p+ ∼ EΓ(U)/k. Further, by integration by parts we
have ∫ ∞

a

xF (dx) = aP(U − T > a) +
∫ ∞

a

P(U − T > x) dx. (8.8)

We can bound Γ(y) by c(1 + y), and therefore an upper bound for (8.8) is

c

k

[
aB(a) + aE(U − a)+ +

∫ ∞

a

{
B(x) + E(U − x)+

}
dx

]
=

c

k

[
aB(a) + (1 + a)E(U − a)+ +

1
2

E(U − a)+2
]
.

Here [· · ·] → 0 as a → ∞ because of EU 2 < ∞, and combining with
p+ ∼ EΓ(U)/k shows that (8.3) holds. �
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Next consider the scaling case T = kT∗ with A∗(t) = P(T∗ ≤ t)
independent of k.

Corollary 8.6 Assume T = kT∗ where P(T∗ ≤ t) ∼ ctα, t ↓ 0. Then W
and (U − T )+ are light traffic equivalent provided that EUα+1 < ∞, and
then

P(W > 0) ∼ p+ = P(U − T > 0) ∼ c

kα
EUα (8.9)

Proof. For y > 0,

P(U − kT∗ > y) =
∫ ∞

y

A∗
(u − y

k
−
)
B(du).

Letting y = 0, we get

kαp+ =
∫ ∞

0

kαA∗
(u

k
−
)

B(du) → c

∫ ∞

0

uαB(du)

(using dominated convergence and c1 = supt A∗(t−)/tα < ∞). These
estimates show also that an upper bound for (8.8) is

c1

kα

[
aE(U − a)+α +

∫ ∞

a

E(U − x)+αdx
]

=
c

k

[
aE(U − a)+α +

1
α + 1

E(U − a)+α+1
]
.

Here [· · ·] → 0 as a → ∞ because of EUα+1 < ∞, and combining with
p+ ∼ cEUα/kα shows that (8.3) holds. �

Let B(x) denote the overshoot distribution, B
(x)

(y) = B(x + y)/B(x).

Corollary 8.7 Assume that there exists a distribution G with finite mean
such that B(x) is stochastically dominated by G for all x. Then W and
(U − T )+ are light traffic equivalent.

Proof. For y > 0,

P(U − T > y) = p+P(U > T + y |U > T ) ≤ p+G(y).

Hence an upper bound for (8.8) is

p+

[
aG(a) +

∫ ∞

a

G(x) dx

]
.

Here [· · ·] → 0 as a → ∞ when µG =
∫∞
0

G(x) dx < ∞, and therefore
(8.3) holds. �

Remark 8.8 Intuitively, what are the reasons that delay occurs in light
traffic? Two reasons come immediately to mind: short interarrival times
(clustering) or long service times. To make such a study more rigorous, one
way is to describe the conditional distribution of U, T given X = U −T > 0
For example, in the scaling case T = kT∗ in Corollary 8.6, one has in
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M/D/1 that U ≡ 1 (being constant) is unchanged in this distribution,
whereas the conditional distribution of T∗ is that of T∗ given T∗ ≤ 1/k
(which is asymptotically the uniform distribution on (0, 1/k)) so that de-
lay is caused by short interarrival times. If instead one considers D/M/1,
T = k is unchanged in the conditional distribution, whereas the conditional
distribution of U is that of U + k so that delay is caused by long service
times. See further the Problems, which also contain an example (Prob-
lem 8.3) where it is necessary to have both long service times and short
interarrival times if delay is to occur in light traffic. �

Problems

8.1 Show that in Corollary 8.6, one has

P (U ≤ u, T∗ ≤ t/k | U − kT∗ > 0) →
∫ u

0
(y ∧ t)αB(dy)∫∞
0

yαB(dy)
, 0 < t < u.

8.2 Show that if the service time U has a nondecreasing failure rate, then (8.3)
holds.
8.3 Take P(U > u) = e−u2

, T = kT∗, P(T∗ ≤ t) = e−1/
√

t. Show using Problem

8.2 that (8.3) holds, and that conditionally upon U − kT∗ > 0, U/k1/5 P→ K,

k4/5T∗
P→ K, U − kT∗

P→ 0, where K = 4−2/5 is the unique point where ϕ(z) =
z−1/2 + z2 attains it minimum.

Notes The study of light traffic goes back to Bloomfield and Cox (1972), but
the first mathematically more substantial results are those of Daley and Rolski
(1984, 1991). The present exposition follows Asmussen (1992b), who also gives
further examples and conditions for EW (k)p ∼ E(U − T )p, p > 0, together with
the corresponding asymptotics. See also Sigman (1992) for workloads.

Whitt (1989) suggests approximations in the whole range ρ ∈ (0, 1) using

interpolating between heavy traffic (ρ ↑ 1) and light traffic (ρ ↓ 0); the details

involve the explicit solution of M/M/1. Further frequently studied topics in light

traffic limit theory are Taylor expansions such as EW ≈ a1ρ + · · ·+ anρn and, of

course, models beyond GI/G/1 such as networks. See e.g. Kovalenko (1995) and

Baccelli and Schmidt (1996) for these and further subjects.

9 Heavy–Tailed Asymptotics

We now assume that the service time distribution B is heavy–tailed, more
precisely that B is long–tailed (for all y, B(x − y)/B(x) → 1 as x →
∞) and that its stationary excess (integrated tail) distribution B0(x) =∫ x

0
B(y) dy / µB is in the class S of subexponential distributions (see A5

for these concepts). We will derive tail asymptotics first for the steady–state
waiting time W and later, under the added regularity condition B ∈ S ∗

(see (A.5.3)), for the maximal waiting time in a busy cycle (the parallel
results for light tails are given in XIII.5 and state that both tails decay
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with the same exponential rate). We assume throughout ρ < 1. The result
on W is as follows:

Theorem 9.1 (a) Consider a random walk such that µ = EX < 0 and
that F (x) ∼ B(x), x → ∞, for some distribution B on (0,∞) which is
long–tailed and satisfies B0 ∈ S. Then, writing F I(x) =

∫∞
x F (y) dy, it

holds that

P(M > x) ∼ 1
|µ|F I(x), x → ∞; (9.1)

(b) for a GI/G/1 queue with ρ < 1 and the service time distribution B
satisfying the assumptions of (a),

P(W > x) ∼ ρ

1 − ρ
B0(x), x → ∞. (9.2)

The proof uses the following lemma:

Lemma 9.2 Let Y1, Y2, . . . be i.i.d. with common distribution G ∈ S and
let N be an independent integer–valued r.v. with EzN < ∞ for some z > 1.
Then P(Y1 + · · · + YN > u) ∼ EN G(u).

Proof. Recall from A5 that G∗n(u) ∼ nG(u), u → ∞, and that for each
z > 1 there is a D < ∞ such that G∗n(u) ≤ G(u)Dzn for all u. Therefore
we can use dominated convergence with

∑
P(N = n)Dzn as majorant to

obtain

P(Y1 + · · · + YN > u)
G(u)

=
∞∑

n=0

P(N = n)
G∗n(u)
G(u)

→
∞∑

n=0

P(N = n)·n = EN.

�

For the proof of Theorem 9.1, it is instructive to first consider the M/G/1
case where A is exponential with rate β. The Pollaczeck–Khinchine formula
states that W

D= Y1 + · · · + YK where the Yi have distribution B0 and
K is geometric with parameter ρ, P(K = k) = (1 − ρ)ρk. Since EK =
ρ/(1 − ρ) and EzK < ∞ whenever ρz < 1, the result follows immediately
from Lemma 9.2. The argument for the general random walk or GI/G/1
case is similar. In fact, we have a similar representation M = Y1 + · · · +
YK where K is the number of ladder steps and Y1, Y2, . . . are i.i.d. with
common distribution G = G+/‖G+‖. The difficulty is that whereas K is
still geometric, then the parameter θ = ‖G+‖ is not explicit as for M/G/1,
and also it is not a priori clear that the tail behaviour of G is the same as
that of B0.

Write G+(x) = G+(x,∞) = P(Sτ+ > x, τ+ < ∞) and let µG− be the
mean of G−, U− =

∑∞
0 G∗n

− .

Lemma 9.3 G+(x) ∼ F I(x)/|µG− |, x → ∞.
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Proof. By (1.7),

G+(x) =
∫ 0

−∞
F (x − y)U−(dy).

The heuristics is now that the contribution from the interval (−N, 0] to the
integral is O(F (x)) which by long–tailedness is o(F I(x)), whereas for large
y, U−(dy) is close to Lebesgue measure on (−∞, 0] normalized by |µG− | so
that we should have

G+(x) ∼ 1
|µG− |

∫ 0

−∞
F (x − y) dy =

1
|µG− |F I(x) .

We now make this precise. If G− is nonlattice, then by Blackwell’s re-
newal theorem U−(−n − 1,−n] → 1/|µG− |. In the lattice case, we can
assume that the span is 1 and then the same conclusion holds since then
U−(−n − 1,−n] is just the probability of a renewal at −n.

Given ε, choose N such that F (n − 1)/F (n) ≤ 1 + ε for n ≥ N (this is
possible since B is long–tailed, cf. A5.1(a)), and that U−(−n − 1,−n] ≤
(1 + ε)/|µG− | for n ≥ N . We then get

lim
x→∞

G+(x)
F I(x)

≤ lim
x→∞

∫ 0

−N

F (x − y)
F I(x)

U−(dy) + lim
x→∞

∫ −N

−∞

F (x − y)
F I(x)

U−(dy)

≤ lim
x→∞

F (x)
F I(x)

U−(−N, 0] + lim
x→∞

1
F I(x)

∞∑
n=N

F (x + n)U−(−n − 1,−n]

≤ 0 + lim
x→∞

1
F I(x)

1 + ε

|µG− |
∞∑

n=N

F (x + n)

≤ (1 + ε)2

|µG− | lim
x→∞

1
F I(x)

∫ ∞

N

F (x + y) dy

=
(1 + ε)2

|µG− | lim
x→∞

F I(x + N)
F I(x)

=
(1 + ε)2

|µG− | .

Here in the third step we used that B(x)/B0(x) → 0 (since B is long–tailed)
and hence F (x)/F I(x) → 0, and in the last that F I is asymptotically
proportional to B0 ∈ S. Similarly,

lim
x→∞

G+(x)
F I(x)

≥ (1 − ε)2

|µG− | .

Letting ε ↓ 0, the proof is complete. �

Proof of Theorem 9.1. We first show part (a). By Lemma 9.3, P(Yi >
x) ∼ F I(x)/(θ|µG− |). Hence using dominated convergence precisely as for
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M/G/1, M = Y1 + · · · + YK yields

P(M > u) ∼
∞∑

k=1

(1 − θ)θk k
F I(u)
θ|µG− | =

F I(u)
(1 − θ)|µG− | .

Now just observe that (1− θ)|µG− | = (1−‖G+‖)|µG− | = |µ| by VIII.(2.1).
To get (b) from (a), just observe that

F (x)
B(x)

=
∫ ∞

0

B(x + y)
B(x)

A(dy) →
∫ ∞

0

1 · A(dy) = 1

by dominated convergence. This implies F I(x) ∼ µBB0(x) and, using |µ| =
µA − µB , that

P(W > x) = P(M > x) ∼ µB

|µ|B0(x) =
ρ

1 − ρ
B0(x) . �

Now consider the cycle maximum. In the random walk case, we consider
a reflected version (Lindley process) {Wn} starting from W0 = 0 and define
the cycle σ as for GI/G/1,

σ = inf {n ≥ 1 : Wn = 0} = τ− = inf {n ≥ 1 : Sn ≤ 0} .

The cycle maximum is

Mσ = max
0≤n<σ

Sn = max
0≤n<σ

Wn.

Its relevance for extreme value theory has been explained in VI.4, and in
fact, VI.4.10 and the following result immediately show that max0≤k≤n Wn

after a suitable normalization has a Fréchet limit distribution as n → ∞
when B is regularly varying (analogously Problem VI.4.1 gives a Gumbel
limit when B is heavy–tailed Weibull; it is straighforward to adapt the
argument to see that the same is the case for the log–normal distribution).

Theorem 9.4 Consider a reflected random walk (Lindley process) {Wn}
such that µ = EX < 0 and that F (x) ∼ B(x), x → ∞, for some B ∈ S ∗.
Then

P(Mσ > x) ∼ EσF (x), x → ∞. (9.3)

The same conclusion holds for the GI/G/1 waiting time when the service
time distribution B satisfies B ∈ S ∗.

For the proof, we first introduce some notation. Define

N1(x, x0) = #
{
n < σ : Sn ≤ x0, Sn+1 > x

}
,

p1(x, x0) = P
(
Sn+1 > x for some n < σ with Sn ≤ x0

)
,

p2(x, x0) = P
(
τ(x) < σ, x0 ≤ Sτ(x)−1 ≤ x

)
.

where τ(x) = inf {n ≥ 1 : Sn > x} (note that the definitions of p1(x, x0)
and p2(x, x0) are not symmetric in the sets [0, x0] and (x0,∞)). Then

p1(x, x0) ≤ P(Mσ > x) ≤ p1(x, x0) + p2(x, x0) . (9.4)
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Lemma 9.5 EN1(x, x0) ∼ EσP(M ≤ x0)F (x).

Proof. Define C(A) = E
∑σ−1

n=0 I(Sn ∈ A) = EσP(W ∈ A). We get

EN1(x, x0) = E

σ−1∑
n=0

I(Sn ≤ x0, Sn+1 > x) = E

σ−1∑
n=0

I(Sn ≤ x0)F (x − Sn)

=
∫ x0

0

F (x − y)C(dy) = Eσ

∫ x0

0

F (x − y)P(W ∈ dy) .

Now just divide by F (x) and use F (x− y)/F (x) → 1 uniformly in 0 ≤ y ≤
x0, as follows from 1 ≤ F (x − y)/F (x) ≤ F (x − x0)/F (x) → 1. �

Lemma 9.6 p1(x, x0) ∼ EσP(W ≤ x0)F (x).

Proof. After τ(x), the expected time {Sn} spends in (0, x0) before hitting
(−∞, 0] is bounded by a1 + a2x0. Hence with α(x, x0) = (a1 + a2x0)F (x−
x0), we have

P
(
N1(x, x0) ≥ k + 1

∣∣N1(x, x0) ≥ k
) ≤ α(x, x0),

P
(
N1(x, x0) ≥ k + 1

) ≤ p1(x, x0)α(x, x0)k,

E
[
N1(x, x0); N1(x, x0) ≥ 2

] ≤ p1(x, x0)α(x, x0)
1 − α(x, x0)

,

p1(x, x0) ≤ EN1(x, x0) ≤ p1(x, x0) +
p1(x, x0)α(x, x0)

1 − α(x, x0)
.

Now just note that α(x, x0) → 0 and use Lemma 9.5. �

Letting first x → ∞ and next x0 → ∞ in (9.4), the following estimate
will complete the proof of Theorem 9.4:

Lemma 9.7 lim
x0→∞ lim sup

x→∞
p2(x, x0)

F (x)
= 0.

The proof is based upon a downcrossing argument. Define m+ = EX+,
m− = EX− (thus m = −µ = m− − m+) and

Dσ(x) = E

σ−1∑
n=0

I
(
Sn > x, Sn+1 ≤ x

)
,

D(x) = E

∞∑
n=0

I
(
Sn > −x, Sn+1 ≤ −x

)
.

Lemma 9.8 lim
x→∞D(x) =

m−
m

.

Proof. Let U denote the occupation (renewal) measure of the random walk,
U(A) =

∑∞
0 P(Sn ∈ A). Then (Problem VIII.3.4) U [x, x + z] ≤ a1 + a2z

for all x, z and has limit z/m as z → −∞ in the nonlattice case (that
is, U(dz − x) converges vaguely to Lebesgue measure normalized by m).
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Similar estimates as in the proof of the key renewal theorem then yield

D(x) =
∫ ∞

−x

U(dy)F (−x − y) =
∫ ∞

0

U(dz − x)F (−z)

→ 1
m

∫ ∞

0

F (−z)dz =
m−
m

.

The lattice case is similar though easier. �

Proof of Lemma 9.7. By regenerative process theory,

Dσ(x)
Eσ

= lim
n→∞ P(Wn > x, Wn+1 ≤ x) =

∫ ∞

x

P(W ∈ dy)F (x − y).

Theorem 9.1 makes it plausible that we can replace P(W ∈ dy) by
m−1F (y) dy; for the rigorous proof which indeed uses B ∈ S ∗ in an
essential way, see Asmussen et al. (2002). We then get

Dσ(x)
Eσ

∼ 1
m

∫ ∞

x

F (y)dy

∫ x−y

−∞
F (dz)

=
F (x)
m

∫ 0

−∞
F (dz)

∫ x−z

x

F (y)
F (x)

dy

∼ F (x)
m

∫ 0

−∞
|z|F (dz) = F (x)

m−
m

,

where the third step is an easy consequence of long–tailedness.
On the other hand, the overshoot over x after an upcrossing from a

level ≤ x0 converges in distribution to ∞ by long–tailedness, so that the
expected subsequent number of downcrossings of level x before [0, x0] is hit
is approximately m−/m by Lemma 9.8. Hence we get

EσF (x)
m−
m

∼ Dσ(x) ≥ EN1(x, x0)
m−
m

+ p2(x, x0)

∼ EσF (x)P(M ≤ x0)
m−
m

+ p2(x, x0) ,

lim sup
x→∞

p2(x, x0)
F (x)

≤ EσP(M > x0)
m−
m

.

Let x0 ↑ ∞. �

Notes Theorem 9.1 has a long history associated with the names of (in al-
phabetical order) von Bahr, Borovkov, Cohen, Pakes and Veraverbeke. These
contributions are given a final form in Embrechts and Veraverbeke (1982). There
are numerous recent analogues for more general models, e.g. Whitt (2001) and
Boxma et al. (2002) for many–server queues, Heath et al. (1999), Jelenkovic and
Momcilovic (2001) and Zwart et al. (2003) for fluid queues, and Baccelli et al.
(1999) and Baccelli and Foss (2003) for (feed-forward) networks. Also tail asymp-
totics for the busy period has received considerable attention, see Baltrunas et
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al. (2002) and references therein. For other queue disciplines than FIFO, see the
Notes to III.9.

For some remarkable explicit waiting–time distributions in M/G/1 with heavy
tails, see Abate and Whitt (1999).

Theorem 9.4 was given independently by Samorodnitsky et al. (1997), assum-
ing regular variation, and Asmussen (1998a); the latter paper used the “plausible”
step in the proof of Lemma 9.7, which was only recently justified by Asmussen
et al. (2002; in connection with the results of that paper, see also Bertoin and
Doney, 1994b, and Asmussen et al., 2003).

A current trend in the literature related to stressing the importance of heavy
tails is the study of long–range dependence (LRD). In a stationary process setting,
this means that the dependence between X0 and Xt decays slowly; a common
precise definition is that |Cov(X0, Xt)| is not integrable (note that this is a nec-

essary condition for a CLT for
∫ T

0
Xt dt with variance constant proportional to√

T ; cf. the Notes to VI.3). Again, statistical studies are taken as the main mo-
tivation, but they are far from uncontroversial; see Mikosch and Stărică (2003).
LRD is related to self–similarity, i.e. the existence of a constant H (the Hurst

parameter) such that
{
c−HXtc

}
t≥0

D
= {Xt}t≥0. The volumes edited by Park and

Willinger (2000) and Taqqu et al. (2002) may be taken as a starting point for the
area. A main example is fractional Brownian motion (FBM), a certain Gaussian
process with stationary long–range dependent increments; see e.g. Massoulie and
Simonian (1999), Norros (2000) and Piterbarg (2001).

The simplest result pointing to the connection between heavy tails and LRD
is covariance asymptotics for renewal processes (Daley, 1999). Another simple
case is alternating renewal processes where in the notation of VI.2b one of F0, F1

is heavy–tailed; this is in turn relevant for fluid models involving on–off sources
with heavy–tailed on periods. See Heath et al. (1998, 1999).



XI
Markov Additive Models

1 Some Basic Examples

1a. Markovian Point Processes
1b. Markovian Fluids
1c. The MArP/PH/1 Workload

1a Markovian Point Processes

In applied probability, the Poisson process has served as the main point
process model for many years and generalizations have concentrated on
the renewal process. However, it is very seldom that the renewal process
can be given a similar intuitive interpretation as the Poisson process (as a
binomial limit). Further, the class of renewal processes is not particularly
flexible, and in particular, arrivals that tend to occur in bursts cannot be
modelled in this way.

A popular model for bursty arrivals is the Markov–modulated Poisson
process. This is defined in terms of a background Markov process {Jt} with
p < ∞ states, such that the arrival intensity is βi on time intervals where
Jt = i. See Fig. 1.1 for an illustration (here we have p = 2 states with β1

much smaller than β2).
We shall here study a generalization of the Markov–modulated Poisson

process, commonly denoted as the Markovian arrival process (MarP );1

1The literature on this process uses the abbreviation MAP . However, this is
unfortunate since it is also standard for Markov additive process.
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• • •• •• • ••• •• ••• • •

Figure 1.1

it incorporates further examples such as phase–type renewal processes and
semi–Markov point processes with phase–type interarrival times. The def-
inition is as for the Markov–modulated Poisson process, except that there
may be some additional arrivals when {Jt} changes state: w.p. qij an arrival
occurs at a jump from i to j 
= i.

The MArP extends the Poisson process in much the same way as phase–
type distributions extend the exponential distribution. In particular, the
MArP has the feature of making many analytic properties explicit or at
least computationally tractable, and MArP’s are dense (w.r.t. the standard
topology for weak convergence) in the space of point processes on (0,∞).

For a more detailed treatment, we use a slightly different formalism,
corresponding to the decomposition Λ = C + D of the intensity matrix
Λ of the background Markov process {Jt}, where D gives the “intensities
of state changes with arrivals”, and C those of “state changes without
arrivals”. That is,

dij =
{

βi i = j
λijqij i 
= j

, cij =
{ −∑

k �=i cik −∑p
k=1 dik i = j

λij(1 − qij) i 
= j
.

Note that a “state change with an arrival” may be dummy, corresponding
to a transition i → i; e.g. this is the case for all arrivals in the Markov–
modulated Poisson process that corresponds to D = (βi)diag, C = Λ −
(βi)diag.

In addition to the matrices C, D, the complete specification of a MArP
also requires specification of the distribution of J0. We do this in terms of
the row vector α with ith element αi = P(J0 = i). The counting process of
the MArP is denoted by {Nt} (Nt is the number of arrivals in [0, t]).

Example 1.1 (pht renewal processes) Consider a renewal process
with interarrival distribution F that is of phase type with representation
(α, T ) (the corresponding exit rate vector is t = −T1). Piecing the phase
processes for individual interarrival times together as in III.5, we obtain
a background Markov process {Jt} with intensity matrix Λ = T + tα.
Obviously, T correspond to state changes without arrivals and tα to state
changes with arrivals. Thus, we have a MArP with the same α and C = T ,
D = tα. �

We now turn to the general theory of the MArP, first Palm theory (cf.
VII.6; as the accompanying process {Xt} there we may just use {Jt}). From
the Markovian interpretation, we immediately have:
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Proposition 1.2 A MArP with parameters (α, C, D) is time–stationary
provided α = π where π is a stationary vector for Λ = C + D, i.e. πΛ
= 0, π1 = 1. If {Jt} is ergodic, then α = π is also necessary for time–
stationarity.

Corollary 1.3 For a time–stationary MArP, the intensity λ = EπNt/t is
given by λ = πD1.

Proof. The intensity of an arrival when Jt = i is
∑p

j=1 dij so that λ =∑p
i=1 πi

∑p
j=1 dij = πD1. �

Proposition 1.4 A MArP with parameters (α, C, D) and having an
arrival at t = 0 is event–stationary provided α = α0 where α0 =
πD/πD1.

Proof. Let Yn be the value of {Jt} just after the nth arrival. Since {Jt}
moves according to C between arrivals and generates arrivals (and states
just after) according to D, the transition matrix of {Yn} is

P =
∫ ∞

0

eCtD dt = −C−1D.

From π(C + D) = 0 we have πD = −πC and hence

α0P =
1

πD1
(−πC)(−C−1D) =

πD

πD1
= α0.

Since clearly α01 = 1, α0 is therefore stationary for P , showing the
assertion. �

Proposition 1.5 For a MArP with parameters (α, C, D), the joint
density at x1, . . . , xn of the first n interarrival times is

αeCx1DeCx2D · · · DeCxnD1 .

Proof. Consider the event that J0 = i, the first interarrival time is x1, that
Jx1− = j, Jx1 = k, and that the second interarrival time is x2 and Jx2− = �,
Jx2 = m. The probability of this (in the density sense) is

αi1′
ie

Cx11j djk 1′
keCx21� d�m

Summing over i, j, k, �, m gives the result for n = 2, and the case n > 2 is
similar. �

Proposition 1.6 The matrix F̂ t[z] with ijth element Ei[zNt ; Jt = j] is
given by F̂ t[z] = et(C+zD). In particular, EαzN(t) = αet(C+zD)1.

Proof. See Proposition 2.2 of the next section. �

Now consider more detailed moment expansions than in Corollary 1.3.
Define M (t) as the matrix with ijth element Ei[Nt; Jt = j] and M2(t) as
the matrix with ijth element Ei[Nt(Nt − 1); Jt = j].
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Proposition 1.7

M(t) =
∫ t

0

eΛxDeΛ(t−x) dx , (1.1)

M2(t) = 2
∫ t

0

∫ x

0

eΛxDeΛ(x−y) dy DeΛ(t−x) dx . (1.2)

Proof. Obviously M(0) = M 2(0) = 0. Further,

M ′(t) =
d
dt

d
dz

F̂ t[z]
∣∣∣
z=1

=
d
dz

d
dt

et(C+zD)
∣∣∣
z=1

=
d
dz

et(C+zD)(C + zD)
∣∣∣
z=1

= M (t)Λ + eΛtD,

M ′
2(t) =

d2

dz2
et(C+zD)(C + zD)

∣∣∣
z=1

= M 2(t)Λ + 2M(t)D .

Now just check that the r.h.s.’s of (1.1), (1.2) satisfies the same boundary
conditions (obvious) and the same differential equations; to this end, use
repeatedly the rule

d
dt

∫ t

0

f(t, x) dx = f(t, t) +
∫ t

0

d
dt

f(t, x) dx . �

We next show that M(t) has a linear asymptote. That is, M (t) =
tA + B + o(1), and we identify A, B (not surprisingly, A involves λ, cf.
Proposition 1.3). Define Λ− = (Λ − 1π)−1; Λ− is a generalized inverse of
Q in the sense that ΛΛ−Λ = Λ and we have (cf. II.4.9)

eΛt = 1π + O(tre−bt) (1.3)

for some b > 0 and some integer r (in many examples, r = 0), and∫ t

0

eΛx dx = t1π + Λ−(eΛt − I) = t1π − Λ− + O(e−bt), (1.4)∫ t

0

xeΛx dx =
t2

2
1π + t

[
1π + Λ−(eΛt − I)

]− Λ−2(eΛt − I) (1.5)

=
t2

2
1π + t

[
1π − Λ−] + Λ−2

+ O(tr+1e−bt). (1.6)

Proposition 1.8 M (t) = tλ1π + dπ + 1c− 2λ1π + O(t2r+1e−bt) where
d = −Λ−D1, c = −πDΛ−.

Proof. Write M(t) = tλ1π + I1(t) + I2(t) + I3(t) where

I1(t) =
∫ t

0

(eΛx − 1π)D
(
eΛ(t−x) − 1π

)
dx ,

I2(t) =
∫ t

0

1πD
(
eΛ(x−t) − 1π

)
dx ,

I3(t) =
∫ t

0

(
eΛx − 1π

)
D1π dx .
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By (1.3),

I1(t) =
∫ t

0

O(xre−bx)D O
(
(t − x)re−b(t−x)

)
dx = O(t2r+1e−bt) .

Using (1.4) yields

I2(t) = 1πD(eΛt − I)Λ− = 1πD(1π − I)Λ− + O(tre−bt)
= λ1πΛ− − 1πDΛ− + O(tre−bt) = −λ1π + 1c + O(tre−bt),

I3(t) = Λ−(eΛt − I)D1π = Λ−(1π − I)D1π + O(tre−bt)
= λΛ−1π − Λ−D1π + O(tre−bt) = −λ1π + dπ + O(tre−bt).

Collecting terms, the result follows. �

By similar but more lengthy calculations, one can show that M 2(t) =
λ2t21π+tA2+B2+o(1). The expressions for A2, B2 are quite complicated.
We shall quote the details only for the stationary situation.

Proposition 1.9 Varπ Nt = t
{
λ − 2λ2 + 2cD1

}
+ 2c

(
eQx − I

)
d =

t
{
λ − 2λ2 + 2cD1

}
+ 2λ2 − 2cd + O(t3r+2e−bt) .

Problems

1.1 Show that Var Nt ≥ ENt in the Markov–modulated Poisson processes but
not necessarily for a MArP .
1.2 Show that the counting process {Nt} may be stationary even if {Jt} is not
so. [Hint: Take the row sums of D equal.]
1.3 (phase–type semi–markov point processes) Let F1, . . . , Fq be phase–
type distributions with representation (α(j), T (j)) for Fj . Assume further that we
have a background Markov chain {Yn} with q states and transition probabilities
pjk, such that the semi–Markov point process has nth interarrival time governed
by Fj when Yn = j. Show by piecing together the phase processes that the
counting process is a MArP and write up C and D.

Notes The seminal paper on the MArP is Neuts (1979), though certainly the
model has roots in earlier work such as Hermann (1965) and Rudemo (1973).
Neuts (1992) contains an extensive bibliography.

For denseness, see Hermann (1965) and Asmussen and Koole (1993). For mo-

ment calculations and more detail concerning Proposition 1.9, see Naryana and

Neuts (1992). Statistical aspects are surveyed in Rydén (2000).

1b Markovian Fluids

Let {Jt}t≥0 be a Markov process with a finite state space E and r =(
r(i)

)
i∈E

a function on E. We define {St}t≥0 by S0 = 0, Ṡt = r(Jt), or,

equivalently, St =
∫ t

0
r(Js) ds; {St}t≥0 is called a (unrestricted) Marko-

vian fluid model. See Fig. 1.2 for an example of a sample path in the case
E = {1, 2, 3}, r(2) < r(3) < 0 < r(1). The restricted process obtained by
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modifying {St} to have reflection at 0 (cf. IX.2) is denoted by {Vt} and is
of considerable interest in many applications.

�

�

1 2 3 1 2 3

�����
�

���������
����

Figure 1.2

Example 1.10 In recent ATM (Asynchronous Transfer Mode) technology,
K channels (sources) feed digital signals in an ATM buffer, which then
outputs the signals in a shared single channel (the sink). Assume that
each channel can be either in an on or an off mode with exponential
holding times µ, λ and transmits at a rate of a bits per unit time in the on
mode, and that the maximal capacity of the sink is b bits per unit time.
Let Jt denote the number of channels in the on mode at time t. Then
{Jt} is a birth–death process on E = {0, . . . , K} with birth intensities
βn = (K − n)λ, n < K, and death intensities δn = nµ, n > 0. The netput
(input minus maximal output) then changes the buffer content by na − b
bits per unit time on intervals where Jt = n, and since a, b are usually
enormous compared to the time between jumps of {Jt}, we can model the
netput as an unrestricted fluid {St} with r(n) = na − b. The restricted
process {Vt} is then the buffer content (assuming an infinite buffer).

The model can be considerably generalized without violating the Markov
property. For example, by suitably extending {Jt}, one can allow the on–
off times to be phase type rather than exponential, the sources to be
different, a Markov–modulated environment (λ depending on Jt), etc. �

Example 1.11 Let Jt denote the number of the K channels that are busy
in Erlang’s loss system III.3e. Then {Jt} is a birth–death process on E =
{0, . . . , K} with birth intensities βn = λ, n < K, and death intensities
δn = nµ, n > 0. Assume that in addition to ordinary telephone traffic the
system also carries data traffic of lower priority. Using a deterministic fluid
approximation as in Example 1.10, there exist constants a, b such that data
is received at rate a and processed at rate b per idle channel. The content
of unprocessed data traffic is therefore a reflected fluid corresponding to
r(n) = a − (K − n)b. �

Problems

1.4 Write up the intensity matrix for {Jt} and the r(i) in some of the models
suggested in the last paragraph of Example 1.10.
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Notes Two seminal early papers on Markovian fluids are Anick et al. (1982)

and Gaver and Lehocky (1982). The literature is by now extensive.

1c The MArP/PH/1 Workload

Consider a queue where customers arrive according to a Markovian point
process, say with state space E and intensity matrix C + D for the back-
ground Markov process {Jt} as above, and where a customer arriving at a
transition i → j has a phase–type service time distribution Bij with repre-
sentation say (E(ij), T (ij), α(ij)). The netput St up to time t is then the sum
of the service times of the customers who have arrived arrived minus t, and
the reflected version {Vt} of {St} is the MArP/PH/1 workload process. A
main issue in applications is to evaluate the steady–state distribution of
(Jt, Vt), say Pe(Jt = j, Vt > x) where Pe refers to the stationary situation,
and we will explain here that this reduces to calculating the steady–state
distribution in an associated Markovian fluid model

{
(It, Ft)

}
.

�

�
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}
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Figure 1.3

The idea is explained on Fig. 1.3, where there are two environmental
states denoted ◦, •. The phase space E(◦◦) for B◦◦ has states #, ♥, and the
one E(••) for B•• states ♣,♠, whereas B◦•, B•◦ are both degenerate at 0.
An upwards jump in state i can be represented by an E(ii)–valued Markov
process as on Fig. 1.3(a). The fluid model {(It, Ft)} on Fig. 1.3(b) is then
obtained by changing the vertical jumps to segments with slope 1. Thus
the state space is F = {◦, #,♥, •,♣,♠}.

In the general formulation, the set EI of Markov states for
{
It

}
is the

disjoint union of E and the E(ij),

EI = E ∪ {
(ijα) : i, j ∈ E, α ∈ E(ij)

}
, r(i) = −1, i ∈ E, r(ijα) = 1.
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The intensity matrix for {It} is (taking E with two elements for simplicity)⎛⎜⎜⎜⎜⎜⎜⎜⎝

c11 c12 d11α
(11) d12α

(12) 0 0
c21 c22 0 0 d21α

(21) d22α
(22)

t(11) 0 T (11) 0 0 0
0 t(12) 0 T (12) 0 0

t(21) 0 0 0 T (21) 0
0 t(22) 0 0 0 T (22)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
where t(i) = −T (i)1 is the exit rate vector. The following observation is
immediate:

Proposition 1.12 For j ∈ E, x ≥ 0 one has

Pe(Jt = j, Vt > x) =
Pe(It = j, Ft > x)

Pe(It ∈ E)
.

2 Markov Additive Processes

2a. Definition and Structure
2b. Matrix M.G.F.’s
2c. Wald Martingales
2d. Mean, Variance and Related Limit Theorems
2e. Reflection and Time Reversion
2f. Wiener–Hopf Factorization

2a Definition and Structure

A Markov additive processes, abbreviated as MAP in this section,2 is de-
fined as a bivariate Markov process {Xt} = {(Jt, St)} where {Jt} is a
Markov process with state space E (say) and the increments of {St} are
governed by {Jt} in the sense that

E
[
f(St+s − St)g(Jt+s)

∣∣Ft

]
= EJt,0[f(Ss)g(Js)]. (2.1)

For shorthand, we write Pi, Ei instead of Pi,0, Ei,0 in the following.
The structure of MAP ’s is completely understood when E is finite (the

proofs that a MAP must look as postulated is elementary in the discrete–
time case and somewhat similar to the derivation of the form of a Lévy
process in IX.1 in the continuous–time case):

In discrete time, a MAP is specified by the measure–valued matrix
(kernel) F (dx) whose ijth element is the defective probability dis-
tribution Fij(dx) = Pi,0(J1 = j, Y1 ∈ dx) where Yn = Sn − Sn−1.

2But see footnote to Section 1.
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An alternative description is in terms of the transition matrix P =
(pij)i,j∈E (here pij = Pi(J1 = j)) and the probability measures

Hij(dx) = P
(
Y1 ∈ dx

∣∣ J0 = i, J1 = j
)

=
Fij(dx)

pij
.

In simulation language, this means that the MAP can be simulated
by first simulating the Markov chain {Jn} and next the Y1, Y2, . . . by
generating Yn according to Hij when Jn−1 = i, Jn = j.

If all Fij are concentrated on (0,∞), a MAP is the same as a semi–
Markov or Markov renewal process (cf. VII.4), with the Yn being
interpreted as interarrival times.

It is often convenient to assume that Fij is independent of j. In fact,
this can always be achieved by changing the driving Markov chain
to {(Jn, Jn+1)}. The particular case where Fij is degenerate, say at
f(i), is often encountered, and then Sn = f(J0) + · · · + f(Jn−1).

In continuous time (assuming D–paths), {Jt} is specified by its inten-
sity matrix Λ = (λij)i,j∈E . On an interval [t, t + s) where Jt ≡ i,
{St} evolves like a Lévy process

{
S

(i)
t

}
with characteristic triplet

(νi, µi, σ
2
i ), i.e. Lévy exponent

κ(i)(α) = αµi + α2σ2
i /2 +

∫ ∞

−∞

[
eαx − 1 − αxI(|x| ≤ 1)

]
νi(dx) ;

cf. IX.(1.4). In addition, a jump of {Jt} from i to j 
= i has probability
qij of triggering to a jump of {St} at the same time, the distribution
of which has some distribution Bij .

It follows immediately that the models of Sections 1a–1c are MAP ’s.
It also follows in particular that the MArP is the most general point
process such that the counting process {Nt} is a MAP .

If E is infinite a MAP may be much more complicated. As an example,
let {Jt} be standard Brownian motion on the line. Then a Markov
additive process can be defined by letting

St = lim
ε↓0

1
2εt

∫ t

0

I
(|Js| ≤ ε

)
ds

be the local time at 0 up to time t.

In the following, we assume throughout E to be finite.

Problems

2.1 Show that a MAP in discrete time must look as postulated.

Notes Some basic sources for the foundations and structure of MAP ’s are
Neveu (1961) and Çinlar (1972). The theory exposed later in this section was to
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a large extent developed in papers in the 1960s by Nagaev, Miller and Keilson and
Wishart (only discrete time is treated there, but for most topics the continuous
time theory is entirely similar); Asmussen (1989) contains a list of references to
this work as well as to later studies of Wiener–Hopf factorization in discrete time.
Work on special cases of Wiener–Hopf factorization in continuous time was done
by Barlow, Rogers and Williams; see Rogers (1994) for references.

Some selected references on MAP ’s on an infinite state space are Ney and

Nummelin (1987), Fuh and Lai (1998), de Acosta and Ney (1998) and (for Brown-

ian motion) Revuz and Yor (1999). Discrete time MAP ’s are essentially the same

as hidden Markov models in statistics, see Elliot et al. (1995) and MacDonald

and Zucchini (1997).

2b Matrix M.G.F.’s

As a generalization of the m.g.f., consider the matrix F̂ t[α] with ijth
element Ei

[
eαSt ; Jt = j

]
.

Proposition 2.1 For a MAP in discrete time, F̂ n[α] = F̂ [α]n where

F̂ [α] = F̂ 1[α] =
(
Ei[eαS1 ; J1 = j]

)
i,j∈E

=
(
F̂ij [α]

)
i,j∈E

=
(
pijĤij [α]

)
i,j∈E

.

Proof. Conditioning upon (Jn, Sn) yields

Ei[eαSn+1 ; Jn+1 = j] =
∑
k∈E

Ei[eαSn ; Jn = k] Ek[eαY1 ; J1 = j],

which in matrix formulation is the same as F̂ n+1[α] = F̂ n[α]F̂ [α]. �

Proposition 2.2 Consider a continuous–time MAP with parameters Λ,
µi, σ2

i , νi(dx) for i ∈ E and qij , Bij for i, j ∈ E. Then the matrix F̂ t[α]
with ijth element Ei[eαSt ; Jt = j] is given by etK[α], where

K[α] = Λ +
(
κ(i)(α)

)
diag

+
(
λijqij(B̂ij [α] − 1)

)
.

Proof. Up to o(h) terms,

Ei[eαSt+h ; Jt+h = j]

= (1 + λjjh)Ei[eαSt ; Jt = j]EjeαS
(j)
h

+
∑
k �=j

λkjh Ei[eαSt ; Jt = k]
{
1 − qkj + qkjB̂kj [α]

}
= Ei[eαSt ; Jt = j]

(
1 + hκ(j)(α)

)
+h

∑
k∈E

Ei[eαSt ; Jt = k]
{
λkj + λkjqkj(B̂kj [α] − 1)

}
(recall that qjj = 0). In matrix formulation, this means that

F̂ t+h[α] = F̂ t[α]
(
I + h

(
κ(i)(α)

)
diag

+ hΛ + h
(
λijqij(B̂ij [α] − 1)

))



312 XI. Markov Additive Models

(up to o(h) terms) so that F̂
′
t[α] = F̂ t[α]K[α], which in conjunction with

F̂ 0[α] = I implies F̂ t[α] = etK[α] according to the standard solution
formula for systems of linear differential equations. �

2c Wald Martingales

In the following, assume that the Markov chain/process {Jt} is ergodic. By
Perron–Frobenius theory (I.6 and II.4d), we infer that in the discrete–time
case the matrix F̂ [α] has a positive real eigenvalue with maximal abso-
lute value, which we write as eκ(α), and that in the continuous–time case
K[α] has a real eigenvalue κ(α) with maximal real part. The corresponding
left and right eigenvectors ν(α) = (νi)i∈E , h(α) = (hi)i∈E may be chosen
with strictly positive components. Since ν(α), h(α) are only given up to
constants, we are free to impose two normalizations, and we shall take

ν(α)h(α) = 1, πh(α) = 1, (2.2)

where π = ν(0) is the stationary distribution. Then h(0) = 1.
The function κ(α) plays in many respects the same role as the cumu-

lant g.f. of a random walk, as will be seen from the following results. In
particular, its derivatives are “asymptotic cumulants”, cf. Corollary 2.7,
and appropriate generalizations of the Wald martingale (and the associ-
ated change of measure; cf. XIII.8) can be defined in terms of κ(α) (and
h(α)); cf. Proposition 2.4.

Corollary 2.3 Ei[eαSt ; Jt = j] ∼ h
(α)
i ν

(α)
j etκ(α).

Proof. By Perron–Frobenius theory, F̂ t[α] ∼ h(α)ν(α)etκ(α). �

Proposition 2.4 EieαSth
(α)
Jt

= h
(α)
i etκ(α). Furthermore,

{
eαSt−tκ(α)h

(α)
Jt

}
is a martingale.

Proof. For the first assertion, just note that

EieαSth
(α)
Jt

= 1′
iF̂ t[α]h(α) = 1′

ie
tK[α]h(α) = 1′

ie
tκ(α)h(α) = etκ(α)h

(α)
i .

It then follows that

E

[
eαSt+v−(t+v)κ(α)h

(α)
Jt+v

∣∣∣Ft

]
= eαSt−tκ(α)E

[
eα(St+v−St)−vκ(α)h

(α)
Jt+v

∣∣∣Ft

]
= eαSt−tκ(α)EJt

[
eαSv−vκ(α)h

(α)
Jv

]
= eαSt−tκ(α)h

(α)
Jt

.

�

2d Mean, Variance and Related Limit Theorems

Let k(α) denote the derivative of h(α) w.r.t. α, and write k = k(0).
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Corollary 2.5 EiSt = tκ′(0) + ki − EikJt = tκ′(0) + ki − 1′
ie

Λtk.

Proof. By differentiation in Proposition 2.4,

Ei

[
SteαSth

(α)
Jt

+ eαStk
(α)
Jt

]
= etκ(α)

(
k

(α)
i + tκ′(α)h(α)

i

)
. (2.3)

Let α = 0 and recall that h(0) = 1 so that h
(0)
i = h

(0)
Jt

= 1. �

The argument is slightly heuristic (e.g. the existence of exponential mo-
ments is assumed) but can be made rigorous by passing to characteristic
functions. In the same way, one obtains a generalization of Wald’s identity
ESτ = Eτ · ES1 for a random walk:

Corollary 2.6 For any stopping time τ with Eiτ < ∞, one has EiSτ =
κ′(0)Eτ + ki − EikJτ .

Corollary 2.7 No matter the initial distribution µ of J0,

lim
t→∞

EµSt

t
= κ′(0), lim

t→∞
VarµSt

t
= κ′′(0).

Proof. The first assertion is immediate by dividing by t in Corollary 2.5.
For the second, we differentiate (2.3) to get

Ei

[
S2

t eαSth
(α)
Jt

+ 2SteαStk
(α)
Jt

+ eαStk
(α)′

Jt

]
= etκ(α)

(
k

(α)′

i + tκ′(α)k(α)
i + t

{
κ′′(α)h(α)

i + tκ′(α)2h(α)
i + κ′(α)k(α)

i

})
.

Multiplying by µi, summing and letting α = 0 yields

Eµ[S2
t + 2StkJt ] + O(1) = t2κ′(0)2 + 2tκ′(0)µk + tκ′′(0) + O(1) .

Squaring in Corollary 2.5 yields

[EµSt]
2 = t2κ′(0)2 + 2tκ′(0)µk − 2tκ′(0)EµkJt + O(1) .

Since it is easily seen by an asymptotic independence argument that
Eµ [StkJt ] = tκ′(0)EµkJt + O(1), subtraction yields Varµ St = tκ′′(0) +
O(1). �

Corollary 2.8 St/t → κ′(0) Pix–a.s. for all i, x. If in addition κ′′(0) is
welldefined and satisfies 0 < κ′′(0) < ∞, then

(
St − tκ′(0)

)
/t1/2 has a

limiting normal (0, κ′′(0)) distribution.

Proof. By general results on cumulative processes from VI.3. �

Corollary 2.9 (a) In discrete time, κ′(0) =
∑

i,j∈E

πipij

∫
R

xHij(dx).
(b) In continuous time,

κ′(0) =
∑
i∈E

πi

{
µi +

∫
|x|>1

x νi(dx)
}

+
∑
i�=j

πiλijqij

∫
R

xBij(dx) .
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Proof. (a) For N large, there are approximately Nπipij pairs (n−1, n) with
Xn−1 = i, Xn = j, and the sum of the corresponding Yn is therefore ap-
proximately Nπipij

∫
R

xHij(dx) so that SN/N is approximately the stated
expression for κ′(0). But on the other hand, we know that SN/N

a.s.→ κ′(0).
The proof of (b) is similar. �

We call the MAP degenerate if sup |St| < ∞.

Proposition 2.10 We have (a′) St → −∞, (b′) limSt = −∞, limSt =
∞, (c′) St → ∞ Pix–a.s. for all i, x according as (a) κ′(0) < 0, (b) κ′(0) = 0
and the MAP is nondegenerate, (c) κ′(0) > 0. Further, letting τ(x) =
inf {t : St > x}, it holds for i ∈ E in case (c) that Eiτ(x) ∼ x/κ′(0), x →
∞, and in case (b) that Eiτ(x) = ∞ for all large x.

Proof. By Corollary 2.8, St/t
a.s.→ κ′(0) which immediately shows that (a)

→ (a′), (c) → (c′). In case (b), let τ(i, k) be the time of the kth entrance
of {Jt} to i ∈ E. Then

{
Sτ(i,k)

}
k=0,1,...

is a discrete random walk with
(by regenerative process theory) mean 0. Nondegeneracy implies that the
increment distribution is not concentrated at 0, and hence limSτ(i,k) =
−∞, lim = ∞ by VIII.2.4, implying (b′). The last statement is an easy
consequence of Corollary 2.6. �

2e Reflection and Time Reversion

The time–reversed MAP {(J∗
t , S∗

t )} and the reflected MAP {(Jt, Vt)} are
defined as in IX.2.

The definition of the time–reversed MAP means that {J∗
t } is the usual

reversed Markov process, with transition matrix P ∗ = ∆−1
π P T∆π in dis-

crete time and intensity matrix Λ∗ = ∆−1
π ΛT∆π in continuous time, where

∆π is the diagonal matrix with π on the diagonal. For the additive part,
we have in discrete time to replace Hij by H∗

ij = Hji (or, equivalently, Fij

by F ∗
ij = πjFji/πi), whereas in continuous time the Lévy processes

{
S

(i)
t

}
remain unchanged and we only have to replace Bij by B∗

ij = Bji and qij

by q∗ij = qji. From IX.2, we immediately get:

Proposition 2.11 The reflected MAP {(Jt, Vt)} is a Markov process. If
κ′(0) > 0, then Vt → ∞ a.s., whereas Vt → ∞ in distribution if κ′(0) = 0.
If κ′(0) < 0, then (Jt, Vt) has a total variation limit which coincides with
the distribution of

(
J∗

0 , supt≥0 S∗
t

)
where J∗

0 is chosen with distribution π.

2f Wiener–Hopf Factorization

Recall the Wiener–Hopf factorization identity in VIII.3 for a simple random
walk: δ0 − F = (δ0 − G−) ∗ (δ0 − G+) where F is the increment distribu-
tion, and G+, G− the ladder height distributions (δ0 is the distribution
degenerate at 0).
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For MAP ’s, we only consider the discrete–time case and define

τ+ = inf {n > 0 : Sn > 0} , τ− = inf {n > 0 : Sn ≤ 0} ,

G+(i, j; A) = Pi

(
Jτ+ = j, Sτ+ ∈ A, τ+ < ∞)

,

G−(i, j; A) = Pi

(
Jτ− = j, Sτ− ∈ A, τ− < ∞)

.

Further, G+ denotes the (measure–valued) matrix with ijth element
G+(i, j; ·) (and similarly for G−), and G∗

+ etc. refer to the time–reversed
MAP {(J∗

t , S∗
t )}. We write #G− = ∆−1

π G∗T
−∆π and similarly for #G+.

In the measure–valued case, A ∗ B denotes the matrix with ijth element∑
k∈E A(i, k; ·) ∗ B(k, j; ·) , and I = (δ0)diag.

Theorem 2.12 I −F = (I −#G−) ∗ (I −G+) = (I −#G+) ∗ (I −G−).

For the proof, we define

R+(i, j; A) = Ei

τ+−1∑
n=0

I(Jn = j, Sn ∈ A), #U− =
∞∑

n=0

(#G−)∗n.

Proposition 2.13 R+ = #U−.

Proof. Let n be fixed and write i = i0, j = in,

B =
{
J0 = i0, J1 = i1, . . . , Jn = in

}
,

B∗ =
{
J∗

0 = in, J∗
1 = in−1, . . . , J

∗
n = i0

}
.

For A ⊆ (−∞, 0], we have

Pi

(
τ+ > n, Jn = j, Sn ∈ A

)
=

∑
i1,...,in−1

pi0i1 . . . pin−1inP
(
Sk ≤ 0, k ≤ n, Sn ∈ A

∣∣B)
=

πin

πi0

∑
i1,...,in−1

p∗inin−1
. . . p∗i1i0P

(
S∗

k ≥ S∗
n, k ≤ n, S∗

n ∈ A
∣∣B∗)

=
πin

πi0

Pj

(
J∗

n = i, S∗
n ∈ A; F ∗

n

)
=

πj

πi
Pj

(
J∗

n = i, S∗
n ∈ A; F ∗

n

)
,

where F ∗
n is the event that n is a descending ladder epoch for {S∗

n} (in the
second step, we used {Sk}n

0
D=
{
S∗

n − S∗
n−k

}n

0
). Summing over n, we get

R+(i, j; A) =
πj

πi

∞∑
m=0

(G∗
−)∗m(j, i; A) =

∞∑
m=0

(#G−)∗m(i, j; A),

where the last equality easily follows by induction. �

Proof of Theorem 2.12. Adapting the general stopping time identity I.3.3
as in the proof of VIII.3.1 easily gives R+ + G+ = I + R+ ∗ F which by
Proposition 2.13 we may rewrite as #U− +G+ = I +#U− ∗F . Convolving
with #G− to the left, we get #U−−I + #G− ∗G+ = #G− +#U− ∗F −F .
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Subtracting the two last identities yields G++I−#G−∗G+ = I−#G−+F
which is the same as the first of the stated identities. The proof of the second
is similar. �

For a measure–valued matrix A, let ‖A‖ denote the matrix whose ijth
element is the total mass A(i, j; R) of A(i, j; ·).

Proposition 2.14 (a) If κ′(0) < 0, then ‖G+‖ is substochastic (spr
(‖G+‖)

< 1), whereas spr
(‖#G−‖) = 1 and π‖#G−‖ = π.

(b) If κ′(0) > 0, then spr
(‖#G−‖) < 1, whereas ‖G+‖ is stochastic with

π+ = π(I − #G−) as left eigenvector.
(c) If κ′(0) = 0, then spr

(‖G+‖) = spr
(‖#G−‖) = 1.

Proof. In (a), we have Sn
a.s.→ −∞ and S∗

n
a.s.→ −∞, which immediately yields

that ‖G+‖ is substochastic and ‖G∗
−‖ stochastic so that spr(‖G∗

−‖) = 1.
The way #G− is constructed from G∗

− then ensures that also spr(‖#G−‖) =
1, and π‖#G−‖ = π follows from∑

i∈E

πi
#G−(i, j; R) = πj

∑
i∈E

G∗
−(j, i; R) = πj .

Also (c) and the first part of (b) is similar to (a). For the last claim in (b),
note that spr(‖#G−‖) < 1 implies that π+ 
= 0. Also Theorem 2.12 yields
I −‖F ‖ = (I −‖#G−‖)(I −‖G+‖), and multiplying by π = π‖F ‖ to the
left, we get 0 = π+(I − ‖G+‖). �

3 The Matrix Paradigms GI/M/1 and M/G/1

3a. Recurrence and Positive Recurrence
3b. GI/M/1 Type Queueing Models
3c. M/G/1 Type Queueing Models. QBD’s
3d. The Sengupta Process

3a Recurrence and Positive Recurrence

Assume now that the additive component St of the discrete–time MAP
{(Jn, Sn)} is lattice, i.e. the MAP has state space E × Z. We can write
fij(k) = Fij({k}) (the probability of adding k ∈ Z to the level and changing
the phase from i to j), F (k) =

(
fij(k)

)
, and can then write the (E × Z) ×
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(E × Z) transition matrix for the MAP as⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

F (0) F (1) F (2) F (3) F (4)
F (−1) F (0) F (1) F (2) F (3)

· · · F (−2) F (−1) F (0) F (1) F (2) · · ·
F (−3) F (−2) F (−1) F (0) F (1)
F (−4) F (−3) F (−2) F (−1) F (0)

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.1)

by partitioning into E × E blocks corresponding to levels.
We shall consider some modifications of the MAP at 0, which are more

complicated than the simple reflection considered in Section 2e and highly
adaptable from the point of view of specific applications. The processes
{(In, Ln)} in question are Markov chains on E0×{0}∪E×{1, 2, . . .}; the I–
component is called the phase and the L–component the level. Thus E0 is a
set of boundary states in which In takes its values when Ln = 0 (otherwise
In ∈ E). The state space is shown in Fig. 3.1 for the case where E0 has
seven elements and E four.

� 0 1 2 . . .

•
•
•
•
•
•
•

• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

· · ·
��������

Figure 3.1

Away from level 0, {(In, Ln)} moves as {(Jn, Sn)} (e.g., the two transitions
marked on Fig. 3.1 have the same probability). However, when the MAP
at level � > 0 attempts to go to a level < 0, {(In, Ln)} is reset to level 0
and a phase in E0 with probabilities depending on �; the jump out of level
0 may have any distribution. It follows that the transition matrix Q can
be written in the block–partitioned form as

Q =

⎛⎜⎜⎜⎜⎜⎝
C A(1) A(2) A(3) . . .

B(1) F (0) F (1) F (2) . . .
B(2) F (−1) F (0) F (1) . . .
B(3) F (−2) F (−1) F (0) . . .

...
. . .

⎞⎟⎟⎟⎟⎟⎠ (3.2)
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where the dimensions are C : E0 × E0, A(k) : E0 × E, B(�) : E × E0,
F (�) : E×E. Particular important forms are obtained by letting the MAP
be right– or left–continuous (skip–free) for levels, i.e. of one of the forms3

Q =

⎛⎜⎜⎜⎜⎜⎝
B(0) F (1) 0 0 . . .
B(1) F (0) F (1) 0 . . .
B(2) F (−1) F (0) F (1) . . .
B(3) F (−2) F (1) F (0) . . .

...
. . .

⎞⎟⎟⎟⎟⎟⎠ , (3.3)

Q =

⎛⎜⎜⎜⎜⎜⎝
A(0) A(1) A(2) A(3) . . .

F (−1) F (0) F (1) F (2) . . .
0 F (−1) F (0) F (1) . . .
0 0 F (−1) F (0) . . .
...

. . .

⎞⎟⎟⎟⎟⎟⎠ . (3.4)

We say that matrices of the form (3.3) are of the GI/M/1 type (note that
here E0 = E) and those of the form (3.4) of the M/G/1 type, the obvi-
ous motivation being the imbedded Markov chains in the queues GI/M/1
and M/G/1 (here E and E0 are one–point sets so that blocks reduce to
numbers); see III.6 and X.5.

The following ergodicity criterion covers most examples:

Proposition 3.1 Assume in (3.2) that both Q and P =
∑∞

−∞ F (k) are
irreducible and stochastic, and let ν be the stationary distribution of P and
µ =

∑∞
−∞ kF (k)1. Then {(In, Ln)} is recurrent if and only if νµ ≤ 0, and

positive recurrent if and only if (a)
∑∞

−∞ kA(k)1 < ∞ and (b) νµ < 0.

Proof. The two Markov chains {(Jn, Sn)}, {(In, Ln)} evolve in the same
way in levels � ≥ 1. More precisely, if we let σ = inf {n ≥ 1 : Sn ≤ 0}, τ =
inf {n ≥ 1 : Ln = 0} and start in such a way that J0 = I0, S0 = L0 ≥ 1,
then τ = σ and In = Jn, Ln = Sn for n < τ . Hence recurrence of {(In, Ln)}
is equivalent to Pj�(σ < ∞) for all j ∈ E, � ≥ 1, i.e. by Proposition 2.10 to
νµ ≤ 0 (note that κ′(0) = νµ by Corollary 2.9), and (by I.3.10) positive
recurrence is equivalent to Ei0τ < ∞ for all i ∈ E0. Now clearly,

Ei0τ =
∑
j∈E

cij +
∞∑

�=1

∑
j∈E

aij(�) {1 + Ej�σ} . (3.5)

If (a) fails, Proposition 2.10 shows that (irrespective of νµ < 0 or νµ =
0) this expression cannot be finite. If conversely (a) and (b) hold, then
Proposition 2.10 shows immediately that (3.5) is finite. Finally, if (a) holds
but not (b), we can choose �0 such that Ej�σ = ∞ for all � ≥ �0 and all

3See the Notes at the end of the section for notational issues.
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j ∈ E, and (by irreducibility) i ∈ E such that Pi0(Ln ≥ �0, τ > n) > 0 for
some n. Then Ei0τ = ∞, and positive recurrence fails. �

3b GI/M/1 Type Queueing Models

We consider a Markov chain {(In, Ln)} with transition matrix Q of the form
(3.3). The crucial feature is the skip–free–to–the–right–for–levels property,
that {Ln} can increase at most one in one time step.

Example 3.2 Consider the GI/PH/1 queue where the service time dis-
tribution has representation (E, T , α), and let the level Ln be the number
of customers just before the nth arrival and the phase In the phase in which
the server is working just after the nth arrival. Let pt

ij(k) be the probability
that the server, when facing an infinitely long queue and starting service
at time 0 in phase i, will by time t have completed service of k customers
and work in phase j. With A the interarrival distribution, it is seen that
Q is of the form (3.3) corresponding to

fij(�) =
∫ ∞

0

pt
ij(1 − �)A(dt), bij(�) = αj

�∑
k=−∞

∑
r∈E

fir(k).

Indeed, the expression for fij(�) is clear, and so is the one for bij(�) once
one observes that the double sum is the probability that the server starting
in phase i will serve at least � customers within a service period (αj is the
probability that he will start the service of the next customer in phase j).

�

Corollary 3.3 Suppose that both Q in (3.3) and P =
∑1

−∞ F (k) are ir-
reducible and stochastic, and let ν be the stationary distribution of P and
µ =

∑1
−∞ kA(k)1. Then recurrence of Q is equivalent to νµ ≤ 0 and

positive recurrence to νµ < 0.

Proof. Just note that A(k) = 0 for k > 1 so that condition (a) in
Proposition 3.1 is vacuous. �

In the ergodic case, the key to the analysis is to fix a level � and think
of {(In, Ln)} as a semi–regenerative process with the semi–regeneration
points as the returns to level � (which may be of one the types i ∈ E). To
this end, in the notation of VII.5, we let C = inf {n ≥ 1 : Ln = �}. The role
of the Jn–chain in VII.5 is then taken by

{
I
(�)
n

}
where I

(�)
k is the phase at

the kth return of {Ln} to level �. Define R(k) as the matrix with elements

rij(k) = Ei�

C−1∑
n=0

I(In = j, Ln = � + k) (3.6)

and write R = R(1) = (rij). For measures π on E × N, we use notation
like π = (π�)�∈N = (π0 π1 · · ·) where π� = (πi�)i∈E denotes the restriction
to level �.
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Lemma 3.4 (i) The matrices R(k) do not depend on the choice of � =
0, 1, 2, . . .; (ii) R(k) = Rk; (iii) in the recurrent case, π = (π0 π1 · · ·) is a
stationary measure for {(In, Ln)} if and only if π0 is stationary for

{
I
(0)
n

}
and πk = π0R

k, k = 1, 2, . . ..

Proof. (i) is a consequence of the structure of Q, which shows that only
upward excursions from � contribute to rij(k), and also that such excursions
are homogeneous in the level. Consider an excursion from � and upward.
Each visit to level � + k − 1 in phase i generates an average of rij visits
to level � + k in phase j before any of the levels � + k − 1, � + k − 2, . . . is
entered. Therefore R(k) = R(k − 1)R, showing (ii). For (iii) let � = 0 and
combine the definition of R(k) = R with Corollary VII.5.3 to see that π0

is necessarily stationary for
{
I
(0)
n

}
and connected to πk by

πjk =
∑
i∈E

πi0 Ei0

C−1∑
n=0

I(In = j, Ln = k) =
∑
i∈E

πi0rij(k) . �

For any E × E matrix X such that the series are welldefined and
convergent, define (left and right)

F̂ L[X] =
∞∑

k=−∞
XkF (k), F̂ R[X] =

∞∑
k=−∞

F (k)Xk. (3.7)

Lemma 3.5 The Markov chain
{
I
(0)
n

}
has transition matrix B̂L[R].

Proof. Consider an excursion away from level 0, say of length ω =
inf {n ≥ 1 : Ln = 0}. Then Pi(I

(0)
1 = j) = Pi0(Jω = j). The contribu-

tion from {ω = 1} = {Lω−1 = 0} to this matrix is clearly the term B(0) in
B̂L[R] =

∑∞
0 RkB(k). Further, collecting phases at visits to level k ≥ 1

during the excursion gives an average governed by Rk so that the the con-
tribution from {Lω−1 = k} is RkB(k). Collecting terms, the result follows.

�

Theorem 3.6 Consider an irreducible positive recurrent transition matrix
Q of the GI/M/1 type (3.3). Then

{
I
(0)
n

}
is positive recurrent as well, i.e.

π0 = π0B̂L[R] has a solution π0 with all πi0 > 0 which is unique up to
a constant. If we normalize π0 by 1 = π0(I − R)−11, then the stationary
distribution for Q is (π0 π1 · · ·) with π� = π0R

�, � = 1, 2, . . ..

Proof. That
{
I
(0)
n

}
is positive recurrent follows from I.3.9. The remaining

statements are immediate from Lemmas 3.4 and 3.5 once one notes that
the summability of π� = π0R

� and all πi0 > 0 implies spr(R) < 1 and∑∞
0 Rk = (I − R)−1. �

It remains to evaluate R. We have:
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Theorem 3.7 R is solution to R = Ψ(R) where Ψ(R) = F (1)+RF (0)+
R2F (−1)+ · · · and the minimal nonnegative solution to this equation. Fur-
thermore, R can be evaluated by successive iterations, say as limit of the
nondecreasing sequence R(n) given by R(0) = 0, R(n+1) = Ψ

(
R(n)

)
.

Proof. Consider again an excursion away from level 0 so that R gives the
average phase distribution at visits to level 1 during the excursion. Collect-
ing phases at visits to level 1 where Ln = k in the preceding step gives the
contribution RkF (1 − k) to R for k ≥ 1 and F (1) for k = 0. Collecting
terms yields R = Ψ(R). The rest of the proof is deferred to Section 4b
where we also present other ways to evaluate R than the iterative solution.

�

We state without proof the following alternative criterion for positive re-
currence, which is valid also without assuming P irreducible as in Corollary
3.3 and which can be applied once R has been evaluated:

Corollary 3.8 Suppose that Q is irreducible. Then positive recurrence is
equivalent to spr(R) < 1.

An analogous theory can be developed in continuous time:

Corollary 3.9 Consider an irreducible Markov jump process {(Jt, Lt)}t≥0

with intensity matrix Q of the form (3.3), and let Ψ(R) = F (1)+RF (0)+
R2F (−1) + · · ·. Then the equation 0 = Ψ(R) has a minimal nonnegative
solution, and the process is ergodic if and only if spr(R) < 1. In that
case, the stationary distribution π = (π0 π1 · · ·) is given by πk = π0R

k

where π0 solves π0B̂L[R] = 0 and is normalized by π0(I − R)−11 = 1. If
furthermore Λ =

∑1
−∞ F (k) is irreducible, then ergodicity of {(Jt, Lt)} is

equivalent to νµ < 0 where ν is the stationary distribution of Λ and µ =∑1
−∞ kF (k)1.

Proof. We use uniformization; cf. Problem II.4.1. Choose a > 0 with a >
bii(0), a > |fii(0)| for all i. Then Q∗ = I + Q/a is a transition matrix,
Q∗ is positive recurrent if and only if Q is ergodic and in that case the
stationary distributions are the same; cf. again Problem II.4.1. But Q∗ is
of the GI/M/1 type corresponding to

F ∗(k) =
{

F (k)/a k 
= 0
I + F (k)/a k = 0 , B∗(k) =

{
B(k)/a k 
= 0

I + B(k)/a k = 0 .

Hence if R, π0 are chosen as for this discrete time model,

B̂
∗
L[R] = I + B̂L[R]/a, π0 = π0B̂

∗
L[R] = π0 + π0B̂L[R]/a,

R = F ∗(1) + RF ∗(0) + R2F ∗(−1) + · · ·
= R + (F (1) + RF (0) + R2F (−1) + · · ·)/a.

The rest of the proof is a straightforward translation of results derived
above. �
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Example 3.10 Let Lt be the queue length at time t in a single–server
queue where the arrival and service rates at time t are βi, δi when Jt = i;
here {Jt}t≥0 is a finite ergodic Markov process with intensity matrix Λ
and stationary distribution ν. For obvious reasons, this system is denoted
as the M/M/1 queue in a random environment or the Markov–modulated
M/M/1 queue (MM/MM/1). Obviously, {(Jt, Lt)}t≥0 is a Markov process
with intensity matrix Q of the form (3.3), which, writing ∆β = (βi)diag,
etc. corresponds to

F (−1) = ∆δ, F (1) = ∆β, F (0) = Λ − ∆β+δ,

B(0) = Λ − ∆β, B(1) = ∆δ

(all other F (k), B(k) are zero). Hence ergodicity is equivalent to νβ < νδ
which is intuitive since νβ is the average arrival rate and νδ the average
service rate. For further aspects of this model, see the discussion of QBD’s
below. �

3c M/G/1 Type Queueing Models. QBD’s

Example 3.11 Consider the MArP/G/1 queue, i.e. the arrivals occur ac-
cording to a Markovian point process (specified by C, D) and service times
have some general distribution B. We define In as the phase of the arrival
process at the nth departure and Ln as the number of customers just after.

For k ≥ −1, define F (k), k ≥ 0, as the (defective) transition matrix
for the phase changes in a service period having k + 1 arrivals. It is then
elementary to check that {(In, Ln)} has a transition matrix where rows
i = 1, 2, . . . have the (spatial homogeneous) form in (3.4). Clearly,

F (−1) =
∫ ∞

0

eCt B(dt), F (0) =
∫ ∞

0

B(dt)
∫ t

0

eCsDeC(t−s) ds;

however, the expressions quickly become complicated and it is discussed
thoroughly in, e.g., Neuts (1989) how to compute the F (k). For row 0, let as
in the proof of Proposition 1.4 P = −C−1D be the transition matrix for the
sequence of phases just after arrivals. Then P also governs the transitions
of phases from a departure instant until the next arrival, and using this, it
is seen that row 0 corresponds to A(k) = P F (k − 1), k = 0, 1, . . .. �

In the general theory of M/G/1 type models, a certain matrix G plays
an equally fundamental role as the R–matrix for GI/M/1 type models. It
is defined in terms of the underlying MAP by gij = Pi(Sτ s

− = j) where
τ s
− = inf {n > 0 : Sn < 0} is the strict descending ladder epoch. That is,

G = Gs
− in the terminology of Chapter VIII and Section 2f. In Section 4,

we prove the following result (and also present other algorithms than the
iterative one):
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Theorem 3.12 G is solution to G = ϕ(G) where ϕ(G) = F (−1) +
F (0)G + F (1)G2 + · · ·, and the minimal solution to this equation. Fur-
thermore, G can be evaluated by successive iterations, say as limit of the
nondecreasing sequence G(n) given by G(0) = 0, G(n+1) = ϕ

(
R(n)

)
.

Remark 3.13 For the case κ′(0) > 0 where G is invertible, the equation
G = ϕ(G) means F̂ R[G] = I in the notation of (3.7). Similarly, when
κ′(0) < 0 the equation R = Ψ(R) means F̂ L[R−1] = I. The close analogy
with the equations F̂ [z] = 1 and F̂ [z−1] = 1 for simple random walks that
played a fundamental role in VIII.5 supports intuitively that G = ϕ(G)
and R = Ψ(R) are equally important for discrete Markov additive models.

�

We will not discuss the general theory of M/G/1 type models any further
(we refer again to Neuts, 1989), but will look at the particular case of a
quasi birth–death process (QBD), defined by the requirement that (3.4)
takes the form

Q =

⎛⎜⎜⎜⎜⎜⎝
C F (1) 0 0 0 . . .

F (−1) F (0) F (1) 0 0 . . .
0 F (−1) F (0) F (1) 0 . . .
0 0 F (−1) F (0) F (1) . . .
...

. . .

⎞⎟⎟⎟⎟⎟⎠ . (3.8)

Since the model (3.8) is also of GI/M/1 type, we can immediately apply
the results of Section 3b. However, the special features allow for various
simplifications and alternative point of views. These involve a matrix U ,
defined in terms of the underlying MAP by uij = Pi(Jθ(0) = j, θ(0) < τ s

−)
where θ(�) = inf {n > 0 : Sn = �}. If any of the matrices R, G, U is known,
the remaining two are easily computed as follows:

Proposition 3.14 For a QBD,

R = F (1)(I − U)−1, (3.9)
G = (I − U)−1F (−1), (3.10)
U = F (0) + F (1)G = F (0) + RF (−1) (3.11)

= F (0) + F (1)(I − U)−1F (−1). (3.12)

Further, in the ergodic case πn = π0R
n where π0 satisfies π0 = π0

(
C +

RF (−1)
)

= π0

(
C + F (1)G

)
and π0(I − R)−11 = 1. If C = F (−1) +

F (0), then π0 = ν(I − R) where ν is the stationary distribution of P =
F (−1) + F (0) + F (1).

Proof. Assume S0 = 0. Then U is the (defective) transition matrix of {Jn}
observed at visits of {Sn} to 0 before τ s

−, and hence the ijth element of∑∞
0 Un = (I − U)−1 is the expected number of visits before τ s− to j in
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level 0 starting from J0 = i. From this (3.10) follows by conditioning on
Jτ s

−−1 = j, and the proof of (3.9) is similar. That U = F (0)+F (1)G follows
by conditioning upon the first transition of {(Jn, Sn)}, and inserting (3.9),
(3.10) then yields first (3.12) and next the second identity in (3.11).

That π0 = π0

(
C + RF (−1)

)
is the same as π0 = π0B̂L[R], cf. Theo-

rem 3.6, and the second expression then follows from (3.11). Assume C =
F (−1) + F (0) and let π0 = ν(I − R). Clearly, π0(I − R)−11 = 1 and
further

π0

(
C + RF (−1)

)
= ν(I − R)

(
F (−1) + F (0) + RF (−1)

)
= ν

(
F (−1) + F (0) + RF (−1) − RF (−1) − RF (0) − R2F (−1)

)
= ν

(
F (−1) + F (0) + F (1) − R

)
= ν(I − R) = π0,

where we used R = Ψ(R) = F (1) + RF (0) + R2F (−1) in the third step
and the definition of ν in the next. Thus π0 satisfies the requirements of
Theorem 3.6. �

Remark 3.15 As in Corollary 3.9, it is straighforward to translate to
QBD’s in continuous time. One key example is the Markov–modulated
M/M/1 queue in Example 3.10, another the MArP/PH/1 queue. Let the
service time distribution have phase representation (F, α, T ) and the pa-
rameters of the MArP be CA, DA, and define {(It, Lt)} by Lt being the
number in system and It the current phase of service if Lt > 0, the phase
in which the next customer will start service if Lt = 0. Then the intensity
matrix of {(It, Lt)} has the form (3.8) corresponding to F (−1) = I ⊗ tα4

(here t = −T1 is the exit rate vector), F (0) = CA ⊕ T , F (1) = DA ⊗ I,
C = CA ⊗ I. �

3d The Sengupta Process

The model may be seen as a continuous–time and –state version of the
GI/M/1 paradigm, the most apparent analogue being that paths are
upward skip–free for levels.

The underlying MAP {(Jt, St)} has a Markov component {Jt}, with a
finite state space E and intensity matrix Λ, and a level component {St}
having only downward jumps and increasing linearly in between jumps.
As for the MArP , we decompose Λ as C + D where the ijth element dij

gives the intensity of a (downward) jump in phase i accompanied of a phase
change to j and the elements of C = Λ−D describe phase changes without

4Kronecker (or tensor–) product (A⊗B)ij,k� = aikbj� and Kronecker sum A⊕B =

A ⊗ I + I ⊗ B. Note that if {X(1)
t }, {X(2)

t } are independent Markov processes with

intensity matrices Λ(1), Λ(2), then {(X(1)
t , X

(2)
t )} has intensity matrix Λ(1) ⊕ Λ(2).



3. The Matrix Paradigms GI/M/1 and M/G/1 325

jump. The distribution of the size of the downward jump corresponding to
a phase change i → j is denoted Aij and is thus concentrated on (0,∞).

The Sengupta process {(It, Lt)} evolves as {(Jt, St)} on (0,∞). However.
if a jump occuring from level x would have taken {Lt} below 0, the level
is reset to 0 and the phase may also be changed. Thus, the intensity of a
transition (i, x) → (j, x − y) is dijA(dy) for 0 < y < x and say qij(x) for
y = x where the qij(x) satisfy

∑
j qij(x) =

∑
j dijA(x) but are otherwise

arbitrary. Note that if the jump takes the level to 0, the level starts to
increase right away so that there are no intervals on which the level stays
at 0.
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Figure 3.2

An example of a sample path with two phases (1=thin, 2=thick) is in
Fig. 3.2 (upper part; the part with the broken lines refers to Example 3.17).

It is clear that if a stationary distribution of {(It, Lt)} exists, the
level part must be absolutely continuous. Accordingly, we let πi(x) de-
note the steady–state density of Lt restricted to {Jt = i} and write
π(x) =

(
πi(x)

)
i∈E

. Write further Q(x) =
(
qij(x)

)
i,j∈E

and Π(dx) =(
dijAij(dx)

)
i,j∈E

Theorem 3.16 Assume that {Jt} is irreducible. Then {(It, Lt)} is Harris
ergodic if and only if κ′(0) < 0. Then π(x) = π(0)eT x where the E × E
matrix T solves

T = C +
∫ ∞

0

eT xΠ(dx) (3.13)

and is the minimal solution subject to T ≥ C. Further, π(0) =
ν/(−νT−11) where ν is the stationary vector for the transition matrix∫∞
0

eT xQ(x) dx.

Proof. The proof of the statement concerning Harris ergodicity is easy and
omitted. Define the occupation measure R by

Rij(A) = Ei,0

∫ τ−

0

I(St ∈ A, Jt = j) dt

where τ− = inf {t > 0 : St < 0}. The density rij(x) can also be interpreted
as the expected number of upcrossings of level x in phase j before τ−.
Following each such upcrossing, the expected number of upcrossings of
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level x + y in phase k before level x is downcrossed is rjk(y), so the total
expected number before τ− is

∑
k rij(x)rjk(y). Equating this to rij(x + y)

shows that r(x) = (rij(x))i,j∈E satisfies r(x + y) = r(x)r(y) and therefore
must be of the form eT x. Taking the t with Lt = 0 and It = i for some i
as semi–regeneration points and appealing to VII.5.2 then gives that the
steady–state density must have the form π(0)eT x for some π(0).

To derive (3.13), we divide possible upcrossings of level h in phase j
before τ− into three types, the one occuring at time h without a jump of
the level, the ones following a jump from some level y > h to (0, h] and the
rest. Starting from I0 = i, the expected number is δij + cijh + o(h) for the
first type, o(h) for the third type and (interpreting R(dx) = eT xdx as an
occupation measure)∑

k∈E

∫ ∞

h

(eT y)ik dy · dkj

∫ y

y−h

Akj(dx) + o(h)

=
∑
k∈E

∫ ∞

0

∫ x+h

x

(eT y)ik dy Πkj(dx) + o(h)

= h
∑
k∈E

∫ ∞

0

(eT x)ik Πkj(dx) + o(h)

for the second type. Thus

rij(h) = δij + cijh + h
∑
k∈E

∫ ∞

0

(eT x)ik Πkj(dx) + o(h).

On the other hand, rij(h) = (eT h)ij = δij + tijh + o(h), and equating the
two expressions gives (3.13).

Finally π(0) must have the form cν where ν is the stationary distribu-
tion for {It} observed at semi–regeneration points. That this Markov chain
has transition matrix

∫∞
0 eT xQ(x) dx is easily seen, and −π(0)T−11=∫∞

0 π(0)eT x1dx = 1 shows that c = 1/(−νT−11). �

Example 3.17 Consider the GI/PH/1 queue with interarrival distribu-
tion A and representation (E, α, S) of the service time distribution. We
define {(It, Lt)} by cutting idle periods out and letting It be the phase in
which the server is currently operating, Lt the time that passed since the
customer in service arrived. See Fig. 3.2 where a customer has arrived at
an idle system at t = 0 and the bullets on the lower t–axis indicate arrival
times. Thus, the jumps are the interarrival times and with s = −S1 the
exit rate vector of the service time distribution, we have Aij = A, C = S,
dij = siαj and qij(x) = siαjA(x).

Defining Wn as the value of {Lt} just after the nth jump, the graphical
representation shows that Wn is simply the waiting time of customer n.
We will show that that the steady–state distribution is given by

Pe(Wn ≤ x) = 1 − µBβeT x(T − S)1, (3.14)
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where β = −αS−1/µB with µB = −αS−11 the mean service time. To
this end, note first that Lt = 0 means that a busy period has just started
so that the server has chosen his phase according to α. Thus the Markov
chain having stationary distribution ν is just i.i.d. replicates from α so
that ν = α and π(0) = −α/(αT−11). Marginally, {It} is the Markov pro-
cess obtained from the sequence of service time by piecing the terminating
Markov processes corresponding to individual service times together as in
III.5, so that by results given there β is the stationary distribution of {It}.
On the other hand, this stationary distribution is

∫∞
0

π(x) dx = −π(0)T −1

so that π(0) = −βT .
By Palm theory, Pe(Wn ≤ x) has the form cu(x) where u(x) is the

steady–state rate of a jump of {Lt} terminating in [0, x]. Here

u(x) =
∫ ∞

0

A(dy)
∫ x+y

0

π(z)s dz =
∫ ∞

0

A(dy)
∫ x+y

0

π(0)eT zs dz

= −
∫ ∞

0

A(dy)
∫ x+y

0

βT eT zs dz =
∫ ∞

0

β
(
I − eT (x+y)

)
sA(dy)

= β
(
I − eT x

∫ ∞

0

eT yA(dy)
)
s = βs − βeT x(T − S)1,

where the last equality followed by postmultiplying by 1 = α1 and using
Π(dx) = sαA(dx) and (3.13). Here βs = αS−1S1/µB = 1/µB. Further,
π(x) → 0, x → ∞, implies eT x → 0. Since Pe(Wn ≤ x) → 1, we get c = µB

and (3.14) follows. �

Example 3.18 Consider the FCFS GI/PH/s queue with interarrival dis-
tribution A and representation (F, α, S) of the service time distribution.
By a non–all–busy period we understand a time interval where at least one
server is idle. We define {(It, Lt)} by cutting out non–all–busy periods and
letting E = F s, Jt ∈ E the set of phases in which the s servers are currently
operating, Lt the time which passed since the last customer to enter server
service arrived.

The same graphical representation as in Fig. 3.2 applies, so that Wn is
the waiting time of customer n and the jumps are the interarrival times.
Thus, with s = −S1 the exit rate vector of the service time distribution,
we have Aij = A, C = S⊕· · ·⊕S (Kronecker sum; see footnote to Remark
3.15) and di1...is,j1...js = sik

αjk
if i� = j� for � 
= k (di1...is,j1...js = 0 if

ik 
= jk for at least two k). The form of

qi1...is,j1...js(x) = A(x)
s∑

k=1

sik
pi1...ik−1ik+1...is,j1...js(x),

where p...(x) is the probability that a non–all–busy period, initiated at
residual interarrival time x with server k being idle and with server � 
= k
working in phase i�, is followed by an all–busy period with server m working
in phase jm, m = 1, . . . , s, is, however, more complicated than when s = 1.
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The representation allows in a straightforward way to deal with het-
erogeneous phase–type servers. If, as above, the servers are homogeneous,
the dimension of E may be greatly reduced by instead letting E =
{n1 . . . np : n1 + · · · + np = s} where p = |F | is the number of phases for
the service time distribution and nr ∈ {0, . . . , s} gives the number of servers
operating in phase r. �

Notes The classical sources for GI/M/1 and M/G/1 type models are Neuts
(1981), resp. Neuts (1989); for QBD’s, a more comprehensive and up–to–date
treatment is in Latouche and Ramaswami (1999). There is also much material in
the series of volumes edited by Alfa and Chakravarty (1997, 1998) and Latouche
and Taylor (2000, 2002).

The literature makes little use of the Markov additive point of view we have
taken here and which is also reflected in our notation, which is logical for MAP s
but is not the one in common use (see, however, the footnote on p. 130 in Latouche
and Ramaswami, 1999).

The model of Section 3d was introduced in Sengupta (1989) who also de-
rived the GI/PH/1 waiting time distribution via Example 3.17 (for different
approaches, see VIII.5 and references there). For the GI/PH/s waiting time via
Example 3.18, see Asmussen and O’Cinneide (1998) and Asmussen and Møller
(2001).

4 Solution Methods

4a. Martingale Calculations
4b. Iterative Solutions
4c. The Spectral Solution

We will concentrate on two examples: the stationary distribution of a
reflected Markovian fluid, and evaluation of the R–matrix for a GI/M/1
type model and the G–matrix for a M/G/1 type model; the Sengupta
model can be treated by entirely similar methods as the ones we present,
but we omit the details.

In view of Proposition 1.12, algorithms for the stationary distribu-
tion of the fluid give also the stationary distribution of the workload
in the MArP/PH/1 queue. After some translation, IX.2.7 shows that
what we must find are ways to evaluate the ruin probability ψi(x) =
Pi(τ(x) < ∞) where {(Jt, St)} is an unrestricted Markovian fluid and
τ(x) = inf {t ≥ 0 : St = x}.

For the GI/M/1 type model, it follows by Proposition 2.13 that

R = ∆−1
ν G∗

+
T∆ν (4.1)

where G∗
+ is the strict ascending ladder height kernel of the time–reversed

MAP . For the M/G/1 type model, G is the strict descending ladder height
kernel, which is the same as the strict ascending ladder height kernel of the
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sign–reversed model. Thus, if we are able to calculate the strict ascend-
ing ladder height kernel of an upward skip–free MAP , we also have the
necessary machinery to compute the R– and G–matrices.

4a Martingale Calculations

We write the state space E of {Jt} in the fluid model as the disjoint union
of E−, the states with r(i) < 0 and E+, the states with r(i) > 0 (for
convenience, we assume that no r(i) = 0), and use corresponding block
notation. We let q− be the number of states of E− and q+ the number
of states in E+ and denote by Λ the intensity matrix of {Jt}, by ∆r the
diagonal matrix with the r(i) on the diagonal.

Proposition 4.1 Let s be an eigenvalue of ∆−1
r Λ and b a corresponding

right eigenvector. Then
{
e−sStbJt

}
is a martingale.

[Note that s and hence the martingale may be complex. Note also that
since St is a bounded r.v., integrability is automatic.]

Proof. In the notation of Section 2b, K[α] = Λ+α∆r. Therefore ∆−1
r Λb =

sb implies that 0 is an eigenvalue of K[−s] and b a corresponding right
eigenvector. The rest of the proof is just as for Proposition 2.4. �

Theorem 4.2 Consider a Markovian fluid with κ′(0) < 0, assume that
∆−1

r Λ has q+ distinct eigenvalues s1, . . . , sq+ with �(sν) < 0 and let b(ν) =(
c(ν)T

d(ν)T)T be the right eigenvector corresponding to sν , ν = 1, . . . , q+.
Then

ψi(x) = 1′
i

(
es1xb(1) · · · esq+xb(q+)

)(
d(1) · · · d(q+)

)−1

1.

Proof. For x, y > 0, define

ω(x, y) = inf
{
t > 0 : St = x or St = −y

}
,

pi(x, y; j) = Pi

(
Sω(x,y) = x, Jω(x,y) = j

)
, j ∈ E+,

ri(x, y; j) = Pi

(
Sω(x,y) = −y, Jω(x,y) = j

)
, j ∈ E−,

pi(x; j) = Pi

(
τ(x) < ∞, Jτ(x) = j

)
, j ∈ E+ .

[Note that if Sω(x,y) = x, then the sample path must be increasing at time
ω(x, y) and hence Jω(x,y) ∈ E+; similarly, Sω(x,y) = −y implies Jω(x,y) ∈
E−.] Optional stopping of

{
e−sνStb

(ν)
Jt

}
at time ω(x, y) yields

b
(ν)
i = e−sνx

∑
j∈E+

pi(x, y; j)d(ν)
j + esνy

∑
j∈E−

ri(x, y; j)c(ν)
j .

Letting y → ∞ and using �(sν) < 0 yields

esνxb
(ν)
i =

∑
j∈E+

pi(x; j)d(ν)
j , j ∈ E+.
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Solving for the pi(x; j) and noting that ψi(x) =
∑

j∈E+
pi(x; j), the result

follows. �

Remark 4.3 Write Σ = ∆−1
r Λ. Then s is an eigenvalue of ∆−1

r Λ if and
only if s is a root of the characteristic polynomial det(Σ−sI) = 0. However,
by a general matrix identity familiar from the theory of the multivariate
normal distribution, we can write det(Σ − sI) as

det(Σ−− − sI) · det
(
Σ++ − sI − Σ+−(Σ−− − sI)−1Σ−+

)
, (4.2)

where Σ−− is the upper left block in the decomposition of Σ according
to E−, E+, etc. so that s must be root in one of the two determinants
on the r.h.s. (the first is a polynomial and the next a ratio between two
polynomials). We will see in connection with the spectral method that it is
in fact only the roots of the second determinant that give the needed roots
with �(s) < 0. �

A variant of the argument produces the ladder height distributions
needed for the GI/M/1 and M/G/1 type models. In a general Markov
additive setting, upward skip–freeness means that F (2) = F (3) = · · · = 0
in (3.1). We write q for the number of elements of E, and identify G+ with
the matrix with ijth element g+(i, j) = G+(i, j; {1}).
Theorem 4.4 Consider an upward skip–free discrete–time lattice MAP
with κ′(0) = νµ < 0, let F̂ [z] =

∑1
−∞ zkF (k), assume that there exist q

complex numbers z1, . . . , zq with |�(zν)| > 1 such that 1 is an eigenvalue of
F̂ [zν ] and let b(ν) be the right eigenvector corresponding to zν , ν = 1, . . . , q.
Then

G+ =
(
b(1) · · · b(q)

)(
z1b

(1) · · · zqb
(q)

)−1

.

If instead κ′(0) ≥ 0, the same formula holds except that one should look for
roots with

∣∣�(zν)
∣∣ ≥ 1.

Proof. For m > 0, j ∈ E define

ω(m) = inf
{
n > 0 : Sn = 1 or Sn = −m

}
,

pi(m; j) = Pi

(
Sω(m) = 1, Jω(m) = j

)
,

ri(m; j) = Pi

(
Sω(m) = −m, Jω(m) = j

)
.

As in Proposition 4.1, it is easily seen that
{
zSn

ν b
(ν)
Jn

}
is a martingale (inte-

grability follows from Sn ≤ n and |�(zν)| > 1). Optional stopping at time
ω(m) yields

b
(ν)
i = zν

∑
j∈E

pi(m; j)b(ν)
j + z−m

ν

∑
j∈E

ri(m; j)b(ν)
j . (4.3)
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Letting m → ∞ and using |�(zν)| > 1 yields

b
(ν)
i = zν

∑
j∈E

g+(i, j)b(ν)
j .

Solving for the g+(i, j), the result follows in the case κ′(0) < 0.
The only difference when κ′(0) ≥ 0 is that we also need to deal with the

case |�(zν)| = 1 in (4.3). However, ri(m; j) → 0, m → ∞, when κ′(0) ≥ 0.
�

Corollary 4.5 Consider a GI/M/1 type Markov chain with κ′(0) = νµ <
0, assume that there exist q complex numbers z1, . . . , zq with |�(zν)| > 1
such that 1 is an eigenvalue of F̂ [zν ] and let η(ν) be the corresponding left
eigenvector. Then

R =

⎛⎜⎝ z1η
(1)

...
zqη

(q)

⎞⎟⎠
−1 ⎛⎜⎝η(1)

...
η(q)

⎞⎟⎠ .

Proof. The analogue of F̂ [z] for the time-reversed MAP is F̂
∗
[z] =

∆−1
ν F̂ [z]T∆ν . Thus the roots of det(F̂ [z]− I) = 1 and det(F̂

∗
[z]− I) = 1

are the same, and if b(ν)∗ is the right eigenvector of F̂
∗
[zν ], then we may

take b(ν)∗ = ∆−1
ν η(ν)T. The result then follows after simple algebra by

computing G∗
+ via Theorem 4.4 and using (4.1). �

Corollary 4.6 Consider an M/G/1 type Markov chain with κ′(0) = νµ ≤
0, let F̂ [z] =

∑∞
−1 zkF (k), assume that there exist q complex numbers

z1, . . . , zq with |�(zν)| ≥ 1 such that 1 is an eigenvalue of F̂ [z−1
ν ] and let

b(ν) be the corresponding right eigenvector. Then

G =
(
b(1) . . . b(q)

)(
z1b

(1) . . . zqb
(q)

)−1

.

Proof. By sign–reversion in the last part of Theorem 4.4. �

4b Iterative Solutions

We first complete:

Proof of Theorem 3.12. Recall that

ϕ(G) = F (−1) + F (0)G + F (1)G2 + · · · , G(0) = 0, G(n+1) = ϕ
(
G(n)

)
.

Here F (−1) is the contribution to G coming from the event {S1 = −1}.
Similarly, if S1 = k > −1, then to reach level −1 the process has to move
down k+1 steps. The transitions in each step are governed by G, so that the
contribution to G coming from the event {S1 = k} is F (k)Gk+1. Summing
over k gives ϕ(G) = G.
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Clearly, G(1) = F (−1) ≥ 0 = G(0) and G ≥ 0 = G(0). Hence by
induction,

G(n+1) − G(n) =
∞∑

k=−1

F (k)
(
G(n)k+1 − G(n−1)k+1

)
≥ 0,

G − G(n) =
∞∑

k=−1

F (k)
(
Gk+1 − G(n−1)k+1

)
≥ 0

so that G(n) is increasing in n and a limit, say L, must exist and satisfy
L ≤ G, ϕ(L) = L. Repeating the argument with another solution instead
of G shows that L must be the minimal solution, and it only remains to
show that L ≥ G.

Define Fn as the event that {Sn} has at most n transitions of the form

� → {�, � + 1, . . .} before τ s
− and G̃

(n)
= Pi(Jτ s

− = j; Fn). Then G̃
(n+1)

≤ ϕ
(
G̃

(n))
. Indeed, if Fn+1 occurs and S1 = k ≥ 0, then in the k + 1

ladder steps needed to go to level −1 there can be at most n transitions
of the type considered since there was already one in the first step. Since

G̃
(0)

= F (−1) = G(1), it follows by induction that G̃
(n+1) ≤ ϕ

(
G(n)

) ≤
ϕ
(
G(n+1)

)
= G(n+2). Since G̃

(n) ↑ G, n → ∞, it follows that G ≤ L. �

Proof of R(n) → R in Proposition 3.7. Note that G
(n)
+

∗ → G∗
+ by Theorem

3.12 and appeal to (4.1). �

Turning to QBD’s, Proposition 3.14 suggests the following alternative al-
gorithm (sometimes called the linear progression algorithm) for computing
G (and thereby R and the stationary distribution):

Proposition 4.7 Define G(0) = 0, U (k) = F (0) + F (1)G(k−1), G(k) =(
I − U (k)

)−1
F (−1). Then G(k) ↑ G, k → ∞. Further in the positive

recurrent case κ′(0) = νµ < 0, G − G(k) is of order e−γk, where γ is the
strictly positive solution of κ(γ) = 0. That is, γ = log z where z > 1 solves
spr

(
z−1F (−1) + F (0) + zF (1)

)
= 1.

Proof. Define θ(k) = inf {n > 0 : Sn = k}, k ∈ Z. It is readily checked that

u
(k)
ij = Pi,0

(
Jθ(0) = j, θ(0) < θ(−1) ∧ θ(k)

)
,

g
(k)
ij = Pi,0

(
Jθ(−1) = j, θ(−1) < θ(k)

)
for k = 1, and the validity for k > 1 is then a straightforward induction
argument. Letting k → ∞ yields G(k) ↑ G.

For the second part, just note that (G−G(k))ij = Pi,0

(
Jθ(−1) = j, θ(k) <

θ(−1)
)

and that Pi,0

(
θ(k) < θ(−1)

)
is shown to be of order e−γk in XIII.8.3.

�
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The following remarkable algorithm reduces improves the convergence
rate from O(e−γk) to O(e−γ2k

) and is therefore referred to as the logarithmic
reduction algorithm (requiring only of order log2N iterations to obtain the
same accuracy as the linear progression algorithm with N iterations):

Proposition 4.8 Define Π[0] = I, G[0] = L[0], H [0] =
(
I−F (0)

)−1
F (1),

L[0] =
(
I − F (0)

)−1
F (−1), and, for k ≥ 0,

U [k] = H [k]L[k] + L[k]H [k], (4.4)

H [k+1] =
(
I − U [k]

)−1
H [k]2, (4.5)

L[k+1] =
(
I − U [k]

)−1
L[k]2, (4.6)

Π[k+1] = Π[k]H [k], (4.7)

G[k+1] = G[k] + Π[k+1]L[k+1] (4.8)

Then G[k] ↑ G, k → ∞, and in the positive recurrent case G − G(k) is of
order e−γ2k

.

Proof. The key idea is to let M = maxn<θ(−1) Sn and decompose G ac-
cording to the possibilities M = 0, 1 ≤ M < 3, 3 ≤ M < 7, . . ., and to
get expressions for the corresponding terms in terms of matrices having
probabilistic interpretations for the MAP ’s

{
(J [k]

n , S
[k]
n )

}
where the kth is

defined as {(Jn, Sn)} restricted to levels that are multiples of 2k (i.e. values
of {(Jn, Sn)} where Sn is not such a multiple are cancelled).

We will first show that the interpretation of the matrices U [k], L[k], H [k]

is

h
[k]
ij = Pi,0

(
Jθ(2k) = j, θ(2k) < θ(−2k)

)
, (4.9)

�
[k]
ij = Pi,0

(
Jθ(−2k) = j, θ(−2k) < θ(2k)

)
, (4.10)

u
[k]
ij = Pi,0

(
Jθ(0) = j, θ(2k) < θ(0) < θ(2k+1) or

θ(−2k) < θ(0) < θ(−2k+1)
)
. (4.11)

Indeed, given that (4.9) and (4.10) have been shown, (4.11) follows by
noting that the first term in (4.4) corresponds to θ(2k) < θ(0) < θ(2k+1)
and the second to θ(−2k) < θ(0) < θ(−2k+1). To get (4.9) and (4.10),
we use induction and note that the validity in the case k = 0 is seen by
arguments similar to the identification of U in the proof of Proposition
3.14. If (4.9) and (4.10) and hence (4.11) have been shown for k, then in
order for θ(2k+1) < θ(−2k+1) to occur, there must first be a number of
tours of the level taking us to either 2k and then back to 0 before 2k+1, or
to −2k and then back to 0 before −2k+1. By (4.11), these change the phase
according to

(
I −U [k]

)−1, and we must then first go to 2k before −2k and
from there to 2k+1 before 0, which gives a phase change governed by H [k]
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in both steps. This shows that (4.9) is the same as (4.5), and the case of
(4.10) is symmetric.

The contribution to G from M = 0 is L[0]. If 1 ≤ M < 3, we must
first go to 1 before −1 (phase change governed by H [0]) and next to −1
before 3 (phase change governed by L[1]), giving the contribution H [0]L[1]

to G. If 3 ≤ M < 7, we must first go to 1 before −1, then to 3 before −1
(phase change governed by H [1]) and next to −1 before 7 (phase change
governed by L[2]), giving the contribution H [0]H [1]L[1] to G. Continuing
in this manner we obtain

G = L[0] + H [0]L[1] + H [0]H [1]L[1] + · · · =
∞∑

m=0

Π[m]L[m],

and here
∑k

0 is just G[k]. The rate estimate then follows from Pi,0(M ≥
2k) = Pi,0(θ(2k) < θ(−1)) = O(e−γ2k

); cf. again XIII.8.3. �

We now turn to the fluid case. Here we work with the (terminating) E+–
valued Markov process {Ix} where Ix = Jτ(x), the phase when the fluid
level for the first time reaches level x. Let U be the intensity matrix. Then
(recall the definition of Σ and the blocks Σ±± from Remark 4.3):

Proposition 4.9 ψi(x) = α(i)eUx1, i ∈ E, where α(i) = 1′
i, i ∈ E+,

α(i) = 1′
iP−+, i ∈ E−, where P−+ is the E− × E+ matrix

P−+ = −
∫ ∞

0

e−Σ−−tΣ−+eUt dt.

Proof. Define Θ(t) as the E− ×E− matrix whose ijth element is the prob-
ability that, starting from J0 = i ∈ E−, the fluid level will reach −t in
phase j ∈ E− without {Jt} entering states in E+. From −t, we reach
−t − h in −h/r(k) time units when the current state of {Jt} is k (note
that only k ∈ E− occurs so that r(k) < 0!) so that there is a probability
−hλkj/r(k)+o(h) of making a transition to j (an E−– or E+–state) before
−t − h is reached. This shows easily that Θ′(t) = −Σ−− which together
with Θ(0) = I gives Θ(t) = e−Σ−−t.

The assertion of the proposition is clear for i ∈ E+ where it just reflects
the fact that the lifetime of {Ix} is phase–type with phase generator U
and initial vector 1′

i. For i ∈ E−, the assertion also becomes clear once
we have verified that the ijth element of P −+ coincides with Pi(Jω = j)
where ω = inf {t > 0 : St = 0}. This follows since, as noted above, the ikth
element of e−Σ−−t gives the probability that starting from J0 = i, the fluid
level will reach −t in phase k without {Jt} entering states in E+. W.p.
−h1′

kΣ−+1� + o(h), there will then be a transition to � ∈ E+ before the
fluid level reaches −t − h, and then a process

{
Ĩx

}
distributed as {Ix}

starts and has Ĩt = Jω. Summing over k, � and integrating t out, the result
follows. �



4. Solution Methods 335

Theorem 4.10 U = Φ(U) where

Φ(U) = Σ++ − Σ+−
∫ ∞

0

e−Σ−−tΣ−+eUt dt.

Further, U is the minimal solution of this equation satisfying U ≥ Σ++

and can be computed as limn→∞ Φ
(
U (n)

)
where U (0) = Σ++, U (n+1) =

Φ
(
U (n)

)
.

Proof. As in the proof of Proposition 4.9, Σ++ describes the phase changes
of {Ix} while the fluid level is increasing without phase changes of {Jt} to
states in E−. Such changes are described by the matrix Σ+−, and if there
is such a transition at fluid level x, say from i ∈ E+ to j ∈ E−, we will
have Ix = k with a probability that is the ijth element of P −+. Adding
these two contributions and appealing to the explicit form of P −+ found
in Proposition 4.9 shows U = Φ(U). The rest of the proof is rather similar
to the proof of Theorem 3.12 and omitted. �

4c The Spectral Method

The martingale calculations in Section 4a provided one way to find G+

in diagonal form. The spectral method provides another one, using the
Wiener–Hopf factorization from Section 2f. We will see (not surprisingly)
that exactly the same eigenvalues and eigenvectors are required as when
using martingales. As an example, we give an alternative:

Proof of Theorem 4.4. In terms of generating functions, I−F = (I−#G−)∗
(I − G+) means in the upward skip–free lattice case that

I − Ĝ[z] =
(
I − #Ĝ−[z]

)(
I − zG+

)
. (4.12)

Now G∗
− is stochastic since κ′(0) < 0. Thus if |�(z)| > 1, Ĝ

∗
−[z] is bounded

in absolute value by a substochastic matrix which implies that the absolute
value of any eigenvalue is strictly smaller than 1, and hence the same is true
for #Ĝ−[z]. For any ν, it follows by multiplying (4.12) by b(ν) to the right
that (I−#Ĝ−[z])(I−zG+)b(ν) = 0. This implies (I −zG+)b(ν) = 0, since
otherwise #Ĝ−[z] would have the eigenvalue 1. Thus 1/z is an eigenvalue
of G+ with eigenvector b(ν), and the truth of this for all ν = 1, . . . , q
immediately implies that G+ has the stated form. �

In the fluid case, similar arguments yield:

Theorem 4.11 Consider a Markovian fluid with κ′(0) < 0 and let sν ,
b(ν), ν = 1, . . . , q+, etc. be as in Theorem 4.2. Then

U =
(
s1d

(1) · · · sq+d(q+)
)(

d(1) · · · d(q+)
)−1

.
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Notes The logarithmic reduction algorithm is due to Latouche and Ra-

maswami (1993). The spectral method for GI/M/1 and M/G/1 type models

is discussed in Gail et al. (1996).

5 The Ross Conjecture and Other
Ordering Results

A common folklore states that “adding variation decreases performance”.
For example, if a Markov–modulated M/G/1 queue has i.i.d. service times
U1, U2, . . ., then this leads to expecting that the mean waiting time is larger
than the one in a standard M/G/1 queue where the service times are the
same but the constant arrival rate is β∗ =

∑
βiπi, the long–run arrival rate

in the Markov–modulated queue.
We will prove below (Corollary 5.4) a version of this result, which cov-

ers both a more general model and contains a more general concept of
performance degradation than just an increased mean, namely a majoriza-
tion in the increasing convex ordering ≤icx; see A4 for basic definitions
and discussion of why comparisons in increasing convex ordering are also
comparisons of performance. However, we start with a comparison of two
queueing systems in the discrete time setting of Loynes’s lemma; cf. IX.2.
That is, we have given two input sequences

{
X

(1)
n

}
n∈Z

,
{
X

(2)
n

}
n∈Z

, and

define W
(i)
n+1 =

(
W

(i)
n + X

(i)
n

)+, i = 1, 2. Assuming that finite limits
W

(1)
∞ , W

(2)
∞ in distributions exist, we look for criteria for W

(1)
∞ ≤icx W

(2)
∞ .

Let S
(i)
n = X

(i)
1 + · · · + X

(i)
n and let ≤cx denote the convex ordering; see

again A4.

Proposition 5.1 Assume that S
(i)
n

a.s.→ −∞, i = 1, 2 and that X(1)
n ≤icx

X(2)
n for all n where X(i)

n =
(
X

(i)
1 , . . . , X

(i)
n

)
. Then W

(1)
∞ ≤icx W

(2)
∞ .

Proof. Define w1(x1) = x+
1 , w2(x1, x2) = w1(w1(x1)+x2), w3(x1, x2, x3) =

w1(w2(x1, x2) + x3) and so on. Since w1 is convex and sums of convex
functions are convex, it follows easily by induction that wn(x1, . . . , xn) is
convex and increasing on Rn.

By Strassen’s theorem (cf. A4), we may assume w.l.o.g. that X (1)
n ≤

E
[
X(2)

n

∣∣X(1)
n

]
. Therefore by monotonicity, Jensen’s inequality and the

convexity of wn,

W (1)
n = wn

(
X(1)

n

) ≤ wn

(
E
[
X(2)

n

∣∣X(1)
n

])
≤ E

[
wn(X(2)

n )
∣∣X(1)

n

]
= E

[
W (2)

n

∣∣X(1)
n

]
.

Therefore, if f is increasing and convex,

Ef
(
W (1)

n

) ≤ Ef
(
E
[
W (2)

n

∣∣X(1)
n

]) ≤ E E
[
f(W (2)

n )
∣∣X(1)

n

]
= Ef

(
W (2)

n

)
,
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where we used f ↑ in the first step and Jensen’s inequality in the next.
Letting n ↑ ∞ and using monotone convergence justified by

W
(i)
n+1

D= max
k≤n+1

X
(i)
k ≥ max

k≤n
X

(i)
k

D= W (i)
n

completes the proof. �

Corollary 5.2 Let W
(1)
∞ , W

(2)
∞ be the steady–state waiting times in two

GI/G/1 queues with generic interarival times T (1), T (2) and generic service
times U (1), U (2). If U (1) ≤icx U (2) and T (1) ≤cx T (2), then W

(1)
∞ ≤icx W

(2)
∞ .

Proof. Since −T (1) ≤cx −T (2) (implying −T (1) ≤icx −T (2)), and ≤icx is
closed under convolution, we have

X(1) = U (1) − T (1) ≤icx U (2) − T (2) = X(2),

which is easily seen to imply X(1)
n ≤icx X(2)

n . �

Corollary 5.3 (i) Consider the class of stable GI/G/1 queues with fixed
interarrival distribution A and fixed mean µ = µB of the service time distri-
bution B. Then the steady–state waiting time W is minimized in increasing
convex ordering for GI/D/1, i.e. by taking the service time distribution de-
generate at µ.
(ii) Consider the class of stable GI/G/1 queues with fixed service time dis-
tribution B and fixed mean ν = µA of the service time distribution B. Then
the steady–state waiting time W is minimized in increasing convex ordering
for D/G/1, i.e. by taking the interarrival time distribution degenerate at
ν.

Proof. Just note for (i) that any r.v. U (a generic service time) satisfies
U ≥cx EU and appeal to Corollary 5.2. The proof of (ii) is similar. �

We now return to the continuous–time problem discussed in the begin-
ning of this section. Consider the M/G/1 workload process

{
V

(2)
t

}
t≥0

in a
random environment, where the arrival process is a Cox process (cf. A3): the
arrival intensity at time t is β(t) for some stationary ergodic process {β(t)}
independent of the sequence U1, U2, . . . of service times (assumed i.i.d.).
Define β∗ = Eβ(t) and let

{
V

(1)
t

}
t≥0

be the standard M/G/1 workload
process with arrival intensity β∗ and the same service time distribution.
Similarly, let the waiting time sequences in the two systems be

{
W

(1)
n

}
n∈N

,{
W

(2)
n

}
n∈N

, where for the random environment waiting time sequence it
is assumed that the arrival process is the Palm version (with governing
probability measure P0) of {βt} (see VII.6).

Corollary 5.4 Assume ρ = β∗EU1 < 1. Then:
(a) W

(1)
n , W

(2)
n have limits W

(1)
∞ , resp. W

(2)
∞ , in distribution, and W

(1)
∞ ≤icx

W
(2)
∞ ;
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(b) V
(1)
t , V

(2)
t have limits V

(1)
∞ , resp. V

(2)
∞ , in distribution, and V

(1)
∞ ≤icx

V
(2)
∞ .

Proof. In the setting of Loynes’s lemma,
{
V

(1)
t

}
,
{
V

(2)
t

}
are reflected

versions of

S
(1)
t =

N∗
t∑

i=1

Ui − t, S
(2)
t =

Nt∑
i=1

Ui − t,

where {Nt} is Poisson with stochastic intensity β(t) and independent of
U1, U2, . . ., and {N∗

t } is standard Poisson with intensity β∗ and independent
of U1, U2, . . .. By the ergodic theorem, Nt/t

a.s.→ β∗, and therefore by the
LLN,

S
(2)
t

t
=

Nt

t

Nt∑
i=1

Ui/Nt − 1 a.s.→ β∗EUi − 1 = ρ − 1.

Similarly but easier, S
(1)
t /t

a.s.→ ρ−1. Since ρ < 1, we therefore have S
(i)
t

a.s.→
−∞, i = 1, 2, and the existence of limits is immediate from IX.2c. A similar
argument applies to the waiting times.

For the increasing convex ordering, we first consider (a). Denote the
interarrival times in the two systems by T

(1)
n , T

(2)
n . We may assume that

the T
(1)
n , T

(2)
n have ben constructed from i.i.d. standard exponentials T

(0)
n

as T
(1)
n = T

(0)
n /β∗ and

T (2)
n = Γ

( n∑
k=1

T
(0)
k

)
− Γ

(n−1∑
k=1

T
(0)
k

)
,

where Γ(t) = inf {v > 0 : B(v) ≥ t} with B(v) =
∫ v

0
β(s) ds (see A3 and

VII.6.5 where it was also shown that β∗E0Γ(t) = t for all t). Letting X
(i)
n =

Uk − T
(i)
k and

Gn = σ
(
U1, T

(0)
1 , . . . , Un, T (0)

n

)
, G′

n = σ
(
T

(0)
1 , . . . , T (0)

n

)
,

it follows that

E0

[
X(2)

m

∣∣Gn

]
= Um − E0

[
T (2)

m

∣∣G′
n

]
= Um −

( m∑
k=1

T
(0)
k /β∗ −

m−1∑
k=1

T
(0)
k /β∗

)
= Um − T (0)

m /β∗ = X(1)
m ,

m = 1, . . . , n. Thus the convex ordering condition of Proposition 5.1 holds.
For (b), just appeal to the relation X.(3.3) between the stationary work-

load and waiting time distribution (the proof carries over the present setting
without changes); the two systems have the same traffic intensity ρ and U ∗,
and W

(1)
∞ + U∗ ≤icx W

(2)
∞ + U∗ by independence. �
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Notes The classical reference on ordering of queues is Stoyan (1983) (see also

Müller and Stoyan, 2002); there is also much material in Baccelli and Brémaud

(2002), Chen and Yao (2001) and Szekli (1995). The special case EV
(1)
∞ ≤ EV

(2)
∞

of Corollary 5.4 goes under the name the Ross conjecture and there is an extensive

literature on this and related problems. The conjecture in the more general form

of Corollary 5.4 was proved by Rolski (1981); for a recent paper in the area and

references, see Hordijk (2001).



XII
Many–Server Queues

1 Comparisons with GI/G/1

Many–server queues present some of the most intricate problems in queue-
ing theory and provide examples of how models, which are simple and well
motivated from practical situations, may lead to substantial mathematical
difficulties. Not only are the steady–state characteristics more difficult to
evaluate than in the single–server case, but also even just to show existence
of (unique) limits presents major difficulties when pursuing the model in
its greatest generality.

We consider the standard GI/G/s queue with customers n = 0, 1, 2, . . .,
service times U1, U2, . . . (governed by B), interarrival times T0, T1, . . . (gov-
erned by A) and FCFS queue discipline, meaning that the customers join
service in the order they arrive (for s = 1, this implies the FIFO property of
a similar ordering of the departures but this is not the case for s > 1). The
model may be represented in various ways, one of the most obvious being
that the customers form one line in the order of arrival and the customer
in front joins the first server to become idle. However, most often we think
of each server as having his own waiting line and the arriving customer
joining the line that is the first to become available, i.e. that has the least
residual work. For mathematical purposes, we order the residual work in
the various lines at time t and thus obtain a vector V t =

(
V

(1)
t · · · V

(s)
t

)T

satisfying V
(1)
t ≤ V

(2)
t ≤ · · · ≤ V

(s)
t . It is of particular interest to observe V t

just before the arrival instants τ(n) = T0 + · · ·+ Tn−1 and we write Wn =(
W

(1)
n · · · W

(s)
n

)T = V τ(n)−. Thus the FCFS discipline implies that W
(1)
n
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is the waiting time of the nth customer. As generalization of the Lindley
recursion Wn+1 = (Wn + Un − Tn)+ we get

Wn+1 = R
((

W (1)
n +Un −Tn

)+
,
(
W (2)

n −Tn

)+
, . . . ,

(
W (s)

n −Tn

)+)T

(1.1)

where R is the operator on Rs which orders the coordinates in ascending
order (one immediate implication is that {Wn} is a Markov chain); (1.1) is
commonly referred to as the Kiefer–Wolfowitz recursion and Wn is denoted
the Kiefer–Wolfowitz vector. Finally, we let Qt denote the queue length
(number of customers in the system) at time t and write

|v| =
∣∣(v(1) · · · v(s))T

∣∣ = v(1) + · · · + v(s) when all v(s) ≥ 0.

Thus, for example, |V t| is the workload (remaining work) at time t.
By good luck, many problems in the theory of the GI/G/s queue that

are difficult to approach directly may be reduced to the case s = 1 by
obtaining suitable bounds in terms of single–server systems with the same
traffic intensity. For the present applications, it suffices to consider an initial
empty queue, and this will be done for the sake of simplicity. Starting with
the lower (and easier) bound, let {W ∗

n}, {V ∗
t }, etc. refer to a GI/G/1 queue

with the same interarrival times T0, T1, . . . and service times U0/s, U1/s, . . ..
The server in this system reduces workload at the same rate as when all s
servers are busy in the GI/G/s system, i.e. as when this system is working
at its highest capacity, and in fact we have:

Theorem 1.1 If sV ∗
0− ≤ |V0−|, then sV ∗

t ≤ |V t| for all t.

Proof. We first note that sV ∗
t ≤ |V t| for 0 ≤ t < T0. This follows simply by

using the inequality (x + y)+ ≤ x+ + y+ s times to obtain

sV ∗
t = s

(
V ∗

0− + U0/s − t
)+ ≤

(
V

(1)
0− + U0 − t +

s∑
i=2

(
V

(i)
0− − t

))+

≤ (
V

(1)
0− + U0 − t

)+ +
s∑

i=2

(
V

(i)
0− − t

)+ = |V t|

for t < T0 = τ(1). In particular, sV ∗
τ(1)− ≤ |V τ(1)−| so that repeating the

argument yields sV ∗
t ≤ |V t|, τ(1) ≤ t < τ(2), and the desired conclusion

follows by iteration. �

Note that we cannot infer similar bounds for the waiting times themselves:
If say U0 > sT0, then W

(1)
1 = 0 but W ∗

1 = (U0/s − T0)+ > 0.
As upper bound, we shall consider an s–server queue with the same in-

terarrival times and service times, but with a different allocation of the
customers to the servers (by an allocation we mean a {1, . . . , s}–valued
adapted function σ(n) telling which server customer n joins). In addition
to the GI/G/s FCFS allocation rule, corresponding to a customer joining
the server with the lowest workload, a main example is the cyclic discipline
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σ(ks + i) = i, where every sth customer goes to server i. Then the queue
in front of server i is simply a GI/G/1 queue with interarrival time dis-
tribution A∗s and service time distribution B (these s queues are highly
dependent due to the dependence between their interarrival times). In the
following, we will denote the system with a possibly non–FCFS allocation
rule by tildes.

Intuitively, one feels that the given GI/G/s rule should be optimal, and
indeed, we will show:

Theorem 1.2 For any (possibly non–FCFS) allocation rule, it holds for
initially empty systems, that Qt ≤so Q̃t and |V t| ≤so |Ṽ t| for all t ≥ 0.
Similarly |W n| ≤so |W̃ n| for all n.

It is tempting to assert that the result holds also in the sense of sample
paths. This is, however, false (Problem 1.1) but can be achieved using a
suitable coupling, cf. Lemma 1.3 below. Let

0 ≤ J0 ≤ J1 ≤ . . . , 0 ≤ J̃0 ≤ J̃1 ≤ . . .

be the ordered epochs of initiation of service in the two systems (the FCFS
rule then simply means that Jn is the instant where customer n initiates
service), but with the modification that in the modified system we allocate
the service times U0, U1, . . . to the customers not according to their order of
arrival, but rather according to the order in which they join service. Thus
the service time of a particular customer is chosen from the sequence {Un}
in a way that depends on {Tn} and the service times of other customers.
However, by independence, distributional properties remain the same (e.g.
in the cyclical case, any server still faces a GI/G/1 system). Similar remarks
apply to modifications of the procedure as in the proof of Theorem 1.2
below.

Letting min(k) denote the operation that returns the kth order statistics
from a finite or infinite set of r.v.’s, it follows that the ordered departure
times from the two systems are

Dk = min(k){J0 + U0, J1 + U1, . . .} , D̃k = min(k)
{
J̃0 + U0, J̃1 + U1, . . .

}
.

Lemma 1.3 For initially empty systems coupled as above, it holds that
Dk ≤ D̃k for all k. In particular, Qt ≤ Q̃t for all t ≥ 0.

Proof. The crux is to establish the relations

J̃n ≥ max
{
τ(n), D̃n−s

}
, Jn = max {τ(n), Dn−s} (1.2)

D̃k = min(k)
{
J̃n + Un : 0 ≤ n < k + s

}
(1.3)

Dk = min(k) {Jn + Un : 0 ≤ n < k + s} (1.4)

where in (1.2) we let Dk = D̃k = 0 for k < 0. In the first half of (1.2) we
have obviously J̃n ≥ τ(n) and thus the assertion is true for n = 0, . . . , s−1.
Also, for n ≥ s it would follow from J̃n < D̃n−s that at time J̃n at least
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n+1−(n−s) = s+1 customers were receiving service, which is impossible.
This shows the first half of (1.2). For n ≥ k + s we then get D̃k ≤ J̃k+s ≤
J̃n ≤ J̃n + Un and (1.3) follows by combining with the definition of D̃k (of
course, (1.4) is just a special case of (1.3)).

For the second half of (1.2), note that if W
(1)
n = 0 (i.e. customer n does

not wait), then Jn = τ(n), whereas otherwise Jn = Dn−s. The claim thus
follows by noting that W

(1)
n = 0 if and only if Dn−s ≤ τ(n).

It now follows from (1.2)–(1.4) that J̃n ≥ Jn for all n. Indeed, this is
obvious for n ≤ s − 1, and if J̃n ≥ Jn for all n ≤ N , then

DN+1−s = min(N+1−s) {Jn + Un : n ≤ N}
≤ min(N+1−s)

{
J̃n + Un : n ≤ N

}
= D̃N+1−s,

J̃N+1 ≥ max
{
τ(N + 1), D̃N+1−s

} ≥ max {τ(N + 1), DN+1−s}
= JN+1.

It then follows from (1.3)–(1.4) that D̃n ≥ Dn for all n, and since the
arrival epochs in the modified system and the GI/G/s queue are the same,
it is immediate that Q̃t ≥ Qt for all t ≥ 0. �

Proof of Theorem 1.2. That Qt ≤so Q̃t is immediate from Lemma 1.2 since
the coupling does not change the distribution. For V t and Wn, we proceed
by a modification of the coupling. Fixing t and letting M denote the number
of arrivals before t, the idea is to treat the m = inf {n : Jn > t}, resp. m̃ =
inf

{
n : J̃n > t

}
, of the customers who join service before t in the same way

as before, but to allocate service times to the remaining M−m, respectively
M̃ − m, in the natural order. Thus the service times of customers arriving
before time t are permutations (different for the GI/G/s system and the
alternative rule for allocation to servers) of U0, . . . , UM−1. The modified
systems obtained this way are denoted by superscripts#, and obviously
V #

t
D= V t, Ṽ

#

t
D= Ṽ t so that it suffices to show |V #

t | ≤ ∣∣Ṽ #

t

∣∣. But because
of Jn ≤ J̃n, we have m ≥ m̃, and hence (using Jn ≤ t)

∣∣V #
t

∣∣ =
m−1∑
n=0

(Jn + Un − t)+ +
M−1∑
n=m

Un

≤
m̃−1∑
n=0

(
J̃n + Un − t

)+
+

m−1∑
n=m̃

Un +
M−1∑
n=m

Un =
∣∣Ṽ #

t

∣∣.
The similar inequality for the Wn follows by just the same argument. �

Here is a marked difference between single– and many–server queues.
Define ρ = EU/sET . Then (recall from X.2 that EW < ∞ if and only if
EU2 < ∞ when s = 1, ρ < 1):

Theorem 1.4 EW (1) < ∞ provided ρ < 1 − 1/s and EU 3/2 < ∞.
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Proof. We give the proof for s = 2 only. The crux is the recursion W
(1)
n+1 =(

W
(1)
n + Vn − Tn

)+ where Vn = Un ∧ (
W

(2)
n −W

(1)
n

)
, as follows easily from

(1.1). Of course, this is not a simple Lindley recursion since the Vn are
highly dependent on the past, but after having shown EeV

2
0 < ∞ it indeed

allows to infer EW (1) < ∞ in a rather similar way as in X.2.
Let Pe be the governing probability measure for a doubly infinite sta-

tionary version of
{
(Un, Tn, W

(1)
n )

}
. Then Ee|W0|1/2 < ∞ by Theorem 1.2

and X.2.1, and hence, since W0 and U0 are independent,

EeV
2
0 ≤ Ee

[
U0 ∧ |W0|

]2 ≤ Ee

[
U

3/2
0 |W0|1/2

]
= EeU

3/2
0 ·Ee|W0|1/2 < ∞.

Similarly, bounding V0 by U0 gives Ee[V0 − T0 |F0] ≤ −δ where F0 =
σ(Un, Tn : n < 0) and −δ = E(Un − Tn) < 0. Now just appeal to a small
modification of the proof of X.2.1 given in Problem 1.3. �

Problems

1.1 Let s = 2, T0 = 1/2, T1 = 3/4, U0 = 3/2, U1 = 100, U2 = 1/2, and suppose
that in the modified system customers 0,1 are allocated to server 1, customer 2
to server 2. Show that |V 1| = 100, |Ṽ 1| = 1.

1.2 Show in the setting of Theorem 1.2 that EW
(1)
n ≤ EW̃

(1)
n .

1.3 Let {Xn}n∈Z
be a stationary ergodic sequence such that E[X0 |F0] ≤ −δ

where F0 = σ(Xn : n < 0) and δ > 0. Let as in IX.2 {(Xn, Wn)}n∈Z
be stationary

with Wn+1 = (Wn + Xn)+. Show that EX2
0 < ∞ implies EW0 < ∞.

Notes Theorem 1.2 is from Wolff (1987); see also Foss (1980). A recent paper
in the area is Foss and Chernova (2001), and further references can be found
there.

Theorem 1.4 is from Scheller–Wolf and Sigman (1997). The intuition behind

that the conditions for (say) s = 2 are weaker than for s = 1 is that if s = 2,

ρ < 1/2, then the system would be stable if only one of the servers was operating

so that the second server represents an extra capacity of the system. Sowewhat

similar dependencies on ρ show up in heavy–tailed asymptotics; see Whitt (2000).

Further conditions (of quite intricate form!) for finiteness of moments of W (1) are

in Scheller–Wolf (2003).

2 Regeneration and Existence of Limits

Motivated from the single–server case, our aim is to show that waiting–time
vectors, queue length processes and so on have limits for ρ = EU/sET < 1
but not for ρ ≥ 1.

The case ρ ≥ 1 is by far the easiest. In fact, letting W ∗
n , V ∗

t , etc. refer to
the GI/G/1 system in Theorem 1.1 (which has the same traffic intensity as
the given GI/G/s system), we have W ∗

n
D→ ∞, V ∗

t
D→ ∞ and thus it is clear

from Theorem 1.1 that |Wn| D→ ∞, |Vn| D→ ∞. We give a slightly stronger
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result below (Corollary 2.6) and pass right on to the more interesting and
difficult case ρ < 1.

The straightforward generalization of the GI/G/1 methodology would
be to base the analysis on the sequence {σ(k)} of customers arriving at
an empty system. These are obviously regeneration points for say {W n},
but (perhaps somewhat unexpectedly), it turns out that ρ < 1 alone is not
enough to ensure that the renewal process {σ(k)} will be nonterminating.
Define

α+ = ess sup A = sup
{
x : A(x) > 0

}
,

β− = ess infB = sup {x : B(x) = 0} .

Example 2.1 Suppose that β− > α+ (e.g. for s = 2, A may be uniform
on (1/2, 1) and B degenerate at 5/4 so that ρ = 5/6 < 1). Then Un > Tn

which means that customer n is still present in the system when n + 1
arrives. That is, the system never becomes empty. �

It turns out, in fact, that β− < α+ (or equivalently P(U < T ) > 0) en-
sures that {σ(k)} will be nonterminating. This assumption does not appear
terribly restrictive from the point of view of applications (where typically
either A or B has support on the whole of (0,∞) so that β− < α+ is au-
tomatic). Nevertheless, we shall persue the general case, which presents a
classical problem and for which many ingenious and interesting ideas have
been developed.

It was noted in Section 1 that {Wn} is a Markov chain on E ={
w : 0 ≤ w(1) ≤ · · · ≤ w(s)

}
, and we shall show:

Theorem 2.2 If ρ < 1, then {Wn} is Harris ergodic on E. Therefore an
E–valued random variable W exists such that Wn → W in total variation.
In particular, the waiting times converge, W

(1)
n → W (1) in t.v.

The proof rests on two lemmas:

Lemma 2.3 If ρ < 1, then {Wn} (or equivalently {|Wn|}) is tight.

Proof. This follows simply by comparison with single–server queues: If the
modified system of Section 1 corresponds to the cyclical allocation rule,
then

{|W̃n|
}

is the sum of s (dependent) waiting time sequences in GI/G/1
queues with ρ < 1. Hence

{|W̃n|
}

is tight, and therefore {|Wn|} is so
according to Theorem 1.2. �

Lemma 2.4 If ρ < 1, then the set RK =
{
w ∈ E : w(s) ≤ K

}
is a re-

generation set for {Wn} in the sense of VII.3 for all sufficiently large
K.

Proof. Recalling that α+ = ess sup A, β− = ess inf B, it follows from ρ < 1
that β− < sα+. Hence we can find η, ε > 0 such that the event Fk =
{Uk < sη − ε, Tk > η} has positive probability, say δ. Let r be an integer
so large that r > sK/ε and define F = F0 · · ·Fr−1. Loosely speaking, a
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main idea of the proof is that each occurrence of a Fk decreases residual
work (at least when W

(i)
k > η for all i) and that r has been chosen so large

that the dependence on the particular value of W0 = w ∈ RK becomes
unimportant after r steps. To make this more precise, consider again the
(coupled) cyclical system of Theorem 1.2 and let W0 = w ∈ RK . It is then
easy to check (say from the expression III.6.3 for the GI/G/1 waiting time)
that customer n does not have to wait provided that r − 2s ≤ n ≤ r and
that F occurs. Hence the queue length at the (r − s)th arrival is at most
s−1 in the (coupled) cyclical system, therefore also in the GI/G/s system.
This means that customers r− s, . . . , r−1 enter service immediately. Thus
with λ(A) = P0(Ws ∈ A |F0 . . . Fs−1), we have

Pw(Wr ∈ A) ≥ δrλ(A), w ∈ RK , (2.1)

and it only remains to show that RK is recurrent for some (and then
necessarily all larger) K. But let L = sη, GK = {Wn ∈ RK i.o.}, G ={
limW

(s)
n < ∞}

. Then λ in (2.1) is concentrated on RL and hence (say by
the conditional Borel–Cantelli lemma) PGL ≥ PGK for all K. Thus also
PGL ≥ PG since GK ↑ G. But PG = 1 by tightness, hence PGL = 1. �

Proof of Theorem 2.2. It follows from Lemma 2.4 that {W n} is Harris
recurrent. Also, aperiodicity follows since (2.1) holds for all sufficiently
large r (cf. Problem VII.3.2) and we only have to show |π| < ∞, where π
is the stationary measure. Now a perusal of the construction of π in VII.3
easily shows that RK being a regeneration set implies that π(RK), being
the expectation of the geometrically bounded number of visits to K during
a cycle, is finite. Hence if |π| = ∞, VII.3.9 would yield Pw(Wn ∈ RK) → 0
for all K, i.e. W

(s)
n

D→ ∞. But this contradicts Lemma 2.3. �

In continuation of Example 2.1, we also get:

Corollary 2.5 If ρ < 1 and β− < α+, then the sequence {σ(k)} of cus-
tomers entering an empty system (i.e. satisfying Wσ(k) = 0) is an aperiodic
nonterminating renewal process with finite mean interarrival time.

Proof. The condition β− < α+ ensures PF ′
k = δ′ > 0, where F ′

k =
{Uk < η′ − ε < η′ < Tk}. Just as in the proof of Lemma 2.4 (even easier!)
it then follows that Pw(Wr = 0) ≥ δ′r, w ∈ RK , for all sufficiently large
r. Since RK is recurrent, a geometrical trial argument then shows that 0
is so too, and the rest of the argument is much the same as before. �

Returning to the case ρ ≥ 1 for a brief remark, we shall show:

Corollary 2.6 If ρ ≥ 1, then the waiting time process
{
W

(1)
n

}
satisfies

W
(1)
n

D→ ∞.

This follows simply by combining the estimate
∣∣W (1)

n

∣∣ D→ ∞ observed earlier
with the following bound on the dispersion of the servers:
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Lemma 2.7 Define Z
(i)
n = W

(s)
n −W

(i)
n . Then the sequence {Zn} is tight.

Proof. Since all Z
(i)
n ≥ 0, it suffices to show that {|Zn|} is tight. Now

|Zn+1| = W
(s)
n+1 − (W (1)

n + Un − Tn)+ +
s∑

i=2

[
W

(s)
n+1 − (W (i)

n − Tn)+
]
.

Define H = (W (1)
n + Un − Tn)+, K = (W (s)

n − Tn)+. If H ≥ K, we have
W

(s)
n+1 = H and get

|Zn+1| =
s∑

i=2

[
H − (W (i)

n − Tn)+
] ≤

s∑
i=2

[
W (1)

n + Un − W (i)
n

]
≤ (s − 1)Un,

using the inequality h+ − j+ ≤ h − j valid for h ≥ j. If H < K, we have
W

(s)
n+1 = K and get similarly

|Zn+1| = K − H +
s∑

i=2

[
K − (W (i)

n − Tn)+
]

≤ W (s)
n − (

W (1)
n + Un

)
+

s∑
i=2

[
W

(s)
n+1 − W (i)

n

]
= |Zn| − Un.

Thus

|Zn+1| ≤ max
{
|Zn| − Un, (s − 1)Un

}
≤ · · ·

≤ max
{
|Z0| −

n∑
i=0

Ui, (s − 1)Uk −
n∑

i=k+1

Ui : 0 ≤ k ≤ n
}

D= max
{
|Z0| −

n∑
i=0

Ui, (s − 1)Uk −
k−1∑
i=0

Ui : 0 ≤ k ≤ n
}

D→ max
0≤k<∞

{
(s − 1)Uk −

k−1∑
i=0

Ui

}
.

This limit is finite a.s. since EU < ∞ implies Uk/k
a.s.→ 0 and

∑k−1
0 Ui ∼

kEU . This shows that {|Zn|} is tight. �

We proceed to continuous time.

Corollary 2.8 Suppose ρ < 1. If (a) A is nonlattice and P(U < T ) > 0,
then Q = limt→∞ Qt exist as a t.v. limit and V = limt→∞ V t as a weak
limit. If instead (b) A is spread out, then both limits exist in t.v.

Proof. In case (a), the system regenerates in the usual sense at the instants
C(k) = T0 + · · ·+Tσ(k)−1 of arrivals at an empty system. The cycle length
distribution is the P0–distribution of C(1). This is nonlattice by X.3.2 and
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the mean E0τ(1) is E0σ(1)ET < ∞. Thus case (a) is just a standard
application of regenerative processes and Corollary 2.5.

In case (b), we define

Q∗
t =

(
Qt, At, R

(1)
t , . . . , R

(s)
t

) ∈ N × [0,∞)s+1,

where At is the backward recurrence time of the arrival process and the R
(i)
t

are the ordered residual service times just before time t (the residual service
time at an empty channel is defined as 0). Then {Q∗

t } is a Markov process,
and we shall carry out the proof by a slightly tricky application of ideas from
VII.2–3. We let ψ be the distribution of Q∗

T0+···+Ts−1
conditionally upon an

initially empty queue and the events F0, . . . , Fs−1 of the proof of Lemma
2.4. Arguing as in the proof of Lemma 2.4, we can find a stopping time
τ with Eτ < ∞ such that Q∗

t is distributed according to ψ. Hence, along
similar lines as in VII.3.2 or VII.6, it follows that {Q∗

t } has a stationary
version

{
Q̃

∗
t

}
, and we shall complete the proof by constructing a coupling

of {Q∗
t } to

{
Q̃

∗
t

}
. First, it follows from VII.2.7 that we can construct a

coupling epoch S for {At},
{
Ãt

}
. This means that there exists r, r̃ such

that S = T0 + · · · + Tr−1 = T̃0 + · · · + T̃r−1 and Tr+k = T̃r̃+k, k = 0, 1 . . ..
Then {

VS+Tr+···+Tr+k−1

}
k∈N

,
{
ṼS+Tr+···+Tr+k−1

}
k∈N

(2.2)

are both versions of {Wn}, and by Harris ergodicity and VII.3.13, there
exists a coupling epoch K such that the chains (2.2) at time K have at
least one component equal to zero. But this implies that {Q∗

t } and
{
Q̃

∗
t

}
coincide at S +Tr + · · ·+Tr+K−1 which hence may be taken as the desired
coupling epoch. The t.v. convergence of {Q∗

t } then immediately implies
that of {Qt} and the t.v. convergence of {V t} follows since the distribution
of V t is a function of the distribution of Q∗

t . �

Notes The discrete time theory goes back to a remarkable tour de force paper
by Kiefer and Wolfowitz (1955). The key step here, the construction of regen-
eration points in Lemma 2.4, can be found in Gnedenko and Kovalenko (1968),
whereas Harris ergodicity was proved by Charlot et al. (1978). As for the topics
of Section 1, the literature contains quite a few mistakes and gaps and should be
read with care.

The existence of limits in continuous time under minimal conditions is more

difficult; see Foss and Kalashnikov (1991) and Asmussen and Foss (1993).

3 The GI/M/s Queue

The GI/M/s case corresponds to B being exponential, B(x) = e−δx. As
for single–server queues, this is the simplest example and it is notable that
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for s > 1, the M/G/s case does not appear substantially simpler than the
GI/M/s case.

Let Yn denote the queue length just before the arrival of customer n.
Then:

Proposition 3.1 {Yn} is a Markov chain on N. The transition matrix is
of the form⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p00 p01 0 0 . . . 0 0 0 0 . . .
p10 p11 p12 0 . . . 0 0 0 0
...

...
...

...
p(s−2)0 p(s−2)1 p(s−2)2 p(s−2)3 . . . p(s−2)(s−1) 0 0 0 . . .

p(s−1)0 p(s−1)1 p(s−1)2 p(s−1)3 . . . p(s−1)(s−1) q0 0 0 . . .
ps0 ps1 ps2 ps3 . . . ps(s−1) q1 q0 0 . . .
p(s+1)0 p(s+1)1 p(s+1)1 p(s+1)3 . . . p(s+1)(s−1) q2 q1 q0

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with elements given by

qk =
∫ ∞

0

e−δst (δst)k

k!
A(dt), k = 0, 1, 2, . . . , (3.1)

pij =
∫ ∞

0

bi+1−j

(
i + 1, 1 − e−δt

)
A(dt), i ≤ s − 1, j ≤ i + 1, (3.2)

pij =
∫ ∞

0

A(dt)
∫ t

0

bs−j

(
s, 1 − e−δ(t−y)

)
Ei+1−s(dy), i ≥ s > j, (3.3)

where Ek denotes the Erlang distribution with k stages and intensity δs

and bk(n, p) is the binomial probability
(

n
k

)
pk(1 − p)n−k.

Proof. This is seen by arguments that are similar to the case s = 1 in
III.6.2 but more elaborate. With Kn the number of customers being served
between the arrival of customers n and n+1, we have Yn+1 = (Yn+1−Kn)+

so clearly pij = Pi(K0 = i + 1 − j). In the following let Y0 = i. Then
from K0 ≥ 0 it is clear that pij = 0 when j > i + 1. Also if i ≥ s − 1,
j ≥ s, then Y1 = j mean that all servers were busy and performed a
total of k = i + 1 − j services before T0 = t. The probability of this is
obviously qk and hence pij = qi+1−j . For (3.2), note that if i ≤ s − 1,
then all i + 1 customers present at time 0 receive service immediately.
Thus conditionally upon T0 = t, the distribution of K0 is binomial with
parameters (i+1, 1−e−δt) and (3.2) follows. Finally for (3.3), note first that
if i + 1 > s, then in order for Y1 = j < s the waiting line must disappear
at some time y < T0 = t, say. This is equivalent to S = y < T0 = t where
S has distribution Ei+1−s and is independent of T0. After time y, the s
servers then need to complete s − j services in (y, t]. Since the probability
of this obviously is bs−j

(
s, 1 − e−δ(t−y)

)
, (3.3) follows. �

The next step is to derive the stationary distribution of {Yn}:
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Theorem 3.2 The Markov chain {Yn} has a stationary distribution π if
and only if ρ = (sδµA)−1 < 1. In that case, π may be computed by πi = Cνi

where:
(i) νi = θi, i ≥ s − 1, with θ the unique solution in (0, 1) of the equation

θ =
∫ ∞

0

e−δs(1−θ)y A(dy); (3.4)

(ii) νs−2, νs−3, . . . , ν0 are recursively determined by

νj =
1

pj(j+1)

{
νj+1(1 − p(j+1)(j+1)) −

∞∑
i=j+2

νipi(j+1)

}
, j = s − 2, . . . , 0;

(3.5)
(iii) C−1 = ν0 + · · · + νs−2 + (1 − θ)−1θs−1.

An equivalent formulation of (i) is that the number of customers awaiting
service is geometrically distributed (given that there are such customers).

Proof of Theorem 3.2. Define E = {s − 1, s, s + 1, . . .}. Then once
{0, 1, . . . , s − 2} is entered, the next visit of {Yn} to E occurs necessar-
ily at state s − 1. Letting Q be the transition matrix of the Markov chain
obtained by restricting {Yn} to E, it follows that

Q =

⎛⎜⎜⎜⎝
r0 q0 0 0 . . .
r1 q1 q0 0 . . .
r2 q2 q1 q0 . . .
...

. . .

⎞⎟⎟⎟⎠ ,

where rn = 1− q0 −· · ·− qn. This is as the same form as in III.6.2 and X.5,
and we may infer immediately that Q is not positive recurrent when ρ ≥ 1.
Hence P cannot be so either. Conversely, when ρ < 1 a (finite) stationary
measure ν for Q exists and may be taken of the form in (i). By I.3.9, ν
has a unique extension to a stationary measure for P , and considering the
(j + 1)th entry of the equation νP = ν for j ≤ s − 2 yields

νj+1 =
∞∑

i=0

νipi(j+1) =
∞∑
i=j

νipi(j+1),

which implies (3.5). Since νs−1, νs, . . . are known, (3.5) can then be solved
for νs−2 and we may repeat the argument to get νs−3, . . . , ν0. Finally, it is
clear that for π = Cν to be a stationary distribution we simply have to let
C−1 = |ν|, and this is equivalent to (iii). �

The remaining steady–state characteristics can now easily be found.
Consider first the queue length Q at an arbitrary point of time:
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Corollary 3.3 If ρ < 1 and A is nonlattice, then π∗
k = limt→∞ P(Qt = k)

exists and is given by

π∗
k =

{ πk−1

kδµA
k = 1, . . . , s

ρπk−1 k ≥ s
,

π∗
0 = 1 − π∗

1 − π∗
2 − · · · = 1 − ρ − 1

δµA

s−1∑
k=1

πk−1

(1
k

− 1
s

)
.

Proof. Existence follows immediately from Corollary 2.8(a). To derive the
form of π∗

k, we use rate conservation exactly as in X.5. Let k > 0 and Xt =
I(Qt ≥ k). The upcrossing rate is the arrival rate µ−1

A times the probability
πk−1 that the state just before the arrival is k − 1. The downcrossing rate
is sδP(Q = k) when k ≥ s and kδP(Q = k) when k ≤ s. Equating these
two expressions immeditely yields the stated expression for π∗

k when k ≥ 1,
and the case k = 0 follows from this by easy algebra. �

Corollary 3.4 If ρ < 1, then the waiting time process
{
W

(1)
n

}
n∈N

has a
t.v. limit which is a mixture with weights ζ = π0 + · · · + πs−1 and 1 − ζ of
an atom at 0 and the exponential distribution with intensity η = sδ(1 − θ).

Proof. An arriving customer has to wait if and only if he sees Y = s or
more customers upon arrival. Thus the atom at 0 has obviously weight
P(Y ≤ s − 1) = π0 + · · · + πs−1 in steady state. If Y ≥ s, the customer
has to wait until Y − s + 1 services are completed, i.e. an Erlang time with
Y −s+1 stages and intensity sδ. Since the distribution of Y −s given Y ≥ s
is geometric with parameter θ, the distribution of W (1) given W (1) > 0 can
therefore be evaluated as for the case s = 1 as a geometric mixture of
Erlangs, and this immediately leads to the conclusion of the corollary. �

Problems

3.1 Explain that queue lengths just after departure times in M/G/s do not form
a Markov chain when s > 1.

Notes For algorithmic solutions of GI/PH/s queues, see Neuts (1981) for

queue length distributions and de Smit (1995) and Asmussen and Møller (2001)

for waiting time distributions.



XIII
Exponential Change of Measure

1 Exponential Families

We consider i.i.d. r.v.’s X1, X2, . . . with common distribution F and c.g.f.
(cumulant generating function, cf. the Notation and Conventions and A9)

κ(α) = log EeαX1 = log
∫ ∞

−∞
eαx F (dx).

For each θ ∈ Θ = {θ ∈ R : κ(θ) < ∞}, we denote by Fθ the probability dis-
tribution with density eθx−κ(θ) w.r.t. F . In standard statistical terminology,
(Fθ)θ∈Θ is the exponential family generated by F . Similarly, Pθ denotes
the probability measure w.r.t. which X1, X2, . . . are i.i.d. with common
distribution Fθ.

Proposition 1.1 Let κθ(α) = log EθeαX1 be the c.g.f. of Fθ. Then

κθ(α) = κ(α + θ) − κ(θ), EθX1 = κ′(θ), VarθX1 = κ′′(θ).

Proof. The formula for κθ(α) follows from

eκθ(α) =
∫ ∞

−∞
eαxFθ(dx) =

∫ ∞

−∞
e(α+θ)x−κ(θ)F (dx) = eκ(α+θ)−κ(θ).

We then get EθX1 = κ′
θ(0) = κ′(θ), VarθX1 = κ′′

θ (0) = κ′′(θ). �

Example 1.2 Let F be the normal distribution with mean µ and variance
σ2. Then Θ = R, κ(α) = µα + σ2α2/2 so that

κθ(α) = µ(α + θ) + σ2(α + θ)2/2 − µθ − σ2θ2/2 = (µ + θσ2)α + σ2α2/2
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which shows that Fθ is the normal distribution with mean µ+ θσ2 and the
same variance σ2. �

Example 1.3 Let F be the exponential distribution with rate λ. Then Θ =
(−∞, λ), κ(α) = log λ−log(λ−α) so that κθ(α) = log(λ−θ)−log(λ−θ−α).
That is, Fθ is the exponential distribution with rate λ − θ. �

If Eθ is the expectation operator corresponding to Pθ, then for any fixed n

Eθf(X1, . . . , Xn) = E
[
eθSn−nκ(θ)f(X1, . . . , Xn)

]
(1.1)

for all measurable f : Rn → R which are bounded or nonnegative, where
Sn = X1 + · · · + Xn. This follows since the l.h.s. of (1.1) is∫

. . .

∫
Rn

f(x1, . . . , xn)Fθ(dx1) . . . Fθ(dxn)

=
∫

. . .

∫
Rn

f(x1, . . . , xn) eθx1−κ(θ)F (dx1) . . . eθxn−κ(θ)F (dxn)

=
∫

. . .

∫
Rn

f(x1, . . . , xn) eθsn−nκ(θ)F (dx1) · · ·F (dxn)

which is the same as the r.h.s. (here sn = x1 + · · · + xn). Replacing
first f(x1, . . . , xn) by e−θsn+nκ(θ)f(x1, . . . , xn) and specializing next to an
indicator function of a Borel set A ⊆ Rn, we get

Ef(X1, . . . , Xn) = Eθ

[
e−θSn+nκ(θ)f(X1, . . . , Xn)

]
, (1.2)

P(A) = Eθ

[
e−θSn+nκ(θ); A

]
. (1.3)

Thus we have expressed P(A) as an expectation corresponding to an i.i.d.
sum with a changed increment distribution. At a first sight this appears to
be a complicated way of evaluating P(A). The point is that in a number of
cases the Fθ–distribution has more convenient properties than F , as will
be demonstrated by a number of applications throughout the chapter.

Example 1.4 In the theory of the GI/G/1 queue, a fundamental distri-
bution is F (x) = P(U − T ≤ x) with U, T being independent and having
the service time distribution B, resp. the interarrival distribution A. Let-
ting κ(A)(·), κ(B)(·), κ(·) be the c.g.f.’s of A, B, resp. F , we have κ(α) =
κ(A)(−α) + κ(B)(α). If we define Aθ, Bθ by

Aθ(dx) = e−θx−κ(A)(−θ)A(dx), Bθ(dx) = eθx−κ(B)(θ)B(dx),

it follows immediately that (in obvious notation) κθ(α) = κ
(A)
θ (−α) +

κ
(B)
θ (α). Thus, Pθ corresponds to a GI/G/1 queue with interarrival

distribution Aθ and service time distribution Bθ. Furthermore, it is
straightforward to extend (1.3) to 2n–dimensional sets (the first n coor-
dinates specifying the first n interarrival times and the last the first n
service times). �
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Figure 1.1

The basic case for queueing theory is F having negative mean µ, but not
being concentrated on (−∞, 0]. The typical shape of κ(·) is illustrated in
Fig. 1.1(a). The slope at 0 is µ < 0 and κ is strictly convex. Since supp(F )∩
(0,∞) 
= ∅, κ(α) → ∞ as α → ∞. Quite often (say the exponential or
Gamma distribution) κ(·) has a finite radius of convergence, and in the
case of heavy tails we even have κ(α) = ∞ for all α > 0 (this situation
is therefore excluded from the analysis of most of the chapter). However,
for light–tailed distributions the picture is typically as in Fig. 1.1(a). Of
particular importance for the following are γ0, the solution of κ′(γ0) = 0,
and γ, the positive solution of the Lundberg equation κ(γ) = 0. The shape
of κγ0(·) and κγ(·) is indicated in Fig. 1.1(b) and (c). Note in particular
the simple geometric relation to κ(·), and that Eγ0X1 = κ′(γ0) = 0 and (by
convexity) EγX1 = κ′(γ) > 0. �

Example 1.5 Consider M/M/1 with A, B having intensities β < δ. Then
Aθ, Bθ are exponential with densities βθ = β +θ, δθ = δ−θ. The Lundberg
equation is

log
β

β + γ
+ log

δ

δ − γ
= 0

and the solution γ > 0 is γ = δ − β. Thus βγ = δ, δγ = β, and Pγ

corresponds to interchanging β and δ. �

Problems

1.1 Verify Examples 1.2, 1.3 using densities rather than c.g.f.’s.
1.2 Show that for the M/G/1 queue, the Lundberg equation is equivalent to

β(B̂[γ] − 1) − γ = 0. [See further VII.7.8.]
1.3 Show that Fθ is lattice if and only if F is lattice, spread out if and only if F
is spread out and satisfies Cramér’s condition (C) if and only if F does so [hint:

if |F̂ [tk]| → 1, then cos tkx → 1 for a.a. x w.r.t. to the symmetrized distribution

with ch.f. F̂ ∗[t] = F̂ [t]F̂ [−t]. Hence F̂ ∗
θ [tk] → 1 and |F̂θ[tk]| → 1].

Notes Exponential families occur widely in statistics (usually the given object

is the whole family (Fθ) and not as here the single member F = F0); see e.g.

Barndorff–Nielsen (1978).
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2 Large Deviations, Saddlepoints and the
Relaxation Time

Define the convex conjugate κ∗(·) by κ∗(x) = θ(x)x − κ
(
θ(x)

)
where θ(x)

is the solution of

x = κ′(θ(x)
)

= Eθ(x)X1 (2.1)

(κ∗(x) = ∞ if no solution exists).

Theorem 2.1 Let x > κ′(0) = EX1 and assume that (2.1) has a solution
θ = θ(x). Then

P(Sn > nx) ≤ e−nκ∗(x), (2.2)
1
n

log P(Sn > nx) → −κ∗(x), x → ∞, (2.3)

P(Sn > nx) ∼ 1
θ
√

2πσ2
θn

e−nκ∗(x), x → ∞, (2.4)

provided in addition for (2.3) that σ2
θ = κ′′(θ) < ∞ and for (2.4) that

|κ′′′(θ)| < ∞ and that F satisfies Cramér’s condition (C).

Proof. Taking A = {Sn > nx}, θ = θ(x) in (1.3), we get

P(Sn > nx) = e−nκ∗(x)Eθ

[
e−θ(Sn−nx); Sn > nx

]
. (2.5)

Since θ > 0 and Sn −nx > 0 on A, (2.2) follows by bounding the indicator
of A by 1.

When σ2
θ < ∞, the CLT yields

Pθ

(
nx < Sn < nx + 1.96σθ

√
n
) → Φ(1.96) − Φ(0) = 0.425.

Hence for large n,

P(Sn/n > x) ≥ e−nκ∗(x)Eθ

[
e−θ(Sn−nx); nx < Sn < nx + 1.96σθ

√
n
]

≥ e−nκ∗(x) · 0.4e1.96σθ
√

n.

Combining with (2.2) and taking logarithms, (2.3) follows.
Let Hn(y) = Pθ(Sn − nx ≤ yσθ

√
n). Then Hn satisfies (C), cf. Prob-

lem 1.3, and the third moment exists because of |κ′′′(θ)| < ∞. Hence
(Bhattacharya and Rao, 1976, Theorem 20.1) we may write

Hn(dy) = Φ(dy) + n−1/2f ′(y)dy + Gn(dy) (2.6)

where f(y) = η(1 − y2)e−y2/2 for some constant η and Gn is a (signed)
measure with ‖Gn‖ = o(n−1/2). Thus with g(y) = e−θσθy we have

Eθ

[
e−θ(Sn−nx); Sn > nx

]
=

∫ ∞

0

g(yn1/2)Hn(dy) (2.7)

=
∫ ∞

0

g(yn1/2)Φ(dy) + n−1/2

∫ ∞

0

g(yn1/2)f ′(y) dy + O(‖Gn‖).
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Here g(yn1/2) → 0 so that by dominated convergence
∫

gf ′ = o(1). Hence,
using dominated convergence once more, (2.7) becomes∫ ∞

0

g(yn1/2)
1√
2π

e−y2/2 dy + o(n1/2)

=
1√
2πn

∫ ∞

0

e−θσθye−y2/2n dy + o(n1/2)

=
1√
2πn

(∫ ∞

0

e−θσθy dy + o(1)
)

=
(θσθ)−1

√
2πn

(
1 + o(1)

)
.

�

All three parts of Theorem 2.1 are classical in probability theory; see the
Notes. A relatively small variant of the proof produces a highly relevant
queueing result. Recall the definition κ′(γ0) = 0 of γ0.

Theorem 2.2 Consider the waiting time process W0, W1, . . . of a stable
(ρ < 1) GI/G/1 queue and let δ = eκ(γ0), σ2 = κ′′(γ0). Then if F (x) =
P(U − T ≤ x) satisfies the assumptions for (2.4),

EW − EWN−1 ∼ δN

N3/2
· 1
γ2
0(1 − δ)

√
2πσ2

, N → ∞. (2.8)

Proof. It follows from VIII.4.5 that EW − EWN−1 =
∑∞

N ES+
n /n. Here

exactly as above, with x = 0, θ = γ0, we have ES+
n = δnJn where

Jn = Eγ0

[
Sne−γ0Sn ; Sn > 0

]
=

∫ ∞

0

h(xn1/2)Fn(dx)

where h(x) = σxe−γ0σx is bounded with h(xn1/2) → 0, n → ∞. Thus
exactly as above, we have up to o(n−1/2) terms that

Jn =
∫ ∞

0

h(xn1/2)
1√
2π

e−x2/2 dx =
σ√
2πn

∫ ∞

0

ye−γ0σye−y2/2n dy

=
σ√
2πn

∫ ∞

0

ye−γ0σy dy =
1

γ2
0

√
2πσ2n

,

EW − EWN−1 =
∞∑

n=N

δnJn

n
∼ 1

γ2
0

√
2πσ2

∞∑
n=N

δn

n3/2

∼ δN

N3/2
· 1
γ2
0(1 − δ)

√
2πσ2

.

�

Obviously, (2.8) is of the same form and spirit as the relaxation time
approximation for M/M/1 in III.8e (also, the proof in III.8e is based upon
similar methods; cf. in particular III.8.11). It is natural to ask whether
there is an analogue for the distribution of WN rather than its mean, and
indeed:
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Theorem 2.3 Under the assumptions of Theorem 2.2,

P(WN ≤ x) − P(W ≤ x) ∼ δN

N3/2
e−γ0xU

(0)
+ (x)c, N → ∞, (2.9)

where U
(0)
+ is the ascending ladder height renewal measure w.r.t. Pγ0 and

c =
δ3/2

[
1 − Eγ0e

−γ0Sτ+
]

(1 − δ)γ0

√
2πσ2

.

The proof is substantially more involved and will not be given here.

Problems

2.1 Show that under the conditions of Theorem 2.1, the limiting distribution of
Sn given Sn > 0 is exponential. [Hint: Laplace transforms.]

Notes We will not attempt to trace the history of Theorem 2.1. However, (2.2)
goes under the name the Chernoff bound, (2.3) is of large deviations (LD) type,
and (2.4) is the saddlepoint approximation.

Obviously, (2.4) is sharper than (2.3), and in particular, (2.3) does not allow to
assert whether the exact asymptotic form of P(Sn > nx) is simply exponential,
or contains a correction factor of slower variation like the n−1/2 in (2.4) (other
possibilities are not excluded by (2.3), for example P(Sn > nx) ∼ e−nκ∗(x)−nε

with ε < 1). This is a typical feature of LD theory, that the results are in log-
arithmic asymptotics rather than exact asymptotics form and therefore subject
to refinement. However, often the logarithmic asymptotics gives sufficient infor-
mation on the problem under study, and the advantage of LD theory is then the
generality into which the subject has been pushed. Particularly notable results
are the Gärtner–Ellis theorem, stating that the independence assumptions for
(2.3) can be relaxed to the existence of κ(α) = limn→∞ log EeαSn/n (and some
further weak regularity), and Mogulskii’stheorem, stating that if S(n) is the ran-

dom function on [0, 1] given by S
(n)
t = S
nt�/n, then for a smooth function f on

[0, 1],

1

n
log P(S(n) ≈ f) →

∫ 1

0

κ∗(f ′(t)) dt (2.10)

with ≈ defined in a suitable sense. Of course, (2.10) is strongly suggested by
(2.3): if f is linear with slope x in the interval [t0, t0 + ε), then (after trivial
substitutions) (2.3) asserts that the probability that S(n) has slope x in the same
interval is εκ∗(x) in the logaritmic sense so that a simple Riemann approximation
leads to (2.10).

Among many textbooks on LD, we mention in particular Dembo and Zeitouni
(1998) and, for queueing applications, Shwartz and Weiss (1995). For saddlepoint
approximations, see Jensen (1995) and references there.

Theorem 2.2 is from Heathcote (1967) and Heathcote and Winer (1969), The-
orem 2.3 from Veraverbeke and Teugels (1975/76) (with the constants rewritten
somewhat here). For continuous–time analogues, see Teugels (1977, 1982).
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3 Change of Measure: General Theory

We consider stochastic processes {Zt} with a Polish state space E and
sample paths in the Skorokhod space D = D

(
[0,∞), E

)
, which we equip

with the natural filtration {Ft}t≥0 and the Borel σ–field F (the discrete–
time case is entirely similar). Two such processes may be represented by
probability measures P, P̃ on (D, F), and in analogy with the theory of
measures on finite–dimensional spaces, one could study conditions for the
Radon–Nikodym derivative dP̃/dP to exist. However, this set–up is too
restrictive. Consider, e.g. a random walk {Sn} with increment distributions
F, F̃ with means µ 
= µ̃ and let A = {Sn/n → µ}, Ã = {Sn/n → µ̃}. Then
P is concentrated on A and P̃ on Ã which are disjoint, excluding absolute
continuity (this extends to all pairs of processes where the parameters of
the two processes can be reconstructed from a single infinite path).

The interesting concept is therefore to look for absolute continuity only
on finite time intervals (possibly random, cf. Theorem 3.2 below). That is,
we look for a process {Lt} (the likelihood ratio process) such that

P̃(A) = E[Lt; A], A ∈ Ft, (3.1)

(i.e. that the restriction of P̃ to (D, Ft) is absolutely continuous w.r.t. the
restriction of P to (D, Ft)). The following result gives the connection to
martingales.

Proposition 3.1 Let {Ft}t≥0 be the natural filtration on D, F the Borel
σ–field and P a given probability measure on (D, F).
(i) If {Lt}t≥0 is a nonnegative martingale w.r.t.

({Ft} , P
)

such that ELt =
1, then there exists a unique probability measure P̃ on F such that (3.1)
holds.
(ii) Conversely, if for some probability measure P̃ and some {Ft}–adapted
process {Lt}t≥0 (3.1) holds, then {Lt} is a nonnegative martingale w.r.t.({Ft} , P

)
such that ELt = 1.

Proof. Under the assumptions of (i), define P̃ by P̃t(A) = E[Lt; A], A ∈ Ft.
Then Lt ≥ 0 and ELt = 1 ensure that P̃t is a probability measure on
(D, Ft). Let s < t, A ∈ Fs. Then

P̃t(A) = E[Lt; A] = E E
[
LtI(A)

∣∣Fs

]
= E

[
I(A)E[Lt|Fs]

]
= E I(A)Ls = P̃s(A),

using the martingale property in the fourth step. Hence the family
{
P̃t

}
t≥0

is consistent in the Kolmogorov sense and hence extendable to a probability
measure P̃ on (D, F) such that P̃(A) = P̃t(A), A ∈ Ft. This proves (i).

Conversely, under the assumptions of (ii) we have for A ∈ Fs and s < t
that A ∈ Ft as well and hence E[Ls; A] = E[Lt; A]. The truth of this for all
A ∈ Fs implies that E[Lt|Fs] = Ls and the martingale property. Finally,
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ELt = 1 follows by taking A = D in (3.1), and nonnegativity by letting
A = {Lt < 0}. Then P̃(A) = E[Lt; Lt < 0] can only be nonnegative if
P(A) = 0. �

The following likelihood ratio identity is a fundamental tool throughout
this chapter:

Theorem 3.2 Let {Lt}, P̃ be as in Proposition 3.1(i). If τ is a stopping
time and G ∈ Fτ , G ⊆ {τ < ∞}, then

P(G) = Ẽ

[ 1
Lτ

; G
]
. (3.2)

More generally, if W ≥ 0 is Fτ–measurable, then E[W ; τ < ∞] =
Ẽ[W/Lτ ; τ < ∞].

Proof. Assume first G ⊆ {τ ≤ T} for some fixed deterministic T < ∞. By
the martingale property, we have E[LT |Fτ ] = Lτ on {τ ≤ T}. Hence

Ẽ

[ 1
Lτ

; G
]

= E

[LT

Lτ
; G

]
= E

[ 1
Lτ

I(G) E[LT |Fτ ]
]

= E

[ 1
Lτ

I(G)Lτ

]
= P(G). (3.3)

In the general case, applying (3.3) to G ∩ {τ ≤ T} we get

P
(
G ∩ {τ ≤ T}) = Ẽ

[ 1
Lτ

; G ∩ {τ ≤ T}
]
.

Since everything is nonnegative, both sides are increasing in T , and letting
T → ∞, (3.2) follows by monotone convergence. The last statement follows
by standard measure theory. �

A crucial step in specific cases is to obtain information on the process
evolving according to P̃. First we ask when the Markov property is pre-
served. To this end, we need the concept of a multiplicative functional.
Assume that {Zt} is Markov w.r.t. the natural filtration {Ft} on D and
define {Lt} to be a multiplicative functional if {Lt} is adapted to {Ft} and

Lt+s = Lt · (Ls ◦ θt) (3.4)

Px–a.s. for all x, s, t, where θt is the shift operator. The precise mean-
ing of this is the following: being Ft–measurable, Lt has the form Lt =
ϕt

({Zu}0≤u≤t

)
for some mapping ϕt : D[0, t] → [0,∞), and then Ls ◦ θt =

ϕs

({Zt+u}0≤u≤s

)
.

Theorem 3.3 Let {Zt} be Markov w.r.t. the natural filtration {Ft} on
D, let {Lt} be a nonnegative martingale with ExLt = 1 for all x, t and let
P̃x be the probability measure given by P̃x(A) = Ex[Lt; A]. Then the family{
P̃x

}
x∈E

defines a time–homogeneous Markov process if and only if {Lt}
is a multiplicative functional.
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Proof. Since both sides of (3.4) are Ft+s measurable, (3.4) is equivalent to

Ex[Lt+sVt+s] = Ex

[
Lt · (Ls ◦ θt)Vt+s

]
(3.5)

for any Ft+s–measurable r.v. Vt+s, which in turn (by standard measure
theory) is the same as

Ex

[
Lt+sWt · (Ys ◦ θt)

]
= Ex

[
Lt · (Ls ◦ θt)Wt · (Ys ◦ θt)

]
(3.6)

for any Ft–measurable Wt and any Fs–measurable Ys.
Similarly, the Markov property can be written

Ẽx

[
Ys ◦ θt

∣∣Ft

]
= ẼZtYs, t < s,

for any Fs–measurable r.v. Ys, which is the same as

Ẽx

[
Wt(Ys ◦ θt)

]
= Ẽx

[
WtẼZtYs

]
for any Ft–measurable r.v. Wt. By definition of P̃x, this in turn means

Ex

[
Lt+sWt(Ys ◦ θt)

]
= Ex

[
LtWtEZt [LsYs]

]
,

or, since EZt [LsYs] = E
[
(Ys ◦ θt)(Ls ◦ θt)

∣∣Ft

]
,

Ex

[
Lt+sWt(Ys ◦ θt)

]
= Ex

[
LtWt(Ys ◦ θt)(Ls ◦ θt)

]
, (3.7)

which is the same as (3.6). �

For a random walk, a Markovian change of measure as in Theorem 3.3
does not necessarily lead to a random walk. The necessary and sufficient
condition is given in Problem 3.2, but in the rest of the chapter we consider
only the exponential change of measure introduced in Section 1, correspond-
ing to Zn = Sn, Ln = eθSn−nκ(θ) and P̃ = Pθ. The analogue for a Lévy
process is as follows:

Theorem 3.4 Let {St} be a Lévy process with characteristic triplet
(µ, σ2, ν) in IX.(1.4), i.e.

κ(α) = αµ + α2σ2/2 +
∫ ∞

−∞

[
eαx − 1 − αI(|x| ≤ 1)

]
ν(dx) (3.8)

and Lt = eθSt−tκ(θ). Then {Lt} satisfies the assumptions of Theorem
3.3, and Pθ = P̃ corresponds a new Lévy process, such that the changed
parameters are

µ̃ = µ + θσ2 +
∫ 1

−1

[eθx − 1]ν(dx), σ̃2 = σ2, ν̃(dx) = eθxν(dx). (3.9)

In the finite variation case, the changed parameters in the representation

κ(α) = αµ + α2σ2/2 +
∫ ∞

−∞
[eαx − 1]ν(dx) (3.10)

are the same expressions as in (3.9), only with the integral deleted.
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Proof. The first part of the theorem is easy. For (3.9), define eκ̃(α) = Ẽ0eαS1 .
Then

eκ̃(α) = E0

[
L1eαX1

]
= e−κ(θ)E0

[
e(α+θ)X1

]
= eκ(α+θ)−κ(θ).

Thus κ̃(α) = κ(α+θ)−κ(θ) which after inserting (3.8) by straightforward
algebra reduces to

α(µ + θσ2) + α2σ2/2 +
∫ ∞

−∞

[
(eαx − 1)eθx − αI(|x| ≤ 1)

]
ν(dx),

= αµ̃ + α2σ̃2/2 +
∫ ∞

−∞

[
eαx − 1 − αI(|x| ≤ 1)

]
ν̃(dx) .

The finite variation case is similar. �

Problems

3.1 Construct two transition matrices P , P̃ for a Markov chain, such that the
Markov probabilities P, P̃ corresponding to some initial state are equivalent on
the whole of EN.
3.2 Assume in Theorem 3.3 that {Xn} is a random walk, Xn = Y1 + · · · + Yn.

Show that P̃ corresponds to a new random walk if and only Ln = h(Y1) · · · h(Yn)
for some function h with Eh(Y ) = 1, and that then the changed increment

distribution is F̃ (x) = E[h(Y ); Y ≤ x].
3.3 Let {Zt} be a diffusion with generator A h, and for some h in the domain,
define

Lt =
h(Zt)

h(Z0)
exp

{
−
∫ t

0

Ah(Zs)

h(Zs)
ds

}
.

Show, using Ito’s formula, that {Lt} is a local martingale, and identify P̃ when
{Lt} is a proper martingale.
3.4 In the Markov case, show that a multiplicative functional {Lt} with ExLt = 1
for all x, t is a martingale.
3.5 Let Xt =

∑Nt
1 Ui be a compound Poisson process with Poisson rate β and

distribution B of the Ui. Show that the likelihood ratio Lt = exp {θXt − tκ(θ)}
provides a new compound Poisson process with parameters β̃, B̃ where β̃ =
βEeθU , B̃(dx) = eθxB(dx)/EeθU .
3.6 Let Xt =

∑Nt
1 Ui be a compound Poisson process, such that the Poisson rate

is β and the distribution B of the Ui is B w.r.t. P, and β̃, B̃ w.r.t. P̃. Compute Lt.

Notes The results of the present section are standard; see e.g. Jacod and
Shiryaev (1987), Küchler and Sørensen (1997) and Revuz and Yor (1999). The
theory is sometimes summarized under the term Girsanov’s theorem, though
more commonly this refers to the special case of diffusions.

Generalizations of Problem 3.3 are in Palmowski and Rolski (2002), who also

give much survey material.
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4 First Applications

For a general martingale {Mt}, the criteria for optional stopping at τ
(i.e. EMτ = EM0) usually involve uniform integrability of the Mτ∧t. For
likelihood ratio martingales, a different sort of criterion is available:

Corollary 4.1 Let {Lt}, P̃ be as in Proposition 3.1 and let τ be a stopping
time with P(τ < ∞) = 1. Then a necessary and sufficient condition that
ELτ = 1 is that P̃(τ < ∞) = 1.

Proof. Taking Z = Lτ in Theorem 3.2 gives ELτ = P̃(τ < ∞). �

Example 4.2 Consider a random walk or Lévy process and the Wald
martingale

{
eθSt−tκ(θ)

}
. Corollary 4.1 then states that

EeθSτ−τκ(θ) = 1 (4.1)

if and only if Pθ(τ < ∞) = 1. Here are some main examples:

(a) τ = inf
{
t > 0 : St 
∈ [a, b]

}
with a < 0 < b. Here τ < ∞ for any

random walk or Lévy process (except for the trivial case St ≡ 0), so that
Pθ(τ < ∞) = 1 for all θ and (4.1) holds always.

(b) τ = inf {t > 0 : St > u} with u > 0. Here P(τ < ∞) = 1 if and only if
the drift κ′(0) is nonnegative. Thus the necessary and sufficient condition
that Pθ(τ < ∞) = 1 and (4.1) holds is that κ′(θ) ≥ 0. �

We next consider the case where {St}t≥0 is Brownian motion with drift
ξ and unit variance constant, and shall derive certain standard formulas
involving the distributions of MT = sup0≤t≤T St and the first passage time
τ(ξ, c) = inf {t > 0 : St ≥ c}, c > 0. The distribution G( · ; ξ, c) of τ(ξ, c)
is known as the inverse Gaussian distribution; it has already been met
in III.7, X.7 and is of importance later in this chapter as well. Note that
G(T ; ξ, c) = P(MT ≥ c).

Theorem 4.3 G( · ; ξ, c) is proper for ξ ≥ 0 and defective for ξ < 0.
Further G(T ; ξ, c) = 0, T < 0, whereas for T > 0

G(T ; ξ, c) = 1 − Φ
( c√

T
− ξ

√
T
)

+ e2ξcΦ
(
− c√

T
− ξ

√
T
)

. (4.2)

In particular, ‖G(·; ξ, c)‖ = e2ξc in the defective case ξ < 0. The density
g(T ; ξ, c) and the c.g.f. λ(α; ξ, c) are

g(T ; ξ, c) =
c√

2πT 3/2
exp

{
ξc − 1

2

(
c2

T
+ ξ2T

)}
, T > 0, (4.3)

λ(α; ξ, c) = log
∫ ∞

0

eαtg(t; ξ, c) dt = ξc − c
√

ξ2 − 2α, α ≤ ξ2

2
, (4.4)
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and for ξ ≥ 0 the mean and variance are

Eτ(ξ, c) =
c

ξ
, Var τ(ξ, c) =

c

ξ3
. (4.5)

Proof. We use exponential change of measure. We have κ(α) = αξ + α2/2,
and Pθ makes {St} Brownian motion with drift ξ + θ and unit variance; cf.
Theorem 3.4. In particular, P−ξ corresponds to zero drift.

In III.7.6, it was shown by the reflection principle that in the case of zero
drift,

P
(
τ(0, c) ≤ T

)
= P−ξ(MT ≥ c) = 2Φ

( −c√
T

)
.

By straightforward differentiation, this gives the density, P(τ(0, c) ∈ dT ) =
cϕ(−c/

√
T )/T 3/2 dT , and hence (using κ(−ξ) = −ξ2/2 and Sτ(0,c) = c)

P
(
τ(ξ, c) ∈ dT

)
= E−ξ

[
eξSτ(0,c)+τ(0,c)κ(−ξ); τ(0, c) ∈ dT

]
= eξc−Tξ2/2P

(
τ(0, c) ∈ dT

)
=

c√
2π

T−3/2eξc−Tξ2/2e−c2/2T dT ,

showing (4.3); (4.2) then follows by checking that the derivative of the r.h.s.
is (4.3) and that the value at T = 0 is 0. The expression for ‖G( · ; ξ, c)‖
follows by letting T → ∞ in (4.2). For (4.4), note that κ(θ) = −α has two
solutions θ± = ±

√
ξ2 − 2α− ξ when α ≤ ξ2/2 and that θ+ satisfies κ′(θ+)

= ξ + θ+ ≥ 0. Thus by Example 4.2(b), we have for ξ ≥ 0 that

1 = Eeθ+Sτ(ξ,c)−τ(ξ,c)κ(θ+) = Eeθ+c+ατ(ξ,c),

and (4.4) follows. We then get (4.5) either by differentiation of (4.4) or by
optional stopping of {St − ξt}, {(St − ξt)2 − t

}
.

It remains to show that (4.4) also holds when ξ < 0. But then by (4.3),∫ ∞

0

eαtg(t; ξ, c) dt = e2ξc

∫ ∞

0

eαtg(t;−ξ, c) dt

= exp
{
2ξc +

(−ξc −
√

ξ2 − 2α
)}

= exp
{
ξc −

√
ξ2 − 2α

}
.

�

We formulate the last step of the proof as:

Corollary 4.4 For ξ < 0, P(τ(ξ, c) < ∞) = e2ξc, and the distribution of
τ(ξ, c) given τ(ξ, c) < ∞ is the same as the distribution of τ(−ξ, c).

Some further noteworthy properties of the inverse Gaussian distribution:

Proposition 4.5 (i) G(T ; ξ, c) = G(T/u2; ξu, c/u); (ii) G(·; ξ, c1+c2) =
G(·; ξ, c1)∗G(·; ξ, c2); (iii) if ξ > 0, then G(·; ξ, c) is asymptotically normal
as c → ∞ with mean c/ξ and variance c/ξ2.

Proof. (i) is clear from (4.2). For (ii), note just that τ(ξ, c1+c2)
D= τ(ξ, c1)+V

where V is the time of first passage from level c1 to level c1 + c2. But by
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the strong Markov property, V is independent of τ(ξ, c1) and distributed
as τ(ξ, c2). Finally, (iii) is an immediate consequence of (ii) and (4.5). �

Example 4.6 Some main applications of the techniques studied in the
present chapter occur in sequential analysis. As a digression, we shall
present some of the ideas in that setting, stressing the probability cal-
culations rather that the statistical aspects (which are practical as well as
touching upon questions in the foundations of statistical inference).

Suppose we are given an exponential family (Fθ)θ∈Θ of distributions on
R with E0X = κ′

0(0) = 0 and want to test the hypothesis H0 : θ ≥ 0 versus
the alternative H1 : θ < 0. The traditional likelihood ratio test based upon
a fixed sample size N then rejects for small values of SN , say SN < aN .
In the sequential setting, one instead prescribes two constants a, b > 0
and proceeds by sampling X1, X2, . . . one after another. If SN < −a at
time N , H0 is rejected, and similarly H0 is accepted if SN > b, whereas if
−a ≤ SN ≤ b one continues by taking the extra observation XN+1. That
is, the sampling stops at time τ = inf

{
N ≥ 1 : SN 
∈ [−a, b]

}
by rejecting

H0 if Sτ < −a and accepting H0 if Sτ > b.
The probability problem is to compute the so–called operation character-

istics (two–sided ruin probability) k(θ) = Pθ(accept H0) = Pθ(Sτ > b), one
purpose being to tell how a, b should be chosen to meet certain prescribed
requirements on k(θ). Also, one wants to say something about the sample
size τ , in particular to compute Eθτ . The idea is to observe that if, as will
typically be the case, both a and b are large compared to the typical sizes of
the Xi, then we may neglect the excess (overshoot) of Sτ over the bound-
aries −a, b, i.e. use the approximations Sτ ≈ −a on {Sτ < −a}, Sτ ≈ b on
{Sτ > b}. Now the assumption κ′(0) = 0 ensures that to each θ 
= 0 we can
find θL of opposite sign satisfying κ0(θL) = κ0(θ), i.e. κθ(γθ) = 0 where
γθ = θL − θ. Then by Example 4.2(a), 1 = EθeγθSτ which neglecting the
excess over the boundary yields

1 ≈ e−γθaPθ(Sτ < −a) + eγθbPθ(Sτ > b)
= k(θ)[eγθb − e−γθa] + e−γθa,

k(θ) ≈ 1 − e−γθa

eγθb − e−γθa
. (4.6)

Similarly, Wald’s identity κ′
θ(0)Eθτ = EθSτ yields κ′

θ(0)Eθτ ≈ −a(1 −
k(θ)) + bk(θ), from which an approximation for Eθτ follows by inserting
(4.6). �

Problems

4.1 Show that τ (0, c) is α–stable with α = 1/2 [i.e., the distribution of n
independent copies is the same as the distribution of n1/ατ (0, c)].
4.2 Show that {τ (ξ, c)}c≥0 is a subordinator for ξ ≥ 0, and that the Lévy

measure has density (2π)−1/2x−3/2e−ξ2x/2, x > 0.
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4.3 Consider the case θ = 0 in Example 4.6. Show that k(0) ≈ a/(a + b),
E0τ ≈ ab/κ′′

0 (0).

Notes For the derivation of the inverse Gaussian distribution, see e.g. Harrison

(1985) and Siegmund (1985); further properties of the distribution and related

Brownian functionals are in Borodin and Salminen (1996). A main reference for

sequential analysis is Siegmund (1985).

5 Cramér–Lundberg Theory

Let {St}t∈T be a random walk or Lévy process with negative drift, κ′(0) <
0. The Lundberg equation is κ(γ) = 0 and we assume the existence of a
solution γ > 0. We will exploit the exponential change of measure corre-
sponding to θ = γ and write PL instead of Pγ ; one notes right away that
the fundamental likelihood ratio identity, Theorem 3.2, takes a particularly
simple form in this case,

P(G) = EL[e−γSτ ; G] (5.1)

when τ is a stopping time and G ∈ Fτ , G ⊆ {τ < ∞}. As the main
example of the use of this formula, we shall look at the distribution of
M = supt∈T St. To this end, take τ = τ(u) = inf {t > 0 : St > u} and let
B(u) = Sτ − u be the overshoot.

Theorem 5.1 P(M > u) ≤ e−γu for all u ≥ 0.

Proof. Let G = {τ < ∞}. Then PL(G) = 1 because ELS1 = κ′(γ) > 0 by
convexity, and therefore B(u) ≥ 0 yields

P(M > u) = P(G) = ELe−γSτ = e−γuELe−γB(u) ≤ e−γu. (5.2)

�

Theorem 5.1 is known as Lundberg’s inequality in insurance risk (where
P(M > u) is interpreted as the ruin probability) and has been reproved and
refined in queueing theory (where W

D= M) by various authors. The argu-
ment in (5.2) is apparently just to neglect the excess over the boundary. A
small refinement produces the celebrated Cramér–Lundberg approximation:

Theorem 5.2 If B(u) converges in PL–distribution as u → ∞, say to
B(∞), then P(M > u) ∼ Ce−γu where C = ELe−γB(∞).

Proof. Since e−γx is bounded and continuous, we just have to note that in
(5.2) ELe−γB(u) → C by general results on weak convergence. �

Theorem 5.3 For a discrete–time nonlattice random walk, B(∞) exists
w.r.t. PL if κ′(γ) < ∞. In that case, C is given in terms of the ladder
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height distributions G+, G− by

C =
1 − ‖G+‖

γ
∫∞
0 xeγx G+(dx)

=
EX

γκ′(γ)ESτ−

{
1 −

∫ 0

−∞
eγx G−(dx)

}
. (5.3)

Proof. Since κ′(γ) = ELX , the existence of B(∞) was noted in VIII.2.1
together with the expression

(
1 − G

(L)
+ (x)

)
/µ

(L)
+ for the PL–density where

G
(L)
+ is the ascending ladder height distribution w.r.t. PL and µ

(L)
+ its mean.

Now if we put τ = τ+, G =
{
Sτ+ ∈ A, τ+ < ∞}

in (5.1), we get

G+(A) = P(G) = EL

[
e−γSτ+ ; G

]
=

∫
A

e−γx G
(L)
+ (dx) (5.4)

which shows that G+(dx) = e−γxG
(L)
+ (dx). Hence

C = ELe−γB(∞) =
∫ ∞

0

e−γx
(
1 − G

(L)
+ (x)

)
/µ

(L)
+ dx

=
1

µ
(L)
+

∫ ∞

0

1
γ

(1 − e−γy)G
(L)
+ (dy) =

1

γµ
(L)
+

(1 − ‖G+‖)

and since µ
(L)
+ =

∫∞
0

xeγxG+(dx), the first identity in (5.3) follows. For the
second, note first that as in (5.4), G−(dx) = e−γxG

(L)
− (dx), and thus {. . .}

in (5.3) is just 1 − ‖G(L)
− ‖. Now just note that (cf. VIII.2.3(c))

1 − ‖G+‖ =
1

Eτ−
=

EX

ESτ−
,

1

µ
(L)
+

=
1

ELXELτ
(L)
+

=
1 − ‖G(L)

− ‖
κ′(γ)

.

�

Remark 5.4 In the lattice case of Theorem 5.3, we still have P(M > u) ∼
Ce−γu provided u → ∞ through values of the lattice span only (however,
C comes out slightly different). The same applies to a compound Poisson
process with lattice jumps. For all other types of Lévy processes (including,
for example, a compound Poisson process with lattice jumps and an added
drift or Brownian component) B(∞) is easily seen to exist assuming only
κ′(γ) < ∞. See further Bertoin and Doney (1994a). �

In view of W
D= M , the Cramér–Lundberg approximation states that

under appropriate conditions, the tail of the waiting time W in a GI/G/1
queue is asymptotically exponential. This result is superficially similar to
the heavy traffic approximation in X.7, but of course the range of pa-
rameters for which the two results give an exponential approximation for
P(W > u) is not the same (neither are the constants equal).

Example 5.5 For GI/M/1, we have in the notation of VIII.5.8 that
P(W > u) = θe−ηu. It follows that the Cramér–Lundberg approximation
is exact in this case and that θ = C, η = γ (it is straightforward to check
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directly from the expression for G+ in VIII.5.8(a) that indeed (5.3) reduces
to θ). For M/G/1, −Sτ− is exponential with intensity β whereas

κ(α) = log B̂[α] + log
β

β + α
, κ′(γ) =

B̂′[γ]

B̂[γ]
− 1

β + γ
=

βB̂′[γ] − 1
β + γ

,

and (5.3) becomes

C =
µB − 1/β

γκ′(γ)(−1/β)

{
1 − β

∫ 0

−∞
e(γ+β)x dx

}
=

1 − ρ

γκ′(γ)

{
1 − β

γ + β

}
=

1 − ρ

κ′(γ)(γ + β)
=

1 − ρ

βB̂′[γ] − 1
.

�

Just as the heavy traffic approximation has a time–dependent version
X.7.4 (in terms of the inverse Gaussian distribution), so is the case for
the Cramér–Lundberg approximation. This time the correction factor is
normal:

Theorem 5.6 Suppose in addition to the conditions of Theorem 5.2 that
σ2

L = κ′′(γ) = VarLS1 < ∞, and define µL = ELS1 = κ′(γ), ω2 = σ2
L/µ3

L,
x(u) = (T − u/µL)(ωu1/2). Then for T ∈ T,

P(MT > u) ∼ Ce−γuΦ
(
x(u)

)
, u → ∞, (5.5)

in the sense that if T varies with u in such a way that x = limx(u) exists,
then P(MT > u) = Ce−γuΦ(x) + o(e−γu).

The proof rests on two lemmas:

Lemma 5.7 As u → ∞, it holds that: (i) τ(u)/u
PL→ µ−1

L ; (ii) ELτ(u)/u →
µ−1

L ; (iii) τ(u) is PL–asymptotically normal with mean u/µL and variance
ω2u.

Proof. First note that the standard LLN and CLT assert that

St =
St

t

a.s.→ µL, Zt =
St − tµL√

t

D→ N(0, σ2
L)

w.r.t. PL. Let t = τ and write as above Sτ = u + B(u). Since τ → ∞
and B(u) D→ B(∞) w.r.t. PL, we have B(u)/τ

PL→ 0 and hence Sτ → µL

implies u/τ
PL→ µL and (i). The proof of (ii) is the same as for the elementary

renewal theorem in V.1 (or as in Problem VIII.2.3). By (i) and Anscombe’s
theorem, Zτ

D→ N(0, σ2
L), and (iii) follows since B(u)/τ1/2 PL→ 0 implies

Zτ
D∼ u − τµL

τ1/2

D∼ µ
3/2
L

τ − u/µL

u1/2
. �
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Lemma 5.8 B(u) and τ are asymptotically independent as u → ∞. That
is, for f, g bounded and continuous

EL

[
f(B(u)) g

(
(τ − u/µL)/ωu1/2

)] → ELf(B(∞)) · Eg(U), (5.6)

where U is standard normal.

Proof. Define u′ = u − u1/4. Then the distribution of τ(u) − τ(u′) given
Fτ(u′) is degenerate at 0 if Sτ(u′) > u and otherwise that of τ(v) with v =
u − Sτ(u′) = u1/4 − B(u′). Hence

EL[τ(u) − τ(u′)] = EL

[
τ(u1/4 − B(u′)); B(u′) ≤ u1/4

]
≤ Eτ(u1/4) = O(u1/4),

and thus in (5.6), we can replace τ(u) by τ(u′). Defining h(u) = ELf(B(u)),
so that h(u) → h(∞) = ELf(B(∞)), it follows similarly that

EL

[
f(B(u))

∣∣Fτ(u′)
]

= h
(
u1/4 − B(u′)

)
I
(
B(u′) ≤ u1/4

)
+ f

(
B(u′) − u1/4

)
I
(
B(u′) > u1/4

)
PL→ h(∞) · 1 + 0,

using that u1/4 − B(u′) PL→ ∞ as follows from B(u′) D→ B(∞). Hence

EL

[
f(B(u)) g

(
(τ(u′) − u/µL)/ωu1/2

)]
= EL

[
EL

[
f(B(u)) |Fτ(u′)

]
g
(
(τ(u′) − u/µL)/ωu1/2

)]
∼ h(∞)ELg

(
(τ(u′) − u/µL)/ωu1/2

) ∼ h(∞)Eg(U).

�

Proof of Theorem 5.6. By (5.1), (5.6),

P(MT > u) = P(τ(u) ≤ T ) = e−γuEL

[
e−γB(u); τ(u) ≤ T

]
= e−γuEL

[
e−γB(u); τ(u) ≤ u/µL + xωu1/2 + o(u1/2)

]
= e−γu

{
EL

[
e−γB(∞)Φ(x)

]
+ o(1)

}
.

�

We finally consider a variant of the Cramér–Lundberg approximation,
the asymptotics of the tail of the cycle maximum in the GI/G/1 queue:

Corollary 5.9 Consider a discrete–time random walk and define M− =
sup {Sn : 0 ≤ n < τ−}. Then under the conditions of Theorem 5.2, P(M− >
u) ∼ C−e−γu where C− = CPL(τ− = ∞) = ELe−γB(∞) · PL(τ− = ∞).

Proof. Since {τ− > τ(u)} ∈ Fτ(u), (5.1) yields

P(M− > u) = P(τ− > τ(u)) = e−γuEL

[
e−γB(u); τ− > τ(u)

]
∼ e−γuELe−γB(∞) · PL(τ− = ∞),
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where the last step used B(u) → B(∞), {τ− > τ(u)} ↑ {τ− = ∞} in PL–
distribution and a similar asymptotic independence argument as in Lemma
5.8. �

Proposition VI.4.9 now yields the existence of a Gumbel limit for the
extremes of the GI/G/1 waiting times (recall that σ is the number of
customers served in a busy cycle):

Corollary 5.10 Consider a GI/G/1 queue such that the distribution of
X = U − T satisfies the conditions of Theorem 5.2, and let W N =
maxn=0,...,N Wn be the largest waiting time among customers 0, . . . , N .
Then

P
(
γWN ≤ x − log N − log(C−/Eσ) ≤ x

) → e−e−x

, N → ∞.

Notes General references on ruin probabilities are in Asmussen (2000); see
also XIV.5–6. In the queueing setting, Lundberg’s inequality was first proved by
Kingman. The Lundberg parameter θ = γ occurs in a variety of settings, e.g.
Feller (1971), Siegmund (1985), Neuts (1986) and Asmussen (2000). Lemma 5.8
is known in the literature as Stam’s lemma.

Exponential tail approximations for queues is a large and active area. Exact
asymptotics becomes quickly diffficult to derive beyond simple models (see, how-
ever, Sadowsky and Szpankowsky, 1995, for GI/G/s and Section 8 for Markov
additive models), but large deviations techniques (yielding logarithmic asymp-
totics) have proved successful in a number of cases. A particularly useful general
result in this direction was given by Glynn and Whitt (1994) under conditions
similar to those of the Gärtner–Ellis theorem (see the Notes to Section 2); a re-
lated reference is Duffield and O’Connell (1995). For networks, see the Notes to
IV.6.

Further directions include heavy tails, see X.9 and the Notes there, and Gaus-

sian processes where we mention for example Dȩbicki et al. (1998), Choe and

Shroff (1999) and Dȩbicki (2002); when looking for asymptotics of P(supXt > u),

a useful first approximation is often P(Xt(u) > u) where t = t(u) maximizes

P(Xt > u). For the particular case of fractional Brownian motion, see Massoulie

and Simonian (1999), Hüssler and Piterbarg (1999) and Piterbarg (2001).

6 Siegmund’s Corrected Heavy Traffic
Approximations

We now consider a discrete random walk heavy traffic situation similar to
X.7 where the mean µ = EX is smaller than but close to zero. It is con-
venient to define the exponential family in a slightly different way than in
Section 1 by letting θ = 0 correspond not to the given increment distribu-
tion F but to the mean zero case. We then have F = Fθ0 with θ0 < 0 and
κ′

0(0) = 0. That is, given F we let θ0 < 0 be the solution of κ′(−θ0) = 0 and
let Fθ be the distribution with c.g.f. κθ(α) = κ(α + θ − θ0)−κ(θ − θ0). We
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then represent the heavy traffic set–up by the limit θ0 ↑ 0 in the exponential
family (Fθ)θ∈Θ.

It is assumed that Θ contains a neighbourhood of zero and, for the ease
of notation, that the scale is chosen such that Var0X = κ′′

0(0) = κ′′(−θ0)
= 1. Then for small θ

κ0(θ) =
θ2

2
+

θ3

3!
E0X

3 + · · · , (6.1)

µθ = κ′
0θ) = θ + O(θ2), (6.2)

VarθX = κ′′
0(θ) = 1 + O(θ), EθX

2 = 1 + O(θ). (6.3)

Also, θL > 0 connected to θ0 < 0 by means of κ0(θ0) = κ0(θL) is well
defined, and by (6.1) we have in the limit θ0 ↑ 0 that

θL

−θ0
→ 1,

γ

−θ0
=

θL − θ0

−θ0
→ 2. (6.4)

We shall let u vary with θ0 in such a way that any of the equivalent relations

uθ0 → −ξ, uθL → ξ (6.5)

hold for some ξ ≥ 0 and as previously let τ(u) = inf {n ≥ 1 : Sn > u}.
Some preliminary estimates follow immediately from X.7:

Proposition 6.1 As θ0 ↑ 0, γEθ0M → 1 and subject to (6.5),

Pθ0(M > u) = Pθ0(τ(u) < ∞) → e−2ξ, (6.6)

Pθ0

(τ(u)
u2

≤ T
)

→ G(T ;−ξ, 1). (6.7)

Proof. The condition X.(7.1) is clear since clearly Fθ0

w→ F0, and by (6.2)
and (6.3) µθ0 → µ0 = 0, Eθ0X

2 → 1 = E0X
2. Hence, for example, X.7.1

implies Eθ0 [−µθ0M/Eθ0X
2] → 1/2 which is equivalent to γEθ0M → 1 by

(6.2)–(6.4). For (6.7), apply X.7.4 to get

Pθ0

(
τ
(−yEθ0X

2

µθ0

)
≤ t

µ2
θ0

)
→ G(t;−1, y).

Letting y = −uθ0, t = ξ2T and using (6.2), (6.3) and (6.5) this implies

Pθ0(τ(u) ≤ Tu2) → G(ξ2T ;−1, ξ) = G(T ;−ξ, 1),

cf. Proposition 4.5(i). Similar estimates yield (6.6). �

We shall now study improvements of these estimates, obtained in a 1979
paper by D. Siegmund. The idea is to estimate the excess over the boundary
more carefully and thereby obtain correction terms of lower magnitude
O(γ), O(γ2), . . . (in view of (6.2) or (6.4), we might as well have replaced
γ by −θ0 or −µθ0). Only the form of the first–order correction term will be
derived rigorously, but the second term is included in the statement of the
results because of their importance as approximations. Considering first
(6.6), we have γu ∼ 2ξ. Hence Pθ0(M > u) ∼ e−γu, and we have:
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Theorem 6.2 Suppose that the P0–distribution F0 of X is spread out, and
let β = E0B(∞) = E0S

2
τ+

/2E0Sτ+ . Then as θ0 ↑ 0, uθ0 → −ξ

Pθ0(M > u) = e−γ(u+β) + o(γ2) . (6.8)

The proof is based on the relation Pθ0(M > u) = e−γuC(u) with C(u) =
EθLe−γB(u), which was used in the proof of the Cramér–Lundberg approx-
imation. However, C(u) must now be estimated in a different manner since
θ0 is no longer fixed. We shall need some lemmas, in particular a variant
(Lemma 6.4) of Lemma 5.8:

Lemma 6.3 E0eεSτ+ < ∞ for any ε > 0 with κ0(ε) < ∞.

Proof. This can be obtained either by an easy variant of the proof of X.2.1
or by Wiener–Hopf factorization; cf. Problem 6.1. �

Lemma 6.4 B(u) and τ(u)/u2 are asymptotically independent w.r.t. PθL

as θ0u → −ξ, with the limiting distribution of τ(u)/u2 being G(·; ξ, 1) and
that of B(u) the P0–distribution of B(∞). That is, for f, g bounded and
continuous

EθLf
(
B(u)

)
g
(
τ(u)/u2

) → E0f
(
B(∞)

) ∫ ∞

0

g(x)G(dx; ξ, 1) . (6.9)

More generally, there is an ε > 0 such that (6.9) holds when f is continuous
with f(x) = O(eεx).

Proof. The l.h.s. of (6.9) is

E0

[
f(B(u)

)
g
(
τ(u)/u2

)
exp

{
θL

(
u + B(u)

)− τ(u)κ0(θL)
}]

, (6.10)

and thus we have to inspect the P0–limit of (B(u), τ(u)/u2). Clearly,
B(u) D→ B(∞) and by Proposition 6.1, τ(u)/u2 D→ G(·; 0, 1). By a variant
of the proof of Lemma 5.8, it is seen that we also have asymptotic indepen-
dence: letting u′ = u − u1/4, the only new estimate needed is τ(u) − τ(u′)
= o(u2) which follows from the stochastical domination by τ(u1/4) and
τ(u1/4)/u1/2 D→ G(·; 0, 1). Also by Lemma 6.3 and renewal theory, we have
E0eδB(u) → E0eδB(∞) < ∞, in particular E0eδB(u) ≤ c for all u ≥ 0. For
ε < δ, we then have that ε + θL < δ eventually, and using uniform inte-
grability and κ0(θL) ∼ ξ2/2u2, it follows that the limit of (6.10) exists for
f(x) = O(eεx) and is

E0f
(
B(∞)

)∫ ∞

0

g(x)eξ−ξ2x/2 G(dx; 0, 1) = E0f(B(∞))
∫ ∞

0

g(x)G(dx; ξ, 1)

(note that θLB(u) P→ 0). �

To obtain the second–order correction terms, the following two lemmas
are needed:

Lemma 6.5 As θ0u → −ξ, it holds for some ε > 0 that EθLB(u) =
EθLB(∞) + O(e−εu).
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Lemma 6.6 EθLSk
τ+

= E0S
k
τ+

+ kθL/(k + 1)E0S
k+1
τ+

+ o(γ), k = 1, 2, . . .

It is seen that Lemma 6.5 is a uniform version of VII.2.10, and the proof
may proceed by first showing that the PθL–distributions of B(0) = Sτ+

have a common absolute continuous component, and next to check that the
estimates in VII.2 hold uniformly in small θL. Also, the proof of Lemma 6.6
is not unreasonably complicated, but we omit the details of both proofs.

Proof of Theorem 6.2. By Taylor expansion

C(u) = EθLe−γB(u) = EθL

[
1− γB(u) +

γ2

2
B(u)2 + γ3O

(
B(u)3eγB(u)

)]
.

Here the last term is O(γ3) by Lemma 6.4, while EθLB(u) → E0B(∞) = β.
This is more than sufficient for C(u) = 1 − γβ + o(γ), and thus that the
remainder term in (6.8) is o(γ). To see that it is actually o(γ2), note that
by Lemmas 6.5 and 6.6

EθLB(u) = EθLB(∞) + O(e−εu) =
EθLS2

τ+

2EθLSτ+

+ O(e−εu)

=
E0S

2
τ+

+ 2θLE0S
3
τ+

/3
2E0Sτ+ + θLE0S2

τ+

+ o(γ)

= β + θL

(
E0S

3
τ+

3E0S2
τ+

− β2

)
+ o(γ)

= β +
γ

2

(
E0S

3
τ+

3E0Sτ+

− β2

)
+ o(γ),

EθLB(u)2 = E0B(∞)2 + o(1) =
E0S

3
τ+

3E0Sτ+

+ o(1).

Combining these estimates, the terms involving E0S
3
τ+

cancel and we get

C(u) = 1 − γβ +
γ2β2

2
+ o(γ2) = e−γβ + o(γ2),

P(M > u) = e−γuC(u) = e−γ(u+β)o(γ2). �

There is also a similar refinement of Eθ0M ∼ γ−1:

Theorem 6.7 As θ0 ↑ 0, Eθ0M =
1
γ

− β +
γ

2

(
E0S

3
τ+

3E0Sτ+

− β2

)
+ o(γ).

Proof. Using X.(2.3),

Eθ0M =
Eθ0 [Sτ+ ; τ+ < ∞]
1 − Pθ0(τ+ < ∞)

=
EθL [Sτ+e−γSτ+ ]

1 − EθLe−γSτ+
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=
EθLSτ+ − γEθLS2

τ+
+ γ2EθLS3

τ+
/2 + O(γ3)

γEθLSτ+ − γ2EθLS2
τ+

/2 + O(γ3)

from which the result follows by Lemma 6.6 after some elementary calculus.
Again, Lemma 6.6 is not needed to prove rigorously that Eθ0M = γ−1 −
β + o(1). �

We mention also without proof the similar refinement of (6.7), i.e. a
time–dependent version of the expansion (6.8) for P(M > u) = P(τ(u) <
∞),

P(τ(u) ≤ tu2) ≈ G
(
tu2 + uE0X

3/3; −γ/2, u + β
)

(6.11)

(by Proposition 4.5(i), this is the same as G(t+E0X
3/3u; −γu/2, 1+β/u)).

Numerical studies indicate that the above approximations are superior to
all others known, not only for θ0 close to zero but in fact in a remarkably
wide range. A deficit is that the constants such as β can be cumbersome
to evaluate. We mention in this connection the formula

β = E0X
3/6 − 1

π

∫ ∞

0

t−2�(log[2(1 − φ(t))/t2]
)
dt (6.12)

where φ(t) = E0eitX which can be implemented by numerical integration.
The proof is based upon Fourier inversion but omitted.

Problems

6.1 Let F (k), S
(k)
τ+ , etc. correspond to X(k) = Xn ∧ k. Show by Wiener–Hopf

factorization that

E0e
αS

(k)
τ+ ≤ eκ0(α) − E0e

αS
(k)
τ−

1 − E0e
αS

(k)
τ−

when α > 0, κ0(α) < ∞, and deduce that E0e
αSτ+ < ∞.

6.2 Check that under the assumptions of Theorem 6.2 the constant C of the
Cramér–Lundberg approximation satisfies C = 1 − γβ + o(γ).

Notes The results are from Siegmund (1979). See also Siegmund (1985) where

in particular the approach to time–dependent formulas such as (6.11) is somewhat

different.

7 Rare Events Simulation

We now consider some applications of exponential change of measure to
simulation. Consider a probability z = P(A) which is not available analyt-
ically. As in VI.2d, the crude Monte Carlo (CMC) method then amounts
to simulating i.i.d. replicates Z1, . . . , ZN of the r.v. Z = I(A), estimating
z by the empirical mean z = (Z1 + · · · + ZN )/N and the variance of Z by
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the empirical variance s2 = (N −1)−1
∑N

1 (Zi −z)2. According to standard

central limit theory,
√

N(z − z) D→ N(0, σ2
Z), where σ2

Z = Var(Z). Hence

z ± 1.96 s√
N

(7.1)

is an asymptotic 95% confidence interval, and this is the form in which the
result of the simulation experiment is commonly reported.

Specific problems arise when the event A is rare, that is, when z is small,
even if the CMC variance σ2

Z = z(1 − z) of course tends to zero as z ↓ 0.
However, the issue is not so much that the precision is good as that relative
precision is bad:

σZ

z
=

√
z(1 − z)

z
∼ 1√

z
→ ∞.

In other words, a confidence interval of width 10−4 may look small, but if
the point estimate z is of the order 10−5, it does not help telling whether z
is of the magnitude 10−4, 10−5 or even much smaller. Another way to illus-
trate the problem is in terms of the sample size N needed to acquire a given
relative precision, say 10%, in terms of the half–width of the confidence
interval. This leads to the equation 1.96σZ/(z

√
N) = 0.1, i.e.

N =
100 · 1.962z(1 − z)

z2
∼ 384

z

which increases like z−1 as z ↓ 0. Thus, if z is small, large sample sizes are
required.

To improve the efficiency, a common tool in simulation is importance
sampling, which means simulating from a probability measure P̃ different
from the given probability measure P and having the property that there
exists a r.v. L such that

z = P(A) = Ẽ[L; A]. (7.2)

One then employs the CMC method exactly as above, only taking Z =
LI(A) (simulated from P̃) rather than Z = I(A) (simulated from P).

We consider here two examples A = A(n) = {Sn > ny}, resp. A =
A(x) = {τ(x) < ∞}, which have been studied by exponential change of
measure techniques in Section 2, resp. Section 5. From the analysis there,
it seems an obvious idea to implement importance sampling with P̃ given
by Pθ (with θ = θ(y) the saddlepoint), resp. P̃ = PL. The corresponding
estimators are

Z(n) = e−θSn+nθI(Sn > ny), (7.3)
Z(x) = e−γSτ(x)I(τ(x) < ∞) = e−γxe−γB(x) (7.4)

(for the last identity in (7.4), note that PL(τ(x) < ∞) = 1).
To see that these two estimators indeed work extremely well, we shall

employ two established efficiency criteria in rare events simulation, bounded
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relative error and logarithmic efficiency. To introduce these, assume that
the rare event A = A(x) depends on a parameter x as in (7.4) (in (7.3),
n takes the role of x). Write z(x) = P(A(x)), assume that the A(x) are
rare in the sense that z(x) → 0, x → ∞, and let Z(x) be a Monte Carlo
estimator of z(x). We then say that {Z(x)} has bounded relative error if
Var

(
Z(x)

)
/z(x)2 remains bounded as x → ∞ (according to the above

discussion, this means that the sample size N = Nε(x) required to obtain a
given fixed relative precision, say ε =10%, remains bounded). Logarithmic
efficiency is defined by the slightly weaker requirement that one can get as
close to the power 2 as desired: Var

(
Z(x)

)
should go to 0 as least as fast

as z(x)2−ε, i.e.

lim sup
x→∞

Var
(
Z(x)

)
z(x)2−ε

< ∞ (7.5)

for any ε > 0. This allows Var
(
Z(x)

)
to decrease slightly slower than z(x)2,

so that Nε(u) may go to infinity. However, the mathematical definition
puts certain restrictions on this growth rate, and in practice, logarithmic
efficiency is almost as good as bounded relative error. The term logarithmic
comes from the equivalent form

lim inf
x→∞

− log Var
(
Z(x)

)
− log z(x)

≥ 2 (7.6)

of (7.5) which is inspired from large deviations theory.

Theorem 7.1 The estimator (7.4) has bounded relative error as x → ∞.

Proof. By a minor variant of the proofs of Theorems 5.1, 5.2, we get

ELZ(x)2 = e−2γxELe−2γB(x) ∼ e−2γxELe−2γB(∞)

so that

lim
x→∞

Var
(
Z(x)

)
z(x)2

≤ lim
x→∞

e−2γxELe−2γB(∞)(
e−γxELe−γB(∞)

)2 =
ELe−2γB(∞)(
ELe−γB(∞)

)2 < ∞.

�

Theorem 7.2 The estimator (7.3) is logaritmically efficient as n → ∞.

Proof. By a minor variant of the proof of (2.2), we get

EθZ(n)2 = e−2nκ∗(y)Eθ

[
e−2θ(Sn−ny); Sn > ny

] ≤ e−2nκ∗(y)

so that (recall (2.3), (2.4))

lim
n→∞

− log Var
(
Z(n)

)
− log z(n)

≥ lim
n→∞

− log EZ(n)2

− log z(n)
= lim

n→∞
− log EZ(n)2

nκ∗(x)

≥ lim
n→∞

2nκ∗(y)
nκ∗(y)

= 2.

�
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Notes Even if (given the earlier developments of this chapter) it is not sur-

prising that the estimators (7.3), (7.4) work well and that the proofs of this are

short, natural questions are whether indeed the particular changes of measures

which were employed are the best possible ones, and why. For the first question,

we refer to a short argument given in Asmussen and Rubinstein (1995), based

upon the information inequality. For the second, specializing a general optimality

criterion in importance sampling gives that the change of measure P̃ = P( · |A) for

estimating z gives zero variance (this is of course trivial since the corresponding

estimator Z = z is constant). Now P( · |A) is typically not known so simulating

from this distribution meets difficulties and, more seriously, even if it could be

done the importance sampling estimator Z = z could not be evaluated since the

whole point in using simulation is that z is not known. However, what is sug-

gested is that taking P̃ close to P( · |A) would give a small variance. Indeed, in

the setting of Theorem 7.2 a classical result from statistical mechanics known as

Boltzmann’s law (see e.g. Khinchin, 1949, or Martin–Löf, 1979) states that given

Sn > ny, the r.v.’s X1, . . . , Xn are asymptotically i.i.d. with distribution Fθ , and

similar results supporting Theorem 7.1 are in Asmussen (1982) (see also Anan-

tharam, 1988). In general, large deviations theory and in particular Mogulskii’s

theorem will often identify the asymptotically most likely path leading to the rare

event A and thereby suggest a change of measure. For discussion of these topics,

surveys on rare events simulation and references, see Asmussen and Rubinstein

(1995) and Heidelberger (1995).

8 Markov Additive Processes

We consider a (finite) Markov additive process {(Jt, St)}t∈T in the notation
of XI.2; when T = [0,∞), we recall in particular the expression etK[α] for
the matrix F̂ t[α] with ijth element Ei[eαSt ; Jt = j] where

K[α] = Λ +
(
κ(i)(α)

)
diag

+
(
λijqij(B̂ij [α] − 1)

)
.

For a fixed θ, write

Lt =
h

(θ)
Jt

h
(θ)
J0

eθSt−tκ(θ)

This is just the Wald martingale normalized to have mean 1, and Proposi-
tion 3.1 immediately gives the existence of a probability measure P̃i such
that

P̃i(A) = Ei [Lt; A] , A ∈ Ft = σ
(
(Jv, Sv) : v ≤ t

)
. (8.1)



8. Markov Additive Processes 377

Theorem 8.1 Consider the irreducible case with E finite. Then the family{
P̃i

}
i∈E

defines a new MAP with parameters given by

P̃ = e−κ(θ)∆−1
h(θ) F̂ [θ]∆h(θ) , H̃ij(dx) =

eθx

Ĥij [θ]
Hij(dx)

in the discrete–time case, and by

Λ̃ = ∆−1
h(θ)K[θ]∆h(θ)−κ(θ)I, µ̃i = µi+θσ2

i −
∫ 1

−1

[eθx−1]νi(dx), σ̃2
i = σ2

i ,

ν̃i(dx) = eθxνi(dx), q̃ij =
qijB̂ij [θ]

1 + qij(B̂ij [θ] − 1)
, B̃ij(dx) =

eθx

B̂ij [θ]
Bij(dx)

in the continuous–time case. Here ∆h(θ) is the diagonal matrix with the
h

(θ)
i on the diagonal. In particular, if νi(dx) is compound Poisson, νi(dx) =

βiBi(dx) with βi < ∞ and Bi a probability measure, then also ν̃i(dx) is
compound Poisson with

β̃i = βiB̂i[θ], B̃i(dx) =
eθx

B̂i[θ]
Bi(dx).

Remark 8.2 The expression for Λ̃ means

λ̃ij =
h

(θ)
j

h
(θ)
i

λij

[
1 + qij(B̂ij [θ] − 1)

]
, i 
= j. (8.2)

In particular, this gives a direct verification that Λ̃ is an intensity matrix:
the off–diagonal elements are nonnegative because λij ≥ 0, 0 ≤ qij ≤ 1 and
B̂ij [θ] > 0. That the rows sum to 0 follows from

Λ̃1 = ∆−1
h(θ)K[θ]h(θ) − κ(θ)1 = κ(θ)∆−1

h(θ)h
(θ) − κ(θ)1

= κ(θ)1 − κ(θ)1 = 0 .

That 0 ≤ q̃ij ≤ 1 follows from the inequality

qb

1 + q(b − 1)
≤ 1, 0 ≤ q ≤ 1, 0 < b < ∞. �

Proof of Theorem 8.1. First note that the ijth element of ̂̃
F t[α] is

Ẽi[eαSt ; Jt = j] = Ei[LteαSt ; Jt = j] =
h

(θ)
j

h
(θ)
i

e−tκ(θ)Ei[e(α+θ)St ; Jt = j].

In matrix notation, this means that̂̃
F t[α] = e−tκ(θ)∆−1

h(θ) F̂ t[α + θ]∆h(θ) . (8.3)
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Consider first the discrete–time case. Here the stated formula for P̃
follows immediately by letting t = 1, α = 0 in (8.3). Further

F̃ij(dx) = P̃i(Y1 ∈ dx, J1 = j) = Ei[L1; Y1 ∈ dx, J1 = j]

=
h

(θ)
j

h
(θ)
i

eθx−κ(θ)Pi(Y1 ∈ dx, J1 = j) =
h

(θ)
j

h
(θ)
i

eθx−κ(θ)Fij(dx).

This shows that F̃ij is absolutely continuous w.r.t. Fij with a density pro-
portional to eθx. Hence the same is true for H̃ij and Hij ; since H̃ij , Hij

are probability measures, it follows that indeed the normalizing constant
is Ĥij [θ].

Similarly, in continuous time (8.3) yields

et˜K[α] = ∆−1
h(θ)et(K[α+θ]−κ(θ)I)∆h(θ) .

By the general formula ∆−1eA∆ = e∆
−1A∆ (∆ diagonal), this implies

K̃[α] = ∆−1
h(θ)

(
K[α + θ] − κ(θ)I

)
∆h(θ) = ∆−1

h(θ)K[α + θ]∆h(θ) − κ(θ)I .

Letting α = 0 yields the stated expression for Λ̃.
Now we can write

K̃[α] = Λ̃ + ∆−1
h(θ)(K[α + θ] − K[θ])∆h(θ)

= Λ̃ +
(
κ(i)(α + θ) − κ(i)(θ)

)
diag

+
(

h
(θ)
j

h
(θ)
i

λijqij

(
B̂ij [α + θ] − B̂ij [θ]

))
.

That κ(i)(α + θ) − κ(i)(θ) corresponds to the stated parameters µ̃i, σ̃
2
i , ν̃i

of a Lévy process follows from Theorem 3.4. Finally note that by (8.2),

h
(θ)
j

h
(θ)
i

λijqij

(
B̂ij [α + θ] − B̂ij [θ]

)
=

h
(θ)
j

h
(θ)
i

λijqijB̂ij [θ]
( ̂̃
Bij [α] − 1

)
= λ̃ij q̃ij

( ̂̃
Bij [α] − 1

)
.

�

As a main application, we give the analogue of the Cramér–Lundberg
approximation and Corollary 5.9. Let I(u) = Jτ(u) and use obvious nota-
tion like τ(u) = inf {t > 0 : St > u}, B(u) = Sτ(u) − u, M = supt≥0 St,
M− = sup0≤t<τ− St, etc. Write further Pi,θ for the probability measure P̃

constructed above and conditioned to J0 = i.

Theorem 8.3 Consider a MAP in discrete or continuous time with
κ′(0) < 0, and κ(γ) = 0, κ′(γ) < ∞ for some γ > 0. Assume further
that

{(
I(x), B(x)

)}
satisfies the nonlattice condition of VII.5.2(i) for the
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existence of a limit
(
I(∞), B(∞)

)
. Then

Pi(M > u) ∼ h
(γ)
i Ce−γu where C = Ei,γ

[
e−γB(∞)

h
(γ)
I(∞)

]
.

Similarly, if Pi(τ− > 0) = 1, then

Pi(M− > u) ∼ h
(γ)
i CPi,γ(τ− = ∞)e−γu .

Proof. By the stopping time version of (8.1),

Pi(M > u) = Pi(τ(u) < ∞) = Ei,γ

[
h

(θ)
J0

h
(θ)
Jθ(u)

e−γSτ(u) ; τ(u) < ∞
]

= e−γuEi,γ

[
h

(θ)
i

h
(θ)
I(u)

e−γB(u)

]
,

where we used Pi,γ(τ(u) < ∞), as follows from κ′(γ) > 0 (convex-
ity!). The asymptotics for Pi(M > u) therefore immediately follows from(
I(u), B(u)

) D→ (
I(∞), B(∞)

)
. The case of Pi(M− > u) is a similar

asymptotic independence argument as in the proof of Corollary 5.9. �

Notes As in Remark 5.4, the conditions for existence of (I(∞),B(∞)) in The-

orem 8.3 are very mild. However, to find simple expressions for C in terms of

model parameters is harder than in one dimension; examples can be found e.g.

in Asmussen (2000) and Miyazawa (2002, 2004).



XIV
Dams, Inventories and Insurance Risk

1 Compound Poisson Dams with General
Release Rule

This model originates from problems of storage of water in dams or reser-
voirs. Water flows in, say from a river or several creeks, according to an
input process {At}t≥0 and is released at a rate r(x) depending on the
present content x of the dam. We let Xt be the content at time t and shall
be interested in the ergodicity problems for the process {Xt}t≥0. From a
practical point of view, the stationary distribution π is of importance for
assessing values of quantities such as the proportion π0 = π({0}) of time the
dam is empty and the average release rate

∫∞
0

r(x)π(dx). Some guidelines
for the choice of r are thereby possibly also provided.

We shall assume that {At} is a compound Poisson process,

At =
Nt∑

n=1

Un, (1.1)

where {Nt} is a Poisson process with intensity β and U1, U2, . . . are i.i.d.
with distribution B and independent of {Nt} (here U > 0, i.e. B(0) = 0).
In terms of water storage, this corresponds intuitively to the input to the
dam being due mainly to rare large rainfalls. This assumption is acceptable
for the dry climatic conditions for which the theory was initially developed,
but certainly not always. Thus it would frequently be reasonable to add a
drift term ct to (1.1), and also the effects of frequent small rainfalls may
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not be negligible, which would lead to {At} being a Lévy process with only
positive jumps. These cases will, however, not be discussed here.

The dam is taken to be infinitely high, i.e. the state space for {Xt} is
[0,∞). The release rate being r(x) at content x means that in between
jumps, {Xt} should satisfy the differential equation

ẋ = −r(x), (1.2)

where ẋ means left derivative. We shall assume that r is in D(0,∞) with

0 < inf
ε<x<ε−1

r(x), sup
0<x<ε−1

r(x) < ∞ (1.3)

for any ε ∈ (0, 1), and extend r(x) to x = 0 by letting r(0) = 0 (in
applications, r(x) will typically be nondecreasing). It is then easily seen
that for each x0 > 0 (1.2) has a unique solution xt starting at x0. In fact,
if we let

θ(x; y) =
∫ x

y

1
r(v)

dv, x ≥ y, (1.4)

then (d/dt)θ(x0; xt) = 1 and θ(x0; x0) = 0 yields θ(x0; xt) = t. That is, xt

is the inverse function of θ(x0; ·) or equivalently, θ(x; y) is the time required
for xt to pass from x to y. Note that in view of r(0) = 0, xt gets absorbed
at 0 once 0 is hit, which happens if and only if θ(x; 0) < ∞ for some (and
then all) x > 0.

The construction of the process is now obvious since we only have to start
at say X0 = x and let the process move deterministically according to (1.2)
until the first jump of {At} where {Xt} jumps the same amount. Then (1.2)
governs the motion until the next jump and so on. These properties can be
summarized in the so–called storage equation

Xt = x + At −
∫ t

0

r(Xs) ds (1.5)

and under the given set of assumptions, it is easy to see that there is a
unique solution [(1.5) simply reflects that {Xt} has the same upward jumps
as {At} and moves according to (1.2), with r(0) = 0, in between jumps]. It
is also intuitively clear from the construction that {Xt} is Markov, and this
is readily checked as well as the strong Markov property; cf. Problem 1.1.
An example of a sample path is in Fig. 1.1. Here r(x) = 1+x corresponding
to xt = (x0 + 1)e−t − 1, and θ(x; 0) < ∞ because of limx→0r(x) > 0. We
note that if r(x) ≡ 1, then {Xt} is simply the workload process of a M/G/1
queue; cf. Fig. III.1.4.

Preparing for the study of the ergodicity problem, let τ+(u) =
inf {t ≥ 0 : Xt > u}, τ−(u) = inf {t ≥ 0 : Xt ≤ u} and τ(u) = inf{t ≥ 0 :
Xt = u}.
Lemma 1.1 For any u ∈ (0,∞) and T > 0, there is an ε > 0 such that
Px(τ+(u) ≤ T ) ≥ ε for all x ≤ u.
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Figure 1.1

Proof. Define m = supx≤u r(x), F = {AT > u + mT}. Then ε = PF > 0
since the distribution of AT as compound Poisson has unbounded support.
Furthermore, τ+(u) ≤ T on F , since otherwise Xt ≤ u, r(Xt) ≤ m for all
t ≤ T , and the storage equation yields the contradiction

XT > 0 + u + mT −
∫ T

0

r(Xt) dt ≥ u. �

Proposition 1.2 The process is either transient in the sense that Px(Xt →
∞) = 1 for all x ≥ 0, or recurrent in the sense that Px(τ(u) < ∞) = 1 for
all x ≥ 0, u > 0.

Proof. For v ≥ 0, define F = {limt→∞Xt < v}. If PxF = 0 for all x ≥ 0,
v > 0, it is clear that Px(Xt → ∞) = 1, so suppose PxF > 0 for some
x ≥ 0, v > 0. On F , there exists an increasing sequence {σk} of stopping
times with σk+1 − σk ≥ 1 (say), Xσk

≤ v. Then by Lemma 1.1 with T = 1,
we have for u > v that

∞∑
k=1

Px

(
Xt > u for some t ∈ [σk, σk+1)

∣∣Fσk

)
≥

∞∑
k=1

PXσk
(τ+(u) ≤ 1) ≥

∞∑
k=1

ε = ∞

on F . Hence, by the conditional Borel–Cantelli lemma it occurs on F for
infinitely many k that Xt > u for some t ∈ [σk, σk+1). Since Xσk+1 ≤ v, we
have thus by the downward skip–free property of the paths that u is visited
i.o. in between visits to [0, v]. This is only possible if Pu(τ(u) < ∞) = 1.
Hence, starting from u, there are infinitely many returns to u, and since
any state y > u can be reached from u, we must have Py(τ(u) < ∞) = 1.
To get P0(τ(u) < ∞) = 1, just condition on the first state y entered at the
jump away from zero. �

It follows easily from irreducibility properties of the process that in the
recurrent case, Euτ(u) is either finite for all u > 0 or infinite for all u > 0.
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For obvious reasons, we refer to the two possibilities as positive recurrence
and null recurrence, respectively. In either case, it follows from VII.3 that
{Xt} has a stationary measure ν which is unique up to a constant, and
which for any u > 0 may be written as ν = cuν(u) where∫ ∞

0

f(x)ν(u)(dx) = Eu

∫ τ(u)

0

f(Xt) dt. (1.6)

Proposition 1.3 For any u > 0, the function z(t) = Pu(Xt ≤ u, τ(u) > t)
tends to zero exponentially fast. In particular, the stationary measure ν is
Radon (ν(A) < ∞ for A compact) and in the null recurrent case Px(Xt ≤
u) → 0 for all x, u ≥ 0. That is, Xt → ∞ in Px–distribution.

Proof. An inspection of the paths shows that z(t) ≤ Pu(τ+(u) > t). Letting
Hn be the conditional distribution of Xn given τ+(u) > n, Lemma 1.1
yields

Pu(τ+(u) > n + 1) = Pu(τ+(u) > n)
∫ u

0

Px(τ+(u) > 1)Hn(dx)

≤ (1 − ε)Pu(τ+(u) > n)

and the exponential decay of z(t) follows. Clearly z is measurable, thus
Lebesgue integrable. Therefore ν(u)[0, u] =

∫
z < ∞, the truth of which

for all u shows that ν is Radon. Since clearly the cycle length distribution
is absolutely continuous with mean Euτ(u) which is infinite in the null
recurrent case, VII.3.8(iv) then yields Px(Xt ≤ u) → 0 for all x, u, so that
Xt

D→ ∞. �

Theorem 1.4 The stationary measure ν has an atom ν0 = ν({0}) > 0 at
zero if and only if θ(x; 0) < ∞ for some (and then all) x > 0. Also ν is
absolutely continuous on (0,∞) and there exists a version g of the density
satisfying

g(x) =
1

r(x)
β

∫ x

0

B(x − y) ν(dy) (1.7)

=
β

r(x)

{
ν0B(x) +

∫ x

0

B(x − y)g(y) dy

}
. (1.8)

Proof. We take ν = ν(u) for a while. Starting from u, we reach zero with
positive probability if and only if θ(u; 0) < ∞, and then have a nonzero so-
journ time. From this the statement concerning ν0 is clear. For the absolute
continuity, note that a particle moving at a speed at least δ spends at most
time δ−1|A|T in the set A within T units of time. Hence, if A ⊆ (ε−1, ε) and
|A| = 0, it follows by (1.3) that

∫∞
0

I(Xt ∈ A) dt = 0, implying ν(u)(A) = 0
and absolute continuity.

For the proof of (1.7), we apply rate conservation to Zt = I(Xt > x). If
no Poisson arrivals occur in (t, t+h], there will be a downcrossing (negative
jump) precisely when Xt ∈ (x, x + z(h)] where θ(x + z(h); x) = h. Since
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z(h) = r(x)h + o(h), the probability of this is

e−βhPe

(
Xt ∈ (x, x + z(h)]

)
= e−βh

∫ x+z(h)

x

g(y) dy = r(x)g(x)h + o(h).

The probability of a downcrossing and a Poisson event in (t, t+h] is bounded
by

(1 − e−βh)
∫ x+z(h)

0

B
(
x − y, x − y + z(h)

]
ν(dy)

which is o(h) by monotone convergence. It follows that the rate of
downcrossings is r(x)g(x). The rate of upcrossings (positive jumps) is
β
∫ x

0
B(x − y) ν(dy), and (1.7) follows by equating these two rates. �

In the positive recurrent case ‖ν‖ < ∞, we can define the unique station-
ary distribution π by π = ν/‖ν‖ and have by general results on regenerative
processes that Xt → π in Px–distribution for all x. In that case, the solution
g to (1.7) and (1.8) exists and is integrable.

We shall next show that conversely the existence of an integrable solution
to (1.7) and (1.8) implies positive recurrence. To this end, let {Yn} be the
content just before the nth jump. Then {Yn} is a Markov chain, and we
have:

Lemma 1.5 (i) Either {Yn} is transient in the sense that Px(Yn → ∞) = 1
for all x, or {Yn} is recurrent in the sense that Px(Yn ≤ v i.o.) = 1 for all
x ≥ 0, v > 0; (ii) in the recurrent case, {Yn} is Harris recurrent; (iii) if a
distribution π has the property that (1.7) and (1.8) hold for ν = π, then π
is stationary for {Yn}.
Proof. Here (i) is shown similarly as in Proposition 1.2. For (ii), let R = [0, v]
for some arbitrary v > 0 and choose 0 < c < d < f < ∞ such that δ1 =
P
(
U ∈ (d, f ]

)
> 0. Now for (a, b) ⊆ (c, d) and x ∈ R,

P
(
Y1 ∈ (a, b)

∣∣Y0 = x
) ≥

∫ f

d

P
(
θ(x + u; b) < T < θ(x + u; a)

)
B(du)

=
∫ f

d

e−βθ(x+u;b)
(
1 − e−βθ(b;a)

)
B(du) ≥ δ1e−βθ(f+v;c)

(
1 − e−βθ(b;a)

)
where T is the time between the first (at t = 0) and second jump. But from
(1.3), we can find δ2 > 0 such that 1−e−βθ(b;a) ≥ δ2(b−a) for (a, b) ⊆ (c, d).
Hence

P
(
Y1 ∈ (a, b)

∣∣Y0 = x
) ≥ δ3(b − a), x ∈ R,

so that the minorization condition VII.(3.1) holds if we take λ to be the
uniform distribution on (c, d). This proves (ii). For (iii), let Pπ− refer to the
initial condition where the first jump occurs at time zero and X0− = Y0

has distribution π. Then X0 has distribution π ∗ B, and Y1 > z will occur
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if X0 = y > z and the first jump occurs before θ(y; z). Hence

Pπ−(Y1 > z) =
∫ ∞

z

(
1 − e−βθ(y;z)

)
(π ∗ B)(dy)

=
∫ ∞

z

β

r(y)
e−βθ(y;z)(π ∗ B)(y) dy. (1.9)

Now clearly by (1.7),

(π ∗ B)(y) = π(y) +
∫ y

0

B(y − x)π(dx) = π(y) +
1
β

g(y)r(y)

and hence (1.9) becomes∫ ∞

z

β

r(y)
e−βθ(y;z)π(y) dy +

∫ ∞

z

e−βθ(y;z)g(y) dy

=
∫ ∞

z

(
1 − e−βθ(y;z)

)
π(dy) +

∫ ∞

z

e−βθ(y;z) π(dy) = π(z),

proving stationarity of π for {Yn}. �

Theorem 1.6 The process {Xt} is positive recurrent if and only if there
exists a probability measure π(x) = π0+

∫ x

0
g(y) dy such that (1.7) and (1.8)

hold for ν = π. In that case, the solution to (1.7) and (1.8) is unique and
the stationary distribution.

Proof. The existence of a solution in the positive recurrent case follows from
Theorem 1.4. If, conversely, π is a solution with ‖π‖ = 1, then by Lemma
1.5(iii) π is a stationary distribution for {Yn}, the existence of which implies
first that {Yn} cannot be transient, cf. (i), and next by (ii) that {Yn} is
positive recurrent and that the solution to (1.7) and (1.8) is unique. It thus
only remains to show that {Xt} is indeed positive recurrent if π exists. But
then by the PASTA property VII.6.7 the time–averages

∫ t

0 I(Xs ≤ u) ds/t
have nonzero limits, which excludes transience and (by Proposition 1.3 and
Fatou’s lemma) null recurrence. �

In the case θ(x; 0) < ∞, it is possible to give an alternative characteriza-
tion of π. For an integral kernel K(x, y) defined for 0 ≤ y < x, a function
g and another kernel K ′(x, y), define

Kg(x) =
∫ x

0

K(x, z)g(z) dz, KK ′(x, y) =
∫ x

y

K(x, z)K ′(z, y) dz

One easily checks the associative law (KK ′)K ′′ = K(K ′K ′′) and hence we
can recursively define Kn = Kn−1K = KKn−1 (here K1 = K). Now take
K(x, y) = βB(x − y)/r(x). Using K(x, y) ≤ β/r(x), it follows easily by
induction that

Kn+1(x, y) ≤ βn+1θ(x; y)n/r(x)(n + 1)!. (1.10)

Hence K∗ =
∑∞

1 Kn is well defined and finite, and we have:



386 XIV. Dams, Inventories and Insurance Risk

Corollary 1.7 If θ(x; 0) < ∞, x > 0, then {Xt} is positive recurrent if
and only if

1 +
∫ ∞

0

K∗(x, 0) dx < ∞, (1.11)

in which case π0 is the reciprocal of (1.11) and g(x) = π0K
∗(x, 0), x > 0.

Proof. Let g0(x) = K(x, 0). Then

g = π0g0 + Kg = π0(g0 + Kg0) + K2g = π0

N−1∑
n=0

Kng0 + KNg,

where the first identity is just (1.8). But KNg → 0 by (1.10) and Kng0(x) is
just Kn+1(x, 0). Hence g = π0K

∗(x, 0) which yields the desired conclusions
in the positive recurrent case. If, conversely, (1.11) holds and we define π
as indicated, then

π0g0(x) + Kg(x) = π0g0(x) + π0

∞∑
n=2

Kn(x, 0) = π0K
∗(x, 0) = g(x)

so that π is a probability measure satisfying (1.7). �

Also in the case θ(x; 0) = ∞, one can give a criterion for positive
recurrence in terms of K∗:

Corollary 1.8 The process is positive recurrent if and only if
∫∞

a K∗(x, a)dx
< ∞ for some (and then for all) a > 0.

Proof. Let
{
X̃t

}
correspond to r̃(x) = r(x+a) and the same β, B. Then, in

the obvious notation, θ̃(x; 0) < ∞ because of infx+a≥y≥a r(y) > 0 so that
we may apply Corollary 1.7 to see that

{
X̃t

}
is positive recurrent if and only

if K̃∗(x; 0) is integrable. But for n = 1, we have K̃n(x, y) = Kn(x+a, y+a)
(both coincide with βB(x− y)/r(x + a)) and it follows easily by induction
that this is also valid for n > 1. Hence

∫∞
0 K̃∗(x, 0) dx and

∫∞
a K∗(x, a) dx

are equal, in particular finite at the same time, so that we have only to
show that

{
X̃t

}
and {Xt} are positive recurrent at the same time. But

for x > y > a, Exτ(y) = Ex−aτ̃(y − a), and by irreducibility properties
of the processes, it is easily seen that Exτ(y) < ∞ exactly when {Xt}
is positive recurrent, and that Ex−aτ̃(y − a) < ∞ exactly when

{
X̃t

}
is

positive recurrent. �

The above result concludes the treatment of the general theory, and we
proceed in the next section to see how the derived formulas and criteria
take a more explicit form in some particular cases.

Problems

1.1 Show that {Xt} has the strong Markov property. [Hint: Recall the proof of
V.1.5.]
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1.2 In a storage problem with At = t/2, r(x) = 1, x > 0, it seems reasonable to
define Xt = (X0 − t/2)+. Show that the storage equation is not satisfied.
1.3 Show by an example that it is possible that limx→∞ θ(x; y) < ∞ and that
there then is positive recurrence.

Notes The theory was initiated by Australian authors in the 1960s; Brockwell
et al. (1982) give a development in the present spirit (though the present proofs
are in part different) and also treat the Lévy case.

The dam process (also frequently called the storage process) is a model example
of a Markov process that is piecewise deterministic in the sense of Davis (1993);
however, the general theory of such processes does not cover results of the type
treated in this section.

Further aspects of the theory include tail asymptotics of the stationary distri-
bution; see Sundt and Teugels (1995, 1997) and Asmussen and Nielsen (1995) for
the light–tailed case and Asmussen (1998a) for the heavy–tailed case.

In the terminology of the theory of integral equations, (1.8) is of Volterra type.

2 Some Examples

The model and notation is that of the preceding section. In the following,
let µB =

∫∞
0

xB(dx) =
∫∞
0

B(x) dx.

Example 2.1 Constant release, say r(x) ≡ 1. This case is already well
known from the M/G/1 workload interpretation, but is treated here for the
sake of illustration. Here θ(x; 0) = x < ∞ so that we may apply Corollary
1.7. Since

∫∞
0

K(x, 0) dx = βµB, it is necessary for positive recurrence that
µB < ∞. If µB < ∞, define ρ = βµB , b0(x) = µ−1

B B(x). Then K(x, 0) =
ρ b0(x) and it follows easily by induction that Kn(x, 0) = ρnb∗n

0 (x). Hence
π−1

0 =
∑∞

0 ρn will be finite and positive recurrence hold if and only if
ρ < 1, in which case the expression for π in Corollary 1.7 is immediately
seen to coincide with the Pollaczeck–Khintchine formula VIII.(5.5). �

Example 2.2 Arbitrary release and exponential input, B(dx) = δe−δx dx.
Here (1.8) becomes

g(x) =
β

r(x)

{
π0e−δx +

∫ x

0

e−δ(x−y)g(y) dy
}

which, letting ψ(x) =
∫ x

0 eδyg(y) dy, may be rewritten as

ψ′(x) =
β

r(x)
{π0 + ψ(x)} .

This is a differential equation of standard type and any solution may be
written in the form

ψ(x) = ceβθ(x;1) − π0 (2.1)
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so that

g(x) = e−δxψ′(x) =
cβ

r(x)
eβθ(x;1)−δx. (2.2)

Thus the solution to (1.8) is unique up to a constant and we have positive
recurrence if and only if

α =
∫ ∞

0

β

r(x)
eβθ(x;1)−δx dx < ∞.

It only remains to evaluate π0 and c in the case α < ∞. We have ‖π‖ = 1,
which yields π0 + cα = 1. If θ(x; 0) = ∞, then π0 = 0 and c = α−1. If
θ(x; 0) < ∞, then ψ(0) = 0 and (2.1) with x = 0 yields c = π0eβθ(1;0),

π0 =
1

1 + αeβθ(1;0)
=

1
1 +

∫∞
0

β
r(x)e

βθ(x;0)−δx dx
.

Note that we may rewrite (2.2) as g(x) =
π0β

r(x)
eβθ(x;0)−δx. �

Proposition 2.3 Suppose r(x) is nondecreasing. Then {Xt} is positive
recurrent if and only if

lim
a→∞β

∫ ∞

0

B(x)
r(x + a)

dx < 1. (2.3)

If µB < ∞, (2.3) is equivalent to βµB < limx→∞ r(x).

Proof. The limit in (2.3) clearly exists and by the definition of K = K1 is
also the limit of

∫∞
a

K(x, a) dx. Hence if (2.3) holds, there are a0 and δ < 1
such that

∫∞
a K(x, a) dx ≤ δ for all a ≥ a0. Since∫ ∞

a

Kn+1(x, a) dx =
∫ ∞

a

dx

∫ x

a

Kn(x, y)K(y, a) dy

=
∫ ∞

a

K(y, a) dy

∫ ∞

y

Kn(x, y) dx,

it follows by induction that
∫∞

a
Kn+1(x, a) dx ≤ δn+1 for all n. Sum-

ming yields
∫∞

a K∗(x, a) dx < ∞, a ≥ a0. If conversely (2.3) fails, then∫∞
a K(x, a) dx ≥ 1 for all a and thus in the same way

∫∞
a K∗(x, a) dx

= ∞. Reference to Corollary 1.8 completes the proof. �

Example 2.4 Linear release rate, r(x) = c + fx. Since r(x) → ∞ mono-
tonically, positive recurrence is immediately obtained from Proposition 2.3
provided only that µB < ∞. If µB = ∞, we have

β

∫ ∞

0

B(x)
r(x + a)

dx =
β

f

∫ ∞

0

log
(
1 +

fx

c + fa

)
B(dx). (2.4)

By elementary properties of the logarithm, this is finite if and only if∫∞
0 log xB(dx) < ∞. In that case, (2.4) tends to zero as a → ∞ by mono-
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tone convergence and hence (2.3) is automatic. That is, we have positive
recurrence if and only if

∫∞
0 log xB(dx) < ∞. Also clearly θ(1; 0) < ∞, i.e.

π0 > 0, if and only if c > 0. �

Notes Again, Brockwell et al. (1982) is a basic reference. There are few ex-

plicit examples beyond the exponential case in Example 2.2. Paulsen and Gjessing

(1997) give solutions in terms of special functions for Erlang(2) and H2 distribu-

tions when r(x) = a + bx, but their study does not generalize even to Erlang(p)

or Hp.

3 Finite Buffer Capacity Models

A simple case of finite capacity models is birth–death processes with a
finite state space; see the examples in III.3. Other typical examples occur
in telecommunications and data transmission systems, say that packets are
stored in a finite buffer awaiting to be sent along a transmission line.

Many such models are in a natural way closely related to an infinite
capacity (infinite buffer) one. The question arises what are the relations
between the stationary distributions for the finite and infinite models and
between the methods for computing them.

We shall consider two somewhat different set–ups. In the first, the finite
capacity model

{
X

(F )
t

}
t∈T

is the restriction to a subset F of the state space
E for the infinite capacity model {Xt}t∈T. The precise meaning of this is
straightforward in discrete time (T = N); cf. the definitions preceding I.3.9.
We shall not aim for the most general formulation when T = [0,∞) but
assume a structure that is sufficient for the examples to be considered:
there are 0 = σ0 < τ0 < σ1 < τ1 < σ2 < · · · with σn ↑ ∞ such that Xt ∈ F

for σk < t < τk, Xt 
∈ F for τk < t < σk+1; we then define X
(F )
t = Xt,

0 = σ0 ≤ t < τ0, X
(F )
τ0+t = Xσ1+t, 0 ≤ t < τ1 − σ1, and so on; see Fig. 3.1

for the case E = N, F = {0, 1, . . . , K}.

Figure 3.1
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Proposition 3.1 Assume {Xt}t∈T is regenerative with state space E and
generic cycle C with finite mean. Assume further that both C and CF =∫ C

0
I(Xt ∈ F ) dt are nonlattice when T = [0,∞) and aperiodic when T =

N (here CF =
∑C−1

0 I(Xt ∈ F )). Then the stationary distributions π,
π(F ) of {Xt} and

{
X

(F )
t

}
exist, and π(F ) is π conditioned to be in F , i.e.

π(F )(A) = π(A)/π(F ), A ⊆ F .

Proof. Clearly, CF is a regeneration point for
{
X

(F )
t

}
, and so existence

follows from general regenerative process theory which also yields ECF =
EC · π(F ). [Note that it may happen that X

(F )
t 
∈ F for t = 0, τ0, τ0 + τ1 −

σ1, . . . but that these t form a null set.] We further get

π(F )(A) =
1

ECF
E

∫ CF

0

I
(
X

(F )
t ∈ A

)
dt

=
1

π(F )EC

∫ C

0

I(Xt ∈ A) dt =
π(A)
π(F )

for A ⊆ F and T = [0,∞); the case T = N is similar. �

Example 3.2 Let {Xt} be an ergodic birth–death process on E = N with
birth rates βk and death rates δk and F = {0, 1, . . . , K}. Then clearly{
X

(F )
t

}
is a birth–death process on F with the same birth–death rates

as {Xt} except possibly for the death rate, say δ̃K in state K. However,
δ̃K can be identified with the exit intensity of

{
X

(F )
t

}
from state K. Exit

occurs if {Xt} exits, which occurs with intensity βK +δK , and then goes to
K − 1 which occurs w.p. δK/(βK + δK). The exit intensity is the product
δK , hence δ̃K = δK .

It follows by Proposition 3.1 that the stationary distribution for
{
X

(F )
t

}
is obtained by conditioning the stationary distribution for {Xt} to F , as
was noted in III.2.6 by inspection of the explicit expressions. An example is
the conditional geometric distribution in the M/M/1 queue with a waiting
room of size K < ∞ and ρ < 1. If ρ ≥ 1, the corresponding unrestricted
M/M/1 queue is not ergodic and to proceed via Proposition 3.1, one needs
to define the extension {Xt} to N in a different way making {Xt} ergodic
(say by taking βn = 1/2, n ≥ K, and δn = 1, n > K). �

Example 3.3 (the finite dam) In water storage problems, the capacity
of a dam is apparently not infinite in practice as assumed in Section 1 but
the content cannot exceed some finite level, say K. If more input at a
jump occurs than the dam can contain, the excess water simply flows over
instantaneously. An example of the sample paths of such a process

{
V

(K)
t

}
(defined in terms of a release function r(x), 0 < x ≤ K, and a compound
Poisson input process with parameters β, B) is in Fig. 3.2.
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K

X
t
 and V

t
(K)

X
t

V
t
(K)

Figure 3.2

If we extend r(·) to (K,∞) in such a way that the infinite dam process
{Xt} is recurrent (say by letting r(x) = 2βµB, x > K), we have

{
V

(K)
t

} D={
X

(F )
t

}
where F = [0, K] (but note that the sample path relation in Fig.

3.2 differs from the one in Fig. 3.1!). It follows by Proposition 3.1 and
Theorem 1.4 that the stationary distribution π(F ) of

{
V

(K)
t

}
has an atom

at 0 of size (say) π
(F )
0 > 0 if and only if θ(x; 0) < ∞ and that π(F ) is

absolutely continuous on (0, K] with a density g(F ) satisfying

g(F )(x) =
β

r(x)

{
π

(F )
0 B(x) +

∫ x

0

B(x − y)g(F )(y) dy

}
, 0 < x ≤ K (3.1)

(divide (1.8) by π[0, K]). Of course, these conclusions may also be obtained
by copying the arguments for the infinite dam.

To exemplify important characteristics of the finite dam, consider the
overflow rate

β

∫ K

0

π(F )(dx)
∫ ∞

K−x

(y − K + x)B(dy). (3.2)

in the steady state. �

Example 3.4 (the infinitely deep or bottomless dam) Instead of
approaching the finite dam via an infinitely high one, the suggestion has
been made of using an approximation in terms of an infinitely deep or
bottomless dam. This is reasonable in particular if overflow is a more pre-
dominant phenomenon than emptiness, as will be the case if the process
has an upward drift (say r(x) ≡ r constant and βµB > r). The state space
for the process, say {Yt}, becomes (−∞, K] (equivalently, we may study the
deficit or depletion process {K − Yt} with state space [0,∞)). This model
can be treated much as the infinitely high dam. For example, the derivation
of (1.7) does not use the fact that [0, x] is bounded to the left. Thus the
steady–state density g(x) is given as solution of the equation

g(x) =
β

r(x)

∫ x

−∞
B(x − y)g(y) dy, −∞ < x ≤ K. (3.3)
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A particularly important case is constant release r(x) ≡ r, in which case
ergodicity is equivalent to βµB > r and it is seen by insertion that the
solution of (3.3) is exponential, g(x) = ηeη(x−K) where η > 0 is the unique
solution of

∫∞
0

e−ηu B(du) = 1 − ηr/β. �

As the second general set–up for finite capacity models, we consider a
Lévy process or random walk {St}t∈T and denote by

{
V

(K)
t

}
t∈T

the modifi-
cation obtained by letting 0 and K perform as reflecting barriers. Thus, the
state space is [0, K] (or, in the lattice case, {0, 1, . . . , K}, assuming w.l.o.g.
that the lattice span is 1). Throughout, {Vt}t∈T denotes {St} one–sided
reflected at 0 as in VII.2.

In discrete time, the process
{
V

(K)
n

}
n∈N

is given by the recursion

V
(K)
n+1 =

[
V (K)

n + Zn

]+ ∧ K (3.4)

and the initial value V
(K)
0 ∈ [0, K] where {Zn} is the sequence of random

walk increments (i.e. Sn = Z1 + · · ·+ Zn). The stationary distribution was
found in IX.4.6 to be given by

Pe

(
V (K)

n ≥ x
)

= P(Sτ [x−K,x) ≥ x) (3.5)

where τ [u, v) = inf {n ≥ 0 : Sn 
∈ [u, v)}, u ≤ 0 ≤ v1. Thus, it remains
to compute P(Sτ [u,v) ≥ v). The lattice case has a simple solution with-
out restrictions on the increment distribution F . Indeed, in the lattice
case we can, if necessary, truncate F to {0,±1, . . . ,±K} without chang-
ing P(Sτ [u,v) ≥ v), and get (cf. VIII.5.4 for a similar treatment of the
one–boundary case):

Proposition 3.5 Let 0 < r ≤ K, 0 < s ≤ K, and assume that F is
concentrated on {−r,−r + 1, . . . , s − 1, s} with F {−r} > 0, F {s} > 0. Let
0 < x ≤ K and define pk = P(Sτ [x−K,x) = k), k = x − K − 1, x − K −
2, . . . , x−K− r or k = x, x+1, . . . , x+s−1. Then the pk are the solutions
of the r + s linear equations

1 =
x−K−1∑

k=x−K−r

αk
j pk +

x+s−1∑
k=x

αk
j pk, j = 1, . . . , r + s, (3.6)

where α1, . . . , αr+s are the roots of 1 = F̂ [a] = EaZ1 or, equivalently the
polynomial ar

(
F̂ [a]− 1

)
. In particular, Pe

(
V

(K)
n ≥ x

)
= px + · · ·+ px+s−1.

Proof. By optional stopping of the Wald martingales
{
αSn

j

}
n∈N

. �

Of course, in the lattice case one may alternatively compute ν0, . . . , νK by
solving νP = ν where P is the transition matrix of

{
V

(K)
n

}
(but note that

K may be much larger than r + s).

1Note that n = 0 is included in the definition but only plays a role in the case v = 0

where we get τ [−K,0) = 0, Sτ [−K,0) = 0 and Pe(V
(K)
n ≥ 0) = 1, as should be).
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Remark 3.6 Consider the lattice case with F downward skip–free (con-
centrated on {−1, 0, 1, 2, . . .}). Then the two–sided reflected process{
V

(K)
n

}
is the restriction of {Vn} to {0, 1, . . . , K}, and we are back to

Proposition 3.1. Similar remarks apply to the upward skipfree case by
interchanging 0 and K. See also VIII.5b. �

In continuous time, the first problem is how to rigorously define{
V

(K)
t

}
t≥0

=
{
V

(K)
t (y)

}
t≥0

started from y ∈ [0, K]. For y 
= K, we do
this by taking the segment up to the first hitting time τ(K) of K as the
initial segment of {Vt(y)} (the one–sided reflected process started from y)
until [K,∞) is hit; we then let V

(K)
τ(K) = K. For y = K, we similarly take the

segment up to the first hitting time τ(0) of 0 by using the one–sided reflec-
tion operator (with the sign reversed and change of origin) as constructed
in VII.2; at time τ(0) where this one–sided reflected (at K) process hits
(−∞, 0], we let V

(K)
τ(0) = 0. The whole process

{
V

(K)
t

}
is then constructed

by glueing segments together in an obvious way. Glueing also local times
together, we obtain a representation

V
(K)
t = y + St + L

(0)
t − L

(K)
t (3.7)

where
{
L

(0)
t

}
,
{
L

(K)
t

}
are the local times at 0, resp. K (both are non-

negative and nondecreasing and can increase only when
{
V

(K)
t

}
is at the

respective boundary).

Proposition 3.7 The stationary distribution of the two–sided reflected
Lévy process {St}t≥0 is given by

Pe

(
V

(K)
t ≥ x

)
= P(Sτ [x−K,x) ≥ x) (3.8)

where τ [u, v) = inf
{
t ≥ 0 : St 
∈ [u, v)

}
, u ≤ 0 ≤ v.

Proof. Rather than attempting to extend the general duality machinery
used in IX.4.6, we give a direct argument. Write V

(K)
t = V

(K)
t (0), let T

be fixed and let {Rt} = {Rt(x)} be defined as Rt = x − ST + ST−t until
(−∞, 0] or (K,∞) is hit; the value is then frozen at 0, resp. ∞. We shall
show that

V
(K)
T (0) ≥ x ⇐⇒ RT (x) = 0; (3.9)

this yields

P
(
V

(K)
T ≥ x

)
= P

(
τ [x − K, x) ≤ T, Sτ [x−K,x) ≥ x

)
and the proposition then follows by letting T → ∞. In the rest of the proof,
write Vt = V

(K)
t (0), Rt = R

(K)
t (x).

Let σ = sup {t ∈ [0, T ] : Vt = 0} (well–defined since V0 = 0). Then VT =
ST − Sσ + L

(K)
σ − L

(K)
T by (3.7), so if VT ≥ x then ST − Sσ ≥ x, and
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similarly, for t ≥ σ

x ≤ VT = Vt + ST − St + L
(K)
t − L

(K)
T ≤ K + ST − St,

implying RT−t ≤ K. Thus absorbtion of {Rt} at ∞ is not possible before
T − σ, and ST − Sσ ≥ x then yields RT−σ = 0 and RT = 0.

Assume conversely RT = 0 and write the time of absorbtion in 0 as T −σ.
Then x−ST +Sσ ≤ 0, and Rt ≤ K for all t ≤ T −σ implies x−ST +St ≤ K

for all t ≥ σ. If Vt < K for all t ∈ [σ, T ], then L
(K)
T − L

(K)
t = 0 for all such

t and hence

VT = Vσ + ST − Sσ + L
(0)
T − L(0)

σ ≥ Vσ + ST − Sσ ≥ 0 + x.

If Vt = K for some t ∈ [σ, T ], denote by ω the last such t. Then L
(K)
T = L

(K)
ω

and hence

VT = Vω + ST − Sω + L
(0)
T − L(0)

ω ≥ K + ST − Sω + 0 ≥ x. �

Example 3.8 Consider Brownian motion {St} with drift µ and unit
variance and the two–sided reflected version

{
V

(K)
t

}
on [0, K]. Optional

stopping of the Wald martingale
{
e−2µSt

}
gives in a straightforward way

P(Sτ [x−K,x) ≥ x) =
e2µK − e2µx

e2µK − 1
.

Differentiation shows that the stationary density of
{
V

(K)
t

}
is proportional

to e2µx. This was found earlier in IX.3.6 and when µ < 0, it is compatible
via Proposition 3.1 with the intuitive picture of

{
V

(K)
t

}
as the restriction

to [0, K] of {Vt} = Brownian motion one-sided reflected at 0 (the process
obtained from {Vt} by cutting out excursions in (K,∞)). �

Example 3.9 Let {St} be the netput process of a fluid model with back-
ground Markov process {Jt}; cf. XI.1b. An obvious extension of the proof
of Proposition 3.7 shows that

Pe

(
V

(K)
t ≥ x

)
= Pπ

(
S∗

τ∗[x−K,x) ≥ x
)

(3.10)

where π is the stationary distribution of {Jt} and ∗ refers to the time–
reversed version; cf. XI.2e. The evaluation of the r.h.s. of (3.10) is
straightforward using the Wald martingales from XI.2c and has been
carried out in the proof of XI.4.2. �

Example 3.10 In the case of the M/G/1 workload, {St} is compound
Poisson with unit downward drift. Denote the intensity by β and the jump
size (service time) distribution by B (B is concentrated on (0,∞)). The
restricted workload process

{
V

(K)
t

}
is just the finit dam in Example 3.3.

When the service time distribution B is phase–type, P(Sτ [x−K,x) ≥ x) (and
thereby Pe

(
V

(K)
t ≥ x

)
) may be computed applying XI.4.2 once more, now

to the fluid representation of the M/PH/1 workload process given in XI.1c.
�
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Remark 3.11 When dealing with finite buffer problems, an important
characteristic is the probability Pe

(
V

(K)
t = K

)
of a full buffer (in many

cases, this can also be interpreted as a constant times a loss probability).
Heuristically, it has sometimes been suggested to use the tail probabil-
ity Pe(Vt ≥ K) for the infinite buffer model as approximation. Whether
this is justified depends very much upon the precise model. In the set-
ting of reflected random walks or Lévy processes, care is definitely needed
since Pe

(
V

(K)
t = K

)
is often 0 (say for Brownian motion or the M/M/1

workload) but Pe(Vt ≥ K) not.
For a discrete–time random walk, Pe

(
V

(K)
t = K

)
= P(Sτ [0,K) ≥ K)

reduces simply to the probability that the cycle maximum exceeds K, and
in the light–tailed case, XIII.5.2 and XIII.5.9 show that (in the notation
there)

Pe

(
V

(K)
t = K

) ∼ PL(τ− = ∞)Pe(Vt ≥ K) ∼ CPL(τ− = ∞)e−γK

(3.11)
as K → ∞. In the heavy–tailed case, X.9.1 and X.9.4 yield

Pe(Vt ≥ K) ∼ 1
|µF |

∫ ∞

K

F (x) dx , Pe

(
V

(K)
t = K

) ∼ Eσ · F (K) ,

which in particular shows that Pe

(
V

(K)
t = K

)
is negligible compared to

Pe(Vt ≥ K). �

We will finally study an example that is slightly more complicated than
reflected random walks:

Example 3.12 (moran’s model for the dam) This is a historically
important discrete Markov chain model. The input sequence {An} is as-
sumed i.i.d. and the release is constant, say b per time unit (if the content
just before the release is c < b, only the amount c is released), and we let
K denote the capacity of the dam. We will consider a slightly more general
model where also the release at time n is random, say Bn rather than b
(the sequence {Bn} is assumed i.i.d. and independent of {An}).

We let QA
n denote the content just before the nth input (just after the

(n − 1)th release) and QB
n the content just after (just before the (n + 1)th

release). Then

QA
n =

[
QB

n−1 − Bn−1

]+
, (3.12)

QB
n =

(
QA

n + An

) ∧ K, (3.13)

QA
n =

[
(QA

n−1 + An−1) ∧ K − Bn−1

]+
, (3.14)

QB
n =

(
[QB

n−1 − Bn−1]+ + An

) ∧ K. (3.15)

The recursions (3.14), (3.15) can be studied by much the same methods
as used for (3.4). Consider e.g. (3.15) which can be written as QB

n =
f(QB

n−1, Un−1) where u = (a, b), f(x, u) = ([x − b]+ + a) ∧ K and
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Un−1 = (An, Bn−1). The inverse function g of f in the sense of IX.4.3
is then given by

g(x, a, b) =

⎧⎨⎩
0 x = 0 or x ∈ (0, K], a ≥ K

x − (a − b) x ∈ (0, K], a < K
∞ x > K

.

It follows that the dual process {Rn} started from x evolves as the un-
restricted random walk {(x − A0)+ − Sn}, starting from (x − A0)+ and
having random walk increments Zn = An −Bn−1, and that Pe(QB

n ≥ x) is
the probability that this process will exit (0, K] to the right. �

Notes The literature on finite buffer problems is large but not always system-
atic. See e.g. Lindley (1959), Siegmund (1976a), Borovkov (1984), Stadje (1993),
Jelenkovic (1999) and Kim and Shroff (2001).

For Skorokhod problems with two barriers, see Chen and Mandelbaum (1990).

The last part of Example 3.12 is from Asmussen and Sigman (1996).

4 Some Simple Inventory Models

Example 4.1 (the eoq model) In classical deterministic formulation of
the EOQ (Economic Order Quantity) model, the inventory decreases (is
sold) at a constant rate. When the inventory level reaches 0, a new batch
of size Q is ordered. Thus the inventory level evolves deterministically as
in Fig. 4.1(a).

Figure 4.1

Each order has an overhead cost of a and the cost of holding inventory level
x is bx per unit time. The problem is to choose Q so as to minimize the
overall costs. But the rate of orders is 1/Q and the average inventory level
Q/2 so that the overall cost rate is a/Q+ bQ/2, which is a convex function
with limits ∞ at Q = 0 and Q = ∞. Thus there is a unique minimizer Q∗,
that is easily found to be Q∗ =

√
2a/b.

There are several stochastic versions of this model. Assume, for example,
that the inventory level between orders decreases according to a compound
Poisson process with Poisson rate β and downward exponential jumps with
intensity δ; cf. Fig. 4.1(b). If Xt is the inventory level at time t, {Xt} is
regenerative (the cycle is the time τ between two orders) and hence Xt

D→ X
so that the optimization problem becomes to minimize a/EQτ+bEQX w.r.t.
Q. �
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Example 4.2 (the (s, S) inventory model) This model is given by two
parameters 0 < s < S, such that s is the inventory level at which reordering
is done and S is the level to which one aims at resetting the inventory
level at each order. Again, there are several possible stochastic models. For
example, in discrete time, assume that the amounts of stock sold are i.i.d.
r.v.’s {Rk} with common distribution F and that it is possible to do the
reordering so as to achieve exactly level S. If Xn denotes the inventory level
after the nth sale, we therefore have

Xn+1 =
{

Xn − Rn+1 if s ≤ Xn ≤ S
S − Rn+1 if −∞ < Xn < s

.

The stationary distribution π is easily obtained by observing that the
epochs n with Xn−1 < s are regeneration points. Thus the zero–delayed
case corresponds to X0 = S − R0, the cycle length is

C = inf {n ≥ 1 : R0 + · · · + Rn−1 > S − s}
and within the cycle the points in [s, S) which are visited are of the form
S − y with y ∈ (0, S − s) an epoch of a renewal process governed by
F . Similarly, exactly one visit to (−∞, s) occurs at s − z where z is the
overshoot BS−s of S − s. With U =

∑∞
0 F ∗n the renewal function and

H(z) = P(BS−s ≤ z), we therefore have EC = U(S − s) and

π(dy) =

⎧⎪⎪⎨⎪⎪⎩
U(S − dy)
U(S − s)

if s ≤ y < S,

H(s − dy)
U(S − s)

if −∞ < y < s.

�

Example 4.3 Many inventory problems involve in a crucial way the con-
cept of lead time Z, defined as the delay between the placement and the
actual receipt of an order. As a simple example, consider a variant of the
(s, S) model, where the inventory Xt at time t is measured in discrete units
0, 1, 2, . . . and orders occur according to a Poisson process with intensity δ
and are handled at once provided Xt > 0 (orders received when Xt = 0 are
lost). When the inventory level goes from s + 1 to s, an reorder of (deter-
ministic) size S−s is placed and received Z units of time later; here the lead
times Z1, Z2, . . . are i.i.d., say with common distribution F concentrated
on (0,∞). We shall compute the stationary probabilities πj = Pe(Xt = j)
and the rate (in the Palm sense) λ of reorderings. A typical application
would again be to choose s, S in an optimal way; if say there is a cost of
rate cj of holding inventory level j (in particular, c0 can be interpreted as
a penalty for lost orders) and a cost dS of ordering a batch of size S, the
overall cost rate is

S∑
j=0

cjπj + λdS .



398 XIV. Dams, Inventories and Insurance Risk

Figure 4.2

The state space for {Xt} is {0, 1, . . . , S}. We can view the times of down-
crossing to level s as regeneration points; see Fig. 4.2 for the zero–delayed
case (C is the regenerative cycle). We write pk for the probability that the
inventory level is k = 0, . . . , s just before an reorder is received. Since pre-
cisely one reorder is received per cycle, it is then immediate that (assuming
S − s > s for simplicity)

1
λ

= EC = EZ + E(C − Z) = µF +
1
δ

s∑
k=0

pk(S − s + k) .

Also, clearly

pk = P(XZ− = k) =
∫ ∞

0

e−δt (δt)s−k

(s − k)!
F (dt), k = s, s − 1, . . . , 1,

and p0 = 1 − p1 − · · · − ps. Define rj =
∫ C

0 I(Xt = j) dt, j = 0, 1, . . . , S.
Then πj = rj/EC and

rj =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
δ

s∑
k=0

pkI(k + S − s ≥ j) =
1
δ

s∑
k=(j−S+s)+

pk s < j ≤ S∫ ∞

0

e−δt (δt)s−j

(s − j)!
F (t) dt 0 < j ≤ s

.

Finally, π0 can either be computed as 1 − π1 − · · · − πS or from

r0 =
∫ ∞

0

∞∑
k=s

e−δt (δt)k

k!
F (t) dt. �

Problems

4.1 Compute EQτ and EQX in Example 4.1.
4.2 Use partial integration to obtain expressions for the rj terms of the pk in
Example 4.3.

Notes A classical source for inventory models is Arrow et al. (1958). More

recent treatments are in Tijms (1994), Silver et al. (1998), Axsäter (2000), Zipkin

(2000) and Nahmias (2001).
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5 Dual Insurance Risk Models

The main objects of study in insurance risk are the ruin probabilities

ψ(u) = P(τ(u) < ∞), ψ(u, T ) = P(τ(u) ≤ T ) (5.1)

with infinite, resp. finite horizon, where τ(u) = inf {t > 0 : Rt < 0 |R0 = u}
is the time to ruin and {Rt}t≥0 is a model for the reserve of the insurance
company.

The traditional Cramér–Lundberg model has already been introduced in
V.2.3. It is compound Poisson,

Rt = u + rt −
Nt∑
i=1

Ui.

Here r is the rate of premium inflow, {Nt} is a Poisson process with rate β
and the Ui form an independent i.i.d. sequence with common distribution
B (Ui > 0 represents the size of the ith claim made to the company).
The time change t → t/r changes r to 1 and ψr,β(u, T ) to ψ1,β/r(u, T/r)
whereas ψr,β(u) = ψ1,β/r(u). Therefore it is no restriction to assume r = 1.
Letting St = u − Rt (the so–called claim surplus process), we then have
St =

∑Nt

1 Ui − t. This is just the netput process generating the M/G/1
workload process {Vt}, so the maximum representation in III.7 (see also
IX.2) yields:

Corollary 5.1 The workload process {Vt} of an initially empty (V0 = 0)
M/G/1 queue with ρ < 1 and the ruin probabilities of the Cramér–Lundberg
risk model with the same β, B and r = 1 are connected by

P0(VT > u) = P

(
sup

0≤t≤T
St > u

)
= P(τ(u) ≤ T ) = ψ(u, T ), (5.2)

Pe(VT > u) = P

(
sup

0≤t<∞
St > u

)
= P(τ(u) < ∞) = ψ(u) (5.3)

where τ(u) = inf {t > 0 : Rt < 0} = inf {t > 0 : St > u} is the time to
ruin.

Results similar to Corollary 5.1 connect a number of other queueing and
insurance risk models. In particular:

Corollary 5.2 Let {Wn}, {Vt} be the waiting time sequence, resp. work-
load process of a GI/G/1 queue and {Rt} the process obtained by replacing
the Poisson process for the Cramér–Lundberg model with the stationary re-
newal counting process for the GI/G/1 queue and the claims U1, U2, . . .

by the service times. Then (5.2), (5.3) continue to hold. Further, if
{
S#

t

}
,

τ#(u), ψ#(u) refer to {Nt} being zero–delayed with the atom at 0 removed,
then

Pe(Wn > u) = P

(
sup

0≤t<∞
S#

t > u
)

= P(τ#(u) < ∞) = ψ#(u). (5.4)
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Proof. Use Loynes’s lemma in continuous time for the first statement and
the discrete time version for the second. �

Corollary 5.3 Let {Jt} be the background Markov process of a Markov ad-
ditive process (cf. XI.2), {St} the additive part, {Vt} the reflected process,
{(J∗

t , S∗
t )} the time–reversed version and τ∗(u) = inf {t > 0 : S∗

t > u},
ψ∗

i (u) = Pi(τ∗(u) < ∞). If π is the stationary distribution for {Jt}, then
Pe(Jt = i, Vt > u) = πiψ

∗
i (u).

Proof. Immediate from XI.2.11. �

Corollary 5.1 can also be extended to risk models developing as the
Cramér–Lundberg model except that the premium rate r(x) depends on
the current level x of the reserve Rt. That is,

Rt = u −
Nt∑
i=1

Ui +
∫ t

0

r(Rs) ds (5.5)

where u ≥ 0. Note that for the study of the ruin probabilities the values of
r(x) for x ≤ 0 are immaterial.

Proposition 5.4 Let {Vt} be an initially empty (V0 = 0) storage process
given in terms of β, B and r(x), x > 0, as in Section 1 and let {Rt} be the
process (5.5) with r extended to (−∞, 0) in some arbitrary manner. Then

P0(VT > u) = P(τ(u) ≤ T ) = ψ(u, T ), (5.6)
Pe(VT > u) = P(τ(u) < ∞) = ψ(u). (5.7)

Proof. Since {Vt} is clearly stochastically monotone, we can define
{
R̃t

}
as

the Siegmund dual process of {Vt}, and the theory of IX.4 then shows that
it suffices to verify that {Rt} and

{
R̃t

}
evolve in the same way on (0,∞),

or in turn that Bg = B̃g where A, B, B̃ are the generators of {Vt}, {Rt},
resp.

{
R̃t

}
, and g ∈ K , the class of C1 functions with compact support

contained in (0,∞).
For g ∈ K, we have up to o(h) terms that

Exg(Rh) = g
(
x + hr(x)

)
(1 − βh) + βh

∫
g(x − z)B(dz)

= g(x) + h

{
g′(x)r(x) − βg(x) + β

∫
g(x − z)B(dz)

}
so that Bg is given by {·}. Similarly, for f ∈ K

Af(y) = −f ′(y)r(y) − βf(y) + β

∫
f(y + z)B(dz) .

Also, replacing y by y = y − z and integrating by parts yields∫
f(y + z)g′(y) dy = −

∫
f ′(y)g(y − z) dy



6. The Time to Ruin 401

(using that f, g have compact support). It follows that (see IX.4.7 for the
first identity)∫

f ′(x)B̃g(x) dx = −
∫

g′(y)Af(y) dy

= −
∫

g′(y)
{
−f ′(y)r(y) − βf(y) + β

∫
f(y + z)B(dz)

}
dy

=
∫

f ′(y)
{

g′(y)r(y) − βg(y) + β

∫
g(y − z)B(dz)

}
dy

=
∫

f ′(y)Bg(y) dy .

The truth of this for all f under consideration implies B̃g = Bg. �

Example 5.5 A two–step premium rule

r(x) =
{

r1 x ≤ x0

r2 x > x0

with r1 > r2 could arise by modifying the Cramér–Lundberg model such
that the company raises the premium once the reserve goes below a thresh-
old x0, and/or that it lowers the premium if the reserve goes above x0, say
for attracting more customers, and/or that it pays out dividend at a con-
stant rate if the reserve is above x0 (then r2 has to be interpreted as the
premium rate minus the dividend rate). �

Example 5.6 If in the Cramér–Lundberg model with premium rate r the
company invests the reserve at interest rate δ, we obtain a model of the
type (5.5) with p(x) = r + δx. �

Notes Standard textbooks on insurance risk are (in chronological order) Ger-
ber (1979), Grandell (1990), Daykin et al. (1994), Rolski et al. (1999) and
Asmussen (2000); broader expositions covering also other parts of insurance
mathematics are Bühlmann (1970), Bowers et al. (1986), Sundt (1993) and Sundt
and Teugels (2004). Besides general applied probability journals, much of the
research literature is published in Astin Bulletin, Insurance: Mathematics and
Economics and the Scandinavian Actuarial Journal.

Proposition 5.4 can alternatively be proved by a sample path argument much

along the lines of Proposition 3.7, see Asmussen (2000), pp. 30–32. Yet a third

approach is in Harrison and Resnick (1977).

6 The Time to Ruin

We consider the Cramér–Lundberg risk model with {Rt}, {St}, τ(u), ψ(u),
ψ(u, T ), etc. as in Section 5 and r = 1, ρ < 1.
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A number of results on the M/G/1 queue translate in a straightforward
way via Corollary 5.1 to results on the risk process and the ruin proba-
bilities. For example, for a light–tailed B we have the Cramér–Lundberg
approximation ψ(u) ∼ Ce−γu, u → ∞. See V.7.8 and XIII.5 for the precise
conditions and values of C, γ (actually, the result originates from insurance
risk and not the random walk/queueing setting considered in XIII.5!). Sim-
ilarly, for a heavy–tailed B X.9.1 yields ψ(u) ∼ ρ(1−ρ)−1B0(u) (subject to
minor regularity conditions stated there) where B0 is the stationary excess
distribution from renewal theory.

However, each of the areas of queueing and risk also has its own partic-
ular features lacking analogues in the other. For example, studies of other
queue disciplines than FIFO lack interpretation in insurance risk, and in
the present section we shall exemplify some of the specifics of insurance
risk by undertaking a closer study of the time τ(u) to ruin which has no
straightforward sample path interpretation for the M/G/1 queue despite
the duality connection in Corollary 5.1.

We start by a detailed description of the case u = 0. Write P(0) =
P(· | τ(0) < ∞), and recall that P(τ(0) < ∞) = ρ and that Y = Sτ(0)

has P(0)–distribution B0 (compare e.g. Corollary 5.1 and VIII.5.7). Let Kt

be the event that {Rt} starting from R0 = 0 is at a maximum at time
t (Rt > Rs, s < t) and ω(z) = inf {t > 0 : Rt = z |R0 = 0}; note that
ω(z) < ∞ a.s. since ρ < 1 (so that Rt

a.s.→ ∞) and {Rt} is upward skip–free.

Lemma 6.1 For any T < ∞ and any measurable G ⊆ D[0, T ),

P
({ST−t− − ST }t<T ∈ G; τ(0) ≥ T

)
= P0

({Rt}t<T ∈ G; KT

)
.

Proof. We use the coupling Rt = ST−t− − ST illustrated in Fig. 6.1. Then
τ(0) ≥ T , i.e. St < 0 for 0 < t < T , is equivalent to Rs− < −ST = RT for
all s < T which in turn is the same as Rs < RT for all s < T , i.e. that KT

occurs. �

St Rt
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z
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T
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��

Figure 6.1

Theorem 6.2 (a) The P(0)-distribution of Z = −Sτ(0)− is the stationary
excess distribution B0.
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(b) The conditional distribution of
{
Sτ(0)−t− − z

}
0≤t≤τ(0)

2 given τ(0) <

∞, Z = z is the same as the unconditional P0–distribution of {Rt}0≤t≤ω(z).
Further, Sτ(0) and

{
Sτ(0)−t− − z

}
0≤t≤τ(0)

are conditionally independent
given Z = z.

Proof. Clearly,

P(Z ∈ dz, τ(0) < ∞) =
∫ ∞

0

P
(
τ(0) ≥ T,−ST− ∈ dz

)
βB(z) dT.

Using first Lemma 6.1 with G = {−ST− ∈ dz} shows that the r.h.s. is
βB(z)

∫∞
0

P(RT− ∈ dz, KT ) dT . This reduces to βB(z) dz since the upward
movement of {Rt} is linear at unit rate so that the expected time {Rt}
spends in a set A ⊆ (0,∞) and is at a maximum at the same time is simply
the Lebesgue measure of A (take A = {dT}). Since P(τ(0) < ∞) = ρ =
βµB, we get

P(0)(Z ∈ dz) = (βµB)−1P(Z ∈ dz, τ(0) < ∞) = µ−1
B B(z) dz = B0(dz),

proving (a). Part (b) is an immediate consequence of Lemma 6.1. �

As first application of Theorem 6.2, we will derive the double m.g.f.
(Laplace transform) of the ruin time τ(u) and the single transform of τ(0).
Let κ(α) = β(B̂[α] − 1) − α be the Lévy exponent of {St} and r(a) the
smallest of the two solutions to

−a = κ(r(a)) = β
(
B̂[r(a)] − 1

)− r(a) . (6.1)

Theorem 6.3 (a) E
[
eaτ(0); τ(0) < ∞]

= 1 − a

r(a)
;

(b)
∫ ∞

0

ebuE
[
eaτ(u); τ(u) < ∞]

du =
−a/r(a) − κ(b)/b

κ(b) + a
.

Proof. Let ga(x) be the density of the measure

E
[
eaτ(0); τ(0) < ∞, Y = Sτ(0) ∈ dx

]
and write ĝa[b] =

∫∞
0 ebxga(x) dx. Optional stopping of the Wald martingale{

er(a)St−tκ(r(a))
}

=
{
er(a)St+at

}
yields 1 = e−zr(a)Eeaω(z). Using Theorem

6.2(b) we obtain

E
[
eaτ(0) | τ(0) < ∞, Z = z

]
= Eeaω(z) = ezr(a).

Since clearly P(0)(Y ∈ dy |Z = z) = B(dy + z)/B(z), conditioning upon
Z = z and using the conditional independence yields

ĝa[b] = E
[
eaτ(0)+bY ; τ(0) < ∞]

=
∫ ∞

0

βB(z) dz ezr(a) 1
B(z)

∫ ∞

z

eb(y−z) B(dy)

2Viewed as element of D0, the D–functions with finite lifelength; cf. A2.
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= β

∫ ∞

0

eby B(dy)
∫ y

0

e(r(a)−b)z dz = β

∫ ∞

0

eby B(dy)
ey(r(a)−b) − 1

r(a) − b

=
β
(
B̂[r(a)] − B̂[b]

)
r(a) − b

=
β + r(a) − a − βB̂[b]

r(a) − b

=
r(a) − a − b − κ(b)

r(a) − b
. (6.2)

For part (a), now just take b = 0.
For (b), define Za(u) = E[eaτ(u); τ(u) < ∞). It is then easily seen that

Za(u) is the solution of the renewal equation Za(u) = za(u) +
∫ u

0
Za(u −

x)ga(x) dx where za(u) =
∫∞

u
ga(x)dx. Hence∫ ∞

0

ebu du E[eaτ(u); τ(0) < ∞]

= Ẑa[b] =
ẑa[b]

1 − ĝa[b]
=

(
ĝa[b] − ĝa[0]

)
/b

1 − ĝa[b]
.

Using (6.2), the result follows after simple algebra. �

We next turn to the question of what τ(u) looks like in the conditional
distribution P(u) = P(· | τ(u) < ∞) given τ(u) < ∞. The insight provided
by Theorem 6.3 is quite limited, and we shall instead look into asymptotics
as u → ∞.

The light–tailed case is essentially settled by the analysis in XIII.5. In
fact, it follows exactly as there that when the solution γ > 0 exists and

satisfies κ′(γ) < ∞ (i.e. B̂′[γ] < ∞), then τ(u)/u
P(u)→ 1/κ′(γ). If in addition

B̂′′[γ] < ∞ < ∞, then the P(u)–distribution of τ(u) is asymptotically
normal with mean u/κ′(γ) and variance uκ′′(γ)/κ′(γ)3. Hence the mean
dominates the standard deviation so that in summary, given τ(u) < ∞,
τ(u)/u becomes more and more concentrated around 1/κ′(γ) as u → ∞.

In the heavy–tailed case, let U (u), U
(u)
0 denote r.v.’s having the dis-

tributions B(u), B
(u)
0 of the overshoot over u corresponding to B, resp.

B0,

B
(u)

(x) = P(U (u) > x) =
B(x + u)

B(u)
,

B
(u)

0 (x) = P
(
U

(u)
0 > x

)
=

∫∞
x+u

B(y) dy∫∞
u

B(y) dy
.

Asymptotically, the distribution of U (u), U
(u)
0 typically reduces (the proof

is elementary analysis and omitted):

Proposition 6.4 (a) If B is regularly varying with tail L(x)/xα for some
α > 1 and some slowly varying L(·), then B0(x) ∼ L(x)/

(
(α− 1)xα−1µB

)
and U (u)/c(u) D→ R, U

(u)
0 /c(u) D→ R0 where c(u) = u and R, R0 are Pareto
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with tails (1 + x)−α, resp. (1 + x)−(α−1).
(b) If B is Weibull with tail e−xβ

for some β < 1, then B0(x) ∼
β−1xβ−1e−xβ

and U (u)/c(u) D→ R, U
(u)
0 /c(u) D→ R0 where c(u) = u1−β

and R, R0 both are exponential with the same tail e−βx.

Theorem 6.5 In the set–up of Proposition 6.4, it holds that τ(u)/c(u) →
R0/(1 − ρ) in P(u)–distribution.

For the proof, let R, N, N∗, Y1, Y2, . . . be independent r.v.’s, such that N
is geometric with P(N = n) = (1 − ρ)ρn, n = 0, 1, . . ., N∗ is negative
binomial with P(N∗ = n) = (1 − ρ)2nρn−1, n = 1, 2, . . . and Y1, Y2, . . .
are i.i.d. with distribution B0. Let further Y(1) < · · · < Y(N) be the order
statistics and M = Y1 + · · · + YN . According to the Pollaczeck–Khinchine
formula, we can think of M as supt≥0 St, of N as the number of ladder
steps, of Y1, . . . , YN as the ladder heights and of P(u) as the conditional
distribution given M > u.

Lemma 6.6
(
N, Y(1), . . . , Y(N−1),

Y(N) − u

c(u)

)
→ (

N∗, Y1, . . . , YN∗−1, R0

)
in P(u)–distribution.

Proof. For a1, a2, . . . , x > 0,

P
(
M > u, Y(1) ≤ a1, . . . , Y(N−1) ≤ aN−1, (Y(N) − u)/c(u) > x

)
=

∞∑
n=1

(1 − ρ)ρn · nP
(
Y1 ≤ a1, . . . , Yn−1 ≤ an−1, (Yn − u)/c(u) > x

)
=

ρ

1 − ρ
B0(u + c(u)x)

∞∑
n=1

P
(
N∗ = n, Y1 ≤ a1, . . . , Yn−1 ≤ an−1

)
.

Now just note that
ρ

1 − ρ
B0(u + c(u)x) ∼ ρ

1 − ρ
B0(u)P(R0 > x) ∼ P(M > u)P(R0 > x)

by X.9.1. �

Proof of Theorem 6.5. Recall that Z = −Sτ(0)−, Y = Sτ(0). Clearly, the
P(0)–distribution of Y given Z = z is that of U (z). This shows (cf. V.3) that
the joint P(0)–distribution of (Z, Y ) is the same as the joint distribution
of the backward and forward recurrence time distribution in a stationary
renewal process with interarrival distribution B0. Thus by symmetry, the
P(0)–distribution of Z given Y = y is that of U (y).

Let τ1, . . . , τN be the lengths of the finite ladder segments. Thus the τk

have the distribution of τ(0) given τ(0) < ∞. Define Yn, Zn in terms of
the nth ladder segment just as Y = Y1, Z = Z1 is defined in terms of the
first, and let ν = inf {n : Y1 + · · · + Yn > u}. Then τ(u) = τ1 + · · · + τν

in P(u)–distribution. Lemma 6.6 now gives that τk has a limit distribution
(viz. the distribution of ω(Z)) for k 
= ν; in particular (since N has the



406 XIV. Dams, Inventories and Insurance Risk

finite limit N∗),
∑

k �=ν τk → 0 in P(u)–distribution. For k = ν, we write
R0(u) = (Yν − u)/c(u) and get

P(u)
(
Zν > c(u)x

)
=

∫ ∞

0

B
(
y + c(u)x

)
B(y)

P(u)(Yν ∈ dy)

=
∫

B
(
u + c(u)(r + x)

)
B
(
u + c(u)r

) P(u)(R0 ∈ dr) . (6.3)

Here the integrand is bounded and has the continuous limit P(R > d(r)x)
where

d(r) = lim
u→∞

c(u)
c
(
u + c(u)r

) =
{

(1 + r)−1 in the Pareto case (a),
1 in the Weibull case (b).

Since the limit R0 of R0(u) is continuous and concentrated on (0,∞), it
follows that (6.3) asymptotically is∫ ∞

0

1
[1 + d(r)x]α

α − 1
(1 + r)α

dr =
∫ ∞

0

α − 1
(1 + r + x)α

dr =
1

xα−1
= P(R0 > x)

in case (a), whereas in case (b) we get∫ ∞

0

e−βxβe−βr = e−βx = P(R0 > x).

It follows that Zν/c(u) → R0 in P(u)–distribution, and hence ω(z)/z →
(1 − ρ)−1 yields

τν = ω(Zν) ∼ ω
(
c(u)R0

) ∼ c(u)R0

1 − ρ
,

τ(u)
c(u)

=
1

c(u)

∑
k<ν

τk +
τν

c(u)
→ 0 +

R0

1 − ρ
. �

Notes The study of the ruin time and the finite horizon ruin probabilities
ψ(u, T ) is a classical topic in insurance risk. See Asmussen (2000), Ch. IV and
IX.5, for a survey and references.

Theorem 6.5 is from Asmussen and Klüppelberg (1997) who also gave a general

subexponential formulation and random walk parallels. Lemma 6.1 is also from

that paper, where it was derived as an immediate application of excursion theory

for Markov processes as formulated in Fitzsimmons (1987).



Appendix

A1 Polish Spaces and Weak Convergence

Polish spaces are of importance in probability theory, on the one hand, to pro-
vide a common framework comprising Euclidean space Rn and its nice subsets,
discrete (finite or countable) sets and also some function spaces like D, and on
the other hand, to possess many of the same regularity properties as Rn (e.g. in
Polish spaces, Kolmogorov’s consistency theorem holds and regular conditional
distributions exist; see Neveu, 1965). Fundamental examples are:

(a) any locally compact space with a countable dense subset is Polish;
(b) if E is Polish, then F ⊆ E is so if F is, say, closed or open (in fact, F is Polish
if and only if F is a Gδ, i.e. of the form ∩∞

0 Fn with the Fn open);
(c) any countable product E0 × E1 × · · · of Polish spaces E0, E1, . . . is Polish;
(d) if E is Polish, then so is the set P(E) of probability distributions on E
equipped with the topology for weak convergence and (in the locally compact
case) the set M(E) of nonnegative Radon measures on E equipped with the
topology for vague convergence, see below;
(e) if E is Polish, then so are function spaces like D([0, 1], E) and D([0,∞), E)
in the standard Skorokhod topology.

Now let E be Polish and C the set of bounded continuous functions E → R.
The Borel σ–algebra E on E is defined as the σ–algebra generated by the open
sets (or the f ∈ C) and is used throughout for measure theory. The topology for
weak convergence of probability measures is the initial topology defined by the
mappings P → ∫ f dP, f ∈ C, i.e. the weakest topology making all these mappings
continuous. If Pn → P, then

∫
f dPn → ∫ f dP not only for f ∈ C but also if f is

bounded and measurable with PDf = 0, where Df is the set of discontinuities of
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f . Occasionally we use Prohorov’s theorem, stating that a set P0 of probability
measures is (weakly) relatively compact if and only if P0 is tight, i.e. if to each
ε > 0 we can find a compact set K ⊆ E with PK ≥ 1− ε for all P ∈ P0. Note in
particular that convergent sequences form relatively compact sets.

A closely related topology is the topology for vague convergence of Radon mea-
sures µ on a locally compact space E (Radon means that µ(K) < ∞ when K is
compact). This is defined as the initial topology defined by the set of mappings
µ → ∫ f dµ indexed by the continuous f with compact support.

Some standard references are Billingsley (1968), Dudley (1989), Ethier and
Kurtz (1986) and Pollard (1984). For D–spaces, see also Whitt (2002). For the
present purposes, elementary treatments of weak convergence in R like that of
Breiman (1968, Ch. 8) most often suffice.

For some (certainly not all) purposes the case of a general E can be reduced
to the compact and/or real case by noting that E is homomorphic to a subset
(necessarily a Gδ!) of [0, 1]N. This follows from the following simple lemma:

Lemma A1.1 If E is Polish, then there exists a countable class K of continuous
functions f : E → [0, 1] such that xn → x in E if and only if f(xn) → f(x) in
[0, 1] for all f ∈ K.

Proof. Take y1, y2, . . . as a countable dense subset, let d be some metric and let
fk,n : E → [0, 1] be continuous with fk,n(y) = 1 for d(y, yk) ≤ 1/n, fk,n(y) = 0
for d(y, yk) ≥ 2/n. Then K = {fk,n : k, n = 1, 2, . . .} is easily seen to have the
desired property. �

A2 Right–Continuity and the Space D

The stochastic processes {Xt}t∈T
encountered in this book have almost exclu-

sively a one–dimensional discrete (T = N) or continuous (T = [0,∞)) time
parameter. Occasionally also the doubly infinite time case T = Z or T = (−∞,∞)
is encountered. The state space E is usually of an elementary type, discrete (fi-
nite or countable, e.g. Z, Np), a well–behaved subset such as [0,∞), (a, b]p of
Euclidean space Rp or combinations like [0,∞) × {0, 1}. In any case, it is more
than sufficient to allow E to be a general Polish space which we then equip with
the Borel σ–algebra E. When we talk about a subset A of E, this is most often
assumed to be measurable (A ∈ E) without further notice.

The traditional definition of a stochastic process {Xt}t∈T
with state space

E means just an indexed set of measurable mappings from a probability space
(Ω, F, P) into a general measurable space (E, E). In discrete time, this is quite
sufficient, but difficulties arise in continuous time. This is due to the fact
that in discrete time the relevant events such as {Xt > 0 for all t}, {Xt → 0},{
sup0≤t≤T Xt > u

}
, etc. are virtually always measurable since they can be ob-

tained from elementary measurable sets of the form Xn ∈ An, An ∈ E, by
countable combinations of elementary set operations such as unions, intersec-
tions, differences, etc. In continuous time, this is not so, and in fact the examples
above are not measurable events. A variety of suggestions (separability, joint
measurability of Xt(ω) in t, ω, etc.) to overcome such difficulties have been con-
sidered, but the standard point of view in today’s literature is to assume that for
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a.a. (or even all) ω ∈ Ω the sample function {Xt(ω)}t∈T
belongs to a well–behaved

space of functions, of which the standard choice is D. This is quite sufficient for
the present purposes, and in fact the sample paths of the processes under study
exhibit most often even stronger regularity such as being piecewise continuous.

Noteworthy properties of a D–function x = {xt}t∈T
are:

(i) x is given by the values on any dense countable set, say Q (this is elementary
by right–continuity);

(ii) x is bounded on compact intervals (this is easy by a compactness
argument);

(iii) x has at most countably many jumps. We shall prove this in a more general
setting:

Proposition A2.1 If x : [0,∞) → E is right–continuous, then x is continuous
except at a (at most) countable collection of points.

Proof (adapted from Björnsson, 1988). In view of Lemma A1.1, we must show
that t → f(xt) has the desired property for each f ∈ K. That is, it is sufficient
to consider the case E = [0, 1]. For t > 0 let

y
(1)
t = lim

s↑t
xs − lim

s↑t
xs, y

(2)
t =

{
|xt − lims↑t xs| if y

(1)
t = 0,

0 otherwise.

Then if x is discontinuous at t, we have either y
(1)
t > 0 or y

(2)
t > 0, and it is

sufficient to show that for any ε > 0 the sets A(i) = {t : y
(i)
t > ε} are at most

countable. It is clear by right–continuity that

0 = lim
s↓t

y(1)
s = lim

s↓t
y(2)

s for any t ≥ 0. (A.2.1)

In particular, taking t = 0 gives A(i) ∩ (0, δ] = ∅ for some δ > 0 and hence

τ (i) = sup
{

δ > 0 : A(i) ∩ (0, δ] is at most countable
}

is nonzero. But if A(i) was uncountable, we would have τ (i) < ∞, implying
the existence of a sequence τ (i)(n) ∈ A(i) ∩ (τ (i),∞) with τ (i)(n) ↓ τ (i). Then

lims↓τ(i)y
(i)
s ≥ ε, contradicting (A.2.1). �

Define

Y
(i)
t,f (ω) = y

(i)
t

(
f(Xt(ω))

)
, f ∈ K (cf. Lemma A1.1),

Cu = {ω : Xt(ω) is continuous at t = u} =
⋂

f∈K

{
Y

(i)
t,f = 0, i = 1, 2

}
.

It follows by right–continuity that limt↑uf(Xt) and limt↑uf(Xt) are both mea-

surable. Hence Y
(i)

t,f and Cu are so, and it makes sense to define u to be a fixed
discontinuity of {Xt} if PCu < 1.

Corollary A2.2 A stochastic process {Xt} with right–continuous paths has at
most countably many fixed discontinuities.

Proof. By (A.2.1) and dominated convergence we have lims↓t EY
(i)

t,f = 0 for all t.

Hence exactly as in Proposition A2.1 we may conclude that EY
(i)

t,f = 0 except for
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t in a at most countable set N
(i)
f . But when t �∈ ∪i,fN

(i)
f , we have all Y

(i)
t,f = 0

a.s., implying PCt = 1. �

Corollary A2.3 A stationary process {Xt} with right–continuous paths has no
fixed discontinuities.

Proof. If t ∈ [0,∞) is a fixed discontinuity, then so is any s ∈ [0,∞) by stationar-
ity. Hence the set of fixed discontinuities equals [0,∞), which is a contradiction
since it is countable. �

We will occasionally need to consider random E–valued functions with a pos-
sibly finite (random) lifelength. We view these as measurable elements of the
space D0(E), defined as the subset of D(E ∪ {∆}) (where ∆ �∈ E is some ex-
tra point) of functions {xt}0≤t<∞ having the property xt = ∆ for all t ≥ ζ
where ζ = inf {t : xt = ∆}. We identify such a function with {xt}0≤t<ζ and the
lifelength with ζ. Since D0(E) is an open subset of D(E ∪ {∆}), the topology
and measurability structure can be defined in a straightforward way by taking
restrictions.

A3 Point Processes

A point process on E is in intuitive terms just a random collection of points in E.
The simplest standard example is the Poisson process on [0,∞). In fact almost
exclusively the point processes encountered in this book have E = [0,∞) or E =
R and satisfy some further regularity conditions: (a) there are no multiple points;
(b) the points do not accumulate. Processes of such types are easily brought in
one–to–one correspondence with sequences {Sn} of (0,∞)–valued r.v.’s (e.g. if
E = [0,∞), we may just let Sn be the position of the nth point to the right of
the origin) and thus no foundational difficulties arise. It may, however, frequently
be revealing also to have the general abstract formulation in mind. One then
requires E to be locally compact Polish and defines a point process on E to be a
N–valued random variable N , where N is the set of (Radon) counting measures
(thus the connection to the setting above is N(A) =

∑
I(Sn ∈ A).

A particular important class of point processes is the intensity-driven ones,
commonly referred to as Cox processes. Such a process is specified in terms of
its intensity function β(t), and the interpretation is at the intuitive level that
an epoch occurs in (t, t + h] w.p. β(t)h + o(h) independently of the past, at the
formal level that {Nt − B(t)} is a local martingale where B(t) =

∫ t

0
β(s) ds. A

convenient representation can be given in terms of an independent Poisson process
{N ′

t} with epochs {T ′
k}: the epochs {Tk} of {Nt} are given by Tk = B−1(T ′

k).
That this yields the desired interpretation follows at the intuitive level from

P(N(t, t + h] = 1) = P(N ′(B(t), B(t + h)] = 1)

= [B(t + h) − B(t)]h + o(B(t + h) − B(t))

and B(t + h) − B(t) = β(t)h + o(h); the formal verification of the martingale
property is straightforward when EB(t) < ∞ for all t, and otherwise just use the
B−1(n) as localization sequence.

Under mild absolute continuity requirements, any point process can be viewed
as intensity-driven, but this point of view may not always be the natural one.
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Of the many texts on point processes, we mention in particular Daley and
Vere-Jones (1988), Kallenberg (1976) and Matthes et al. (1978); there is also
much material in Baccelli and Brémaud (2002), Franken et al. (1982) and Rolski
et al. (1999). As mentioned above, the concept occurs in an elementary manner
in the present book. One piece of terminology that is used occasionally is that
of the intensity measure which is defined as the set function A → EN(A); thus
e.g. for the (time–homogeneous) Poisson process with intensity β, the intensity
measure is Lebesgue measure scaled by β.

A4 Stochastical Ordering

Let X, Y be real–valued r.v.’s with distributions F, G. We then say that X ≤ Y
in the sense of stochastical ordering (written (X ≤so Y ) if (a) P(X > t) ≤
P(Y > t) for all t, i.e. if F ≤ G or, equivalently, F ≥ G. Alternative formulations
in the same situation are “X is stochastically dominated by Y (or G),” “F is
stochastically smaller than G” and so on. Some of the facts that we use are the
equivalence of the definition (a) to either of (b) Ef(X) ≤ Ef(Y ) for all increasing

f , or (c) there exists r.v.’s X∗, Y ∗ with X
D
= X∗, Y

D
= Y ∗ and X∗ ≤ Y ∗ a.s.

The convex ordering ≤cx is defined by X ≤cx Y if (b′) Ef(X) ≤ Ef(Y ) for
all convex f . A special case of a theorem of Strassen (see e.g. Lindvall, 1992)

gives that this is equivalent to (c′) there exists X∗, Y ∗ with X
D
= X∗, Y

D
= Y ∗

and X∗ = E[Y ∗|X∗] a.s. or, equivalently, such that (X∗, Y ∗) is a martingale.
One usually interprets X ≤cx Y as one of the possible definitions of Y being
more variable than X; for example, taking f(x) = x and f(x) = −x shows that
EX = EY , and taking f(x) = x2 then yields VarX ≤ VarY . The characterization
in terms of the distribution function is (a′) EX = EY and

∫ ∞

x

F (y) dy ≤
∫ ∞

x

G(y) dy for all x. (A.4.1)

In between the two orderings is the increasing convex ordering ≤icx, defined
by X ≤cx Y if (b′′) Ef(X) ≤ Ef(Y ) for all nondecreasing convex f . Again by

Strassen, this is equivalent to (c′′) there exists X∗, Y ∗ with X
D
= X∗, Y

D
= Y ∗

and X∗ ≤ E[Y ∗|X∗] a.s. or, equivalently, such that (X∗, Y ∗) is a submartingale.
The characterization in terms of the distribution function is (a′′) = (A.4.1). If
X, Y are, e.g., steady–state waiting times in two different queueing systems, one
often interprets X ≤icx Y as the X–system having the better performance. For
example, taking f(x) = x shows that EX ≤ EY , and if one has Cramér–Lundberg
asymptotics F (x) ∼ Ce−γx, G(x) ∼ De−ηy , then γ ≥ η (from EeαX ≤ EeαY it
follows that EeαX < ∞ for 0 < α < η and therefore γ ≥ η).

General references for orderings of r.v.’s are Shaked and Shantikumar (1994),
Szekli (1995) and Müller and Stoyan (2002). For queueing applications in par-
ticular, see also Stoyan (1983), Chen and Yao (1999) and Baccelli and Brémaud
(2002).
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A5 Heavy Tails

The definition that a distribution B on (0,∞) is heavy–tailed invariably requires
that
∫∞
0

eεxB(dx) = ∞ for all ε > 0. This holds in particular if

lim
x→∞

B(x + y)

B(x)
= 1, (A.5.1)

for all y < ∞, and a distribution with this property is often referred to as long–
tailed. However, (A.5.1) is not strong enough to allow for asymptotic studies of
say waiting time tails, and for such purposes one usually works within the class
S of subexponential distributions, defined by the requirement

lim
x→∞

B∗n(x)

B(x)
= n (A.5.2)

for all n = 2, 3, . . . (actually, it suffices that (A.5.2) holds for n = 2). Some of the
fundamental properties are:

Proposition A5.1 (a) Any B ∈ S satisfies (A.5.1); (b) if B ∈ S, then for any
z > 1 there is a D < ∞ such that B∗n(u) ≤ B(u)Dzn for all u; (c) if A is a
distribution on (0,∞) such that A(x)/B(x) has a limit c ∈ [0,∞), then A∗B ∈ S
and A ∗ B(x) ∼ (1 + c)B(x). If c > 0, then also A ∈ S.

Two basic examples are regularly varying distributions, defined by B(x) =
L(x)/xα where α ≥ 0 and L(·) is slowly varying (L(tx)/L(x) → 1 for all t),

and Weibull–like distributions with B(x) ∼ c1x
γe−c2xβ

with 0 < β < 1. The
regularly varying distributions are the most heavy–tailed subexponential distri-
butions, whereas the Weibull–like ones have light–tailed distributions (with a
Gamma–like tail) as a boundary case when β ↑ 1. In between is the third main
example, the class of lognormal distributions.

Many specific investigations call for some added regularity, and there is an
abundance of subclasses of S in the literature designed for such purposes. Usu-
ally, all the three main examples are in such subclasses, but note that the regularly
varying case is sometimes the easiest to analyze. One of the main subclasses is
the class S ∗ introduced by Klüppelberg and defined by∫ x/2

0

B(x − y)B(y) dy ∼ B(x)
µB

2
. (A.5.3)

Surveys of heavy–tailed distributions, references and applications are in Em-
brechts et al. (1997) and Asmussen (2000). There is also much material (including
motivating statistical studies) in the volume edited by Adler et al. (1998).

A6 Geometric Trials

Lemma A6.1 Let {Fn}n=1,2,... be a filtration and {An} an adapted sequence of
events, τ = inf {n ≥ 1 : An} = inf {n : I(An) = 1}. If P(An+1 |Fn) ≥ θ a.s. for
all n and some θ > 0, then τ ≤so T where T is a r.v. with P(T = n) = θ(1−θ)n−1.
In particular, τ < ∞ a.s., Eτ ≤ 1/θ and Ezτ < ∞ whenever z(1 − θ) < 1.



A7. Semigroups of Positive Numbers 413

Proof. For n ≥ 0,

P(τ ≥ n + 1) = P(Ac
1 · · ·Ac

n) = E
[
I(Ac

1) · · · I(Ac
n−1) P(Ac

n |Fn−1)
]

≤ (1 − θ)P(Ac
1 · · ·Ac

n−1) ≤ · · · ≤ (1 − θ)n.

�

A7 Semigroups of Positive Numbers

For G ⊆ (0,∞), we say that G is lattice with span h > 0 if h is the greatest
common divisor of the g ∈ G and nonlattice if no common divisor exists.

Denote by G+ the additive semigroup generated by G and by G± the additive
group. Thus, G+, G± are the sets of all finite linear combinations a1g1+ · · ·+angn

with g1, . . . , gn ∈ G and a1, . . . , an ∈ N\{0}, resp. a1, . . . , an ∈ Z\{0}.
The example we have in mind is G being the support of a measure on (0,∞),

and the following result is a key tool for ergodic theory for Markov chains and
renewal theory:

Theorem A7.1 (a) If G is lattice with span h, then there is a n0 ∈ N such that
{n0h, (n0 + 1)h, . . .} ⊆ G+; (b) if G is nonlattice, then G+ is dense at ∞ in the
sense that limx→∞ d(x,G+) = 0 where d(x,G+) = inf {|x − g| : g ∈ G+}.
Lemma A7.2 Assume m > 0, m ∈ G±. Then nm ∈ G+ for all large n ∈ N.

Proof. Assume w.l.o.g. that m = 1 and write 1 = m =
∑j

1 aigi with ai ∈ Z,
g1, . . . , gj ∈ G, let k =

∑n
1 |ai|gi and n0 = k2. If n ≥ n0, we can write n = sk + t

with s ≥ k, 0 ≤ t < k. Hence n =
∑j

i=1(s|ai|+tai)gi is in G+ since s−t ≥ k−k = 0
and hence s|ai| + tai ≥ 0. �

Proof of Theorem A7.1. In (a), assume w.l.o.g. that h = 1 and let m be the
minimal positive element of G±. If m > 1, there would exist d ∈ G which is not a
multiple of m, i.e. km < d < (k+1)m for some k = 1, 2, . . .. Then 0 < d−km < m
which contradicts the choice of m since d − km ∈ G±. The result then follows
immediately from Lemma A7.2.

In (b), it suffices by Lemma A7.2 to show that m = 0 where m =
inf {m∗ : m∗ > 0, m∗ ∈ G±}. But if m > 0, we can find first d ∈ G which is
not a multiple of m, i.e. 0 < d−km < m for some k. Then also 0 < d−km∗ < m
for some m∗ ∈ G± which is a contradiction since d − km∗ ∈ G±. �

A8 Total Variation Convergence

Let (E, E) be a measurable space and ν a signed measure on (E, E). Then the
total variation (t.v.) of ν is defined as ‖ν‖ = supA∈E ν(A). If ν ≥ 0, then ‖ν‖ =
ν(E). However, the main case for our applications is ν = P′ − P′′ with P′, P′′

probabilities. Then 2‖ν‖ = ν(E+) − ν(E−), where E = E+ ∪ E− is the Jordan–
Hahn decomposition of E w.r.t. ν. We say that νn → ν in t.v. if ‖νn−ν‖ → 0, i.e.
if νn(A) → ν(A) uniformly in A ∈ E, which in turn is easily seen to be equivalent
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to
∫

g dνn → ∫ g dν uniformly in the measurable g with ‖g‖∞ ≤ 1. Similarly,
Xn → X in t.v. means that P(Xn ∈ ·) → P(X ∈ ·) in t.v.

Taking g continuous shows that t.v. convergence entails weak convergence. One
important example of t.v. convergence is provided by Scheffe’s theorem (Billings-
ley, 1968, p. 224) which states that if νn, ν are probabilities with densities fn, f
w.r.t. µ, and fn(x) → f(x) for µ–a.a. x, then νn → ν in t.v. This means in partic-
ular that for a discrete E, the notions of weak convergence and t.v. convergence
coincide. In fact, if µ is counting measure on E, then νn → ν and E being discrete
implies that

fn(x) = νn({x}) → ν({x}) = f(x) for all x.

Note that in much of the literature, the definition of ‖ν‖ differs by a factor of
2. Thus, for example, in the coupling inequality VII.(2.1) the r.h.s. is frequently
encountered as 2P(T > t) rather than P(T > t).

A9 Transforms

Transforms of a distribution F are denoted by F̂ [·] which may mean either

characteristic function (ch.f.) F̂ [s] =
∫

eisx F (dx), Laplace transform F̂ [s] =∫
e−sx F (dx), moment generating function (m.g.f.) F̂ [s] =

∫
esx F (dx), or, if

F is concentrated on Z with point probabilities {fn}, (probability) generating

function F̂ [s] = f̂ [s] =
∑∞

−∞ snfn.
In the text, we use without further reference a number of standard facts such

as that F is uniquely determined by F̂ , that F̂ ∗ G = F̂ Ĝ, that moments can be
expressed in terms of derivatives of F̂ and so on.

The cumulant generating function (c.g.f.) is log F̂ [s], where F̂ [s] is the m.g.f.
A basic property is that its kth derivative at 0 is the kth cumulant of F (the
first cumulant is the mean, the second the variance, the third the central third
moment; for k ≥ 4 the expressions quickly become less easily interpreted). For
formulas connecting higher moments and cumulants, see Smith (1995).

In the book, we do no treat numerical transform inversion which of course is
important in practice. Some selected references are Grübel (1991) and Abate and
Whitt (1992, 1995).

A10 Stopping Times and Wald’s Identity

Let T = N or T = [0,∞), and let {Ft}t∈T
be a filtration, i.e. a nondecreasing

family of σ–fields. A random time τ ≤ ∞ is a stopping time w.r.t. to {Ft}t∈T
if

{τ ≤ t} ∈ Ft for all t ∈ T. (A.10.1)

The stopping time σ–field Fτ (sometimes called the pre–τ–field) is then defined
as the collection of all sets A ∈ F, where F = σ(∪t∈TFt), such that A∩ {τ ≤ t}
belongs to Ft for all t ∈ T.

In applications, it is convenient to note that measurability is an automatic
result of (A.10.1) and needs not be checked separately, and also that for T = N
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(A10.1) is equivalent to {τ = n} ∈ Fn for all n ∈ N and A ∈ Fτ . The following
result is standard and easy to prove:

Proposition A10.1 Let τ be a stopping time. Then: (a) τ is Fτ–measurable;
(b) if {Xt} is a stochastic process such that Xt is Ft–measurable for each t ∈ T,
and that the paths are right–continuous when T = [0,∞), then XτI(τ < ∞) is
Fτ–measurable; (c) if σ is an additional {Ft}–stopping time, then so are σ ∧ τ ,
σ ∨ τ , σ + τ . If σ ≤ τ , then Fσ ⊆ Fτ .

Part (a) of the following result is referred to as Wald’s identity (sometimes
called also Wald’s lemma), and part (b) as Wald’s second moment identity.
For a proof and a thorough discussion, see e.g. Neveu (1972, pp. 83–85).
The result states that optional stopping of the martingales {Sn − nµ} and{
(Sn − nµ)2 − nσ2

}
is justified under very weak conditions.

Proposition A10.2 Let τ be an a.s. finite stopping time w.r.t. {Fn}n∈N
. Fur-

ther, let X1, X2, . . . be i.i.d. r.v.’s such that for any n Xn is Fn–measurable and
Xn+1, Xn+2, . . . are independent of Fn, and write Sn = X1 + · · ·+Xn, µ = EX1.
Then:
(a) if either E|X1| < ∞ and Eτ < ∞, or X1 ≥ 0, then ESτ = µEτ ;
(a) if σ2 = VarX1 < ∞ and Eτ < ∞, then E(Sτ − τµ)2 = σ2Eτ .

The elementary case is of course Fn = σ(X1, . . . , Xn). In general, one might
alternatively formulate the condition by X1, X2, . . . being i.i.d. and {τ ≤ n} being
independent of Xn+1, Xn+2, . . . for any n. This means that τ is a randomized
stopping time. Further examples of this notion occur in VII.3 and X.3.

A11 Discrete Skeletons

Limit theory for continuous–time stochastic processes (T = [0,∞)), being con-
cerned with the question of existence of limits of functions like f(t) = P(Xt ∈ A)
or f(t) = Eg(Xt), can sometimes be reduced to the discrete case T = N by means
of the study of discrete skeletons {Xnδ}n∈N

. For example, elementary topology
yields:

Proposition A11.1 If f : [0,∞) → R is uniformly continuous and λ(δ) =
limn→∞ f(nδ) exists for each δ > 0, then λ ≡ λ(δ) does not depend on δ, and
furthermore f(t) → λ as t → ∞ continuously.

It is frequently much easier to show that a f(t) of the type above is just
continuous rather than uniformly continuous. In fact, this is sufficient:

Proposition A11.2 The conclusion of Proposition A11.1 holds true if f is
continuous and λ(δ) = limn→∞ f(nδ) exists for each δ > 0.

This result is known in the literature as the Croft–Kingman lemma. The proof
(Kingman, 1963) is again real topology, but much less elementary than for
Proposition A11.1.
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Birkhäuser.

A.S. Alfa and S. Chakravarty, eds. (1997) Matrix–Analytic Methods for Stochastic
Models. Marcel Dekker.

A.S. Alfa and S. Chakravarty, eds. (1998) Advances in Matrix Analytic Methods
for Stochastic Models. Notable Publications, New Jersey.

A.O. Allen (1978) Probability, Statistics and Queueing Theory with Computer
Applications. Academic Press.

G. Alsmeyer (1991) Erneuerungstheorie. B.G. Teubner.
G. Alsmeyer (1994) Blackwell’s renewal theorem for certain linear submartingales

and coupling. Acta Appl. Math. 34, 135–150.
G. Alsmeyer (1997) The Markov renewal theorem and related results. Markov

Proc. Rel. Fields 3, 103–127.
V. Anantharam (1988) How large delays build up in a GI/GI/1 queue. Queueing

Systems 5, 345–368.
W.J. Anderson (1991) Continuous–Time Markov Chains. An Applications–

Oriented Approach. Springer–Verlag.



Bibliography 417

C.W. Andersson (1970) Extreme value theory for a class of discrete distributions
with applications to some stochastic processes. J. Appl. Probab. 7, 99–113.

D. Anick, D. Mitra and M.M. Sondhi (1982) Stochastic theory of a data–handling
system with multiple sources. Bell System Tech. J. 61, 1871–1894.

K. Arrow, S. Karlin and H. Scarf (1958) Studies in the Mathematical Theory of
Inventory and Production. Stanford University Press.

J.R. Artalejo (1999) A classified bibliography of research on retrial queues. Top
7, 187–211.

S. Asmussen (1982) Conditioned limit theorems relating a random walk to its
associate, with applications to risk reserve processes and the GI/G/1 queue.
Adv. Appl. Probab. 14, 143-170.

S. Asmussen (1989) Aspects of matrix Wiener–Hopf factorization in applied
probability. The Mathematical Scientist 14, 101–116.

S. Asmussen (1992a) Phase–type representations in random walk and queueing
problems. Ann. Probab. 20, 772–789.

S. Asmussen (1992b) Light traffic equivalence in single–server queues. Ann. Appl.
Probab. 2, 555–574.

S. Asmussen (1995) Stationary distributions via first passage times. Advances in
Queueing: Models, Methods and Problems (J. Dshalalow, ed.), 79–102. CRC
Press.

S. Asmussen (1998a) Subexponential asymptotics for stochastic processes: ex-
tremal behaviour, stationary distributions and first passage probabilities.
Ann. Appl. Probab. 8, 354–374.

S. Asmussen (1998b) Extreme value theory for queues via cycle maxima. Extremes
1, 137–168.

S. Asmussen (1998c) A probabilistic look at the Wiener-Hopf equation. SIAM
Review 40, 189–201.

S. Asmussen (2000) Ruin Probabilities. World Scientific.
S. Asmussen and M. Bladt (1996) Renewal theory and queueing algorithms

for matrix–exponential distributions. Matrix–Analytic Methods in Stochastic
Models (A.S. Alfa and S. Chakravarty, eds.), 313–341. Marcel Dekker.

S. Asmussen and S. Foss (1993) Renovation, regeneration, and coupling in
multiple–server queues in continuous time. Frontiers in Pure and Applied
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S. Asmussen, V. Kalashnikov, C. Klüppelberg, D. Konstantinides and G. Tsitsi-
asvili (2002) A local limit theorem for random walk maxima with heavy tails.
Statist. Probab. Letters 56, 399–404.

S. Asmussen and O. Kella (2000) A multidimensional martingale for Markov
additive processes and its applications. Adv. Appl. Probab. 32, 376–393.

S. Asmussen and O. Kella (2001) On optional stopping of some exponential mar-
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S. Axsäter (2000) Inventory Control. Kluwer
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R.M. Dudley (1989) Real Analysis and Probability. Chapman & Hall.
N.G. Duffield and N. O’Connell (1995) Large deviations and overflow probabilities

for the general single–server queue, with applications. Math. Proc. Camb.
Philos. Soc. 118, 363–374.

P. Dupuis and K. Ramanan (1998) A Skorokhod problem and large deviations
analysis of a processor sharing model. Queueing Systems 28, 109–124.

R. Durrett (1991) Probability: Theory and Examples. Wadsworth & Brooks/Cole.
R.J. Elliot, L. Aggoun and J.B. Moore (1995) Hidden Markov Models. Estimation

and Control. Springer–Verlag.
M. El–Taha and S. Stidham Jr. (1999) Sample–Path Analysis of Queueing

Systems. Kluwer.
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K. Sato (1999) Lévy Processes and Infinitely Divisible Distributions. Cambridge
University Press.

H.H. Schaefer (1970) Topological Vector Spaces. Springer–Verlag.
R. Schassberger (1973) Warteschlangen. Springer–Verlag.
A. Scheller–Wolf (2003) Necessary and sufficient for delay moment for multiserver

queues: why s slow servers is better than one fast for heavy–tailed systems.
Opns. Res. (to appear).

A. Scheller–Wolf and K. Sigman (1997) Delay moment for FIFO GI/G/s queues.
Queueing Systems 25, 97–95.

E. Seneta (1994) Non–Negative Matrices and Markov Chains. Springer–Verlag.
B. Sengupta (1989) Markov processes whose steady–state distribution is matrix–

exponential with an application to the GI/PH/1 queue. Adv. Appl. Probab.
21, 159–180.



Bibliography 429

L.I. Sennot (1999) Stochastic Dynamic Programming and the Control of Queueing
Systems. Wiley.

R. Serfozo (1999) Introduction to Stochastic Networks. Springer–Verlag.
M. Shaked and J.G. Shantikumar (1994) Stochastic Orders and Their Applica-

tions. Academic Press.
M. Shalmon (1988) Analysis of the GI/G/1 queue and its variations via the LCFS

preemptive resume discipline and its random walk interpretation. Probab. Th.
Eng. Inf. Sc. 2, 215–230.

A.N. Shiryaev (1996) Probability. Springer–Verlag.
A. Shwarz and A. Weiss (1995) Large Deviations for Performance Analysis.

Chapman & Hall.
D. Siegmund (1976a) The equivalence of absorbing and reflecting barrier problems

for stochastically monotone Markov processes. Ann. Probab. 4, 914–924.
D. Siegmund (1976b) Importance sampling in the Monte Carlo study of sequential

tests. Ann. Statist. 4, 673–684.
D. Siegmund (1979) Corrected diffusion approximations in certain random walk

problems. Adv. Appl. Probab. 11, 701–719.
D. Siegmund (1985) Sequential Analysis. Springer–Verlag.
K. Sigman (1988) Queues as Harris recurrent Markov chains. Queueing Systems

3, 179–198.
K. Sigman (1992) Light traffic for workload in queues. Queueing Systems 11,

429–442.
K. Sigman (1995) Stationary Marked Point Processes: An Intuitive Approach.

Chapman & Hall.
E.A. Silver, D.F. Pyke and R. Peterson (1998) Inventory Management and

Production Planning and Scheduling (3rd ed.). Wiley.
P.J. Smith (1995) A recursive formulation of the old problem of obtaining

moments from cumulants and vice versa. The American Statistician 49,
217–218.

W.L. Smith (1953) Distribution of queueing times. Proc. Roy. Soc. 49, 449–461.
W.L. Smith (1955) Regenerative stochastic processes. Proc. Roy. Soc., Ser. A,

232, 6–31.
F. Spitzer (1976) Principles of Random Walk (2nd ed.). Springer–Verlag
W. Stadje (1993) A new look at the Moran dam. J. Appl. Probab. 30, 489–495.
C. Stone (1966) On absolutely continuous distributions and renewal theory. Ann.

Math. Statist. 37, 271–275.
D. Stoyan (1983) Comparison Methods for Queues and Other Stochastic Models

(D.J. Daley, ed.). Wiley.
B. Sundt (1993) An Introduction to Non–Life Insurance Mathematics. Verlag

Versicherungswirtschaft e.V., Karlsruhe.
B. Sundt and J.L. Teugels (1995/97) Ruin estimates under interest force I–II.

Insurance: Mathematics and Economics 16, 7–22; ibid. 19, 85–94.
B. Sundt and J.L. Teugels (1997) The adjustment coefficient in ruin estimates

under interest force. Insurance: Mathematics and Economics 19, 85–94.
B. Sundt and J.L. Teugels, eds. (2004) Encyclopedia of Actuarial Sciences (in

production). Wiley.
R. Syski (1960) Introduction to Congestion Theory in Telephone Systems. Oliver

and Boyd.



430 Bibliography

R. Szekli (1995) Stohastic Orderings and Dependence in Applied Probability.
Lecture Notes in Statistics 97. Springer–Verlag.
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arrival theorem, 133–135
asynchronous transfer mode, 307
atom, 16, 383

backward differential equation, 48–50,
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backward recurrence time, 8, 14, 15,
38, 140–143, 150–156, 170,
172, 348, 405

balking, 72
BCMP network, 135
Bessel function, 98–103, 105–107
birth–death process, 46–48, 50, 59,

71–80, 114, 116, 127, 131, 182,
307, 390

Blumenthal’s 0–1 law, 37
Boltzmann’s law, 376
bottleneck behaviour, 121
branching process, 46, 113, 284
Brownian motion, 38, 96–97, 174,

244, 246, 248, 258–260, 288,
310, 311, 362, 365

reflected, 97, 136, 174, 258–260
between two barriers, 258, 394

busy cycle, 103, 105, 107, 168, 220,
267, 272, 291, 298–301

busy period, 102–105, 107, 110, 220,
267, 273, 284, 300, 327

cadlag, see Skorokhod’s D–space
Campbell’s formula, 219
central limit theory, 30, 55, 105–106,

161–162, 178–179, 248, 267,
301, 313, 355, 363, 367–368,
404

Cesaro average, 18, 54, 69, 177–179,
203, 278, 313–314, 385

change of measure, 177, 358–361
Chapman–Kolmogorov equations, 33,

39, 261
characteristic triplet, 246, 310
Chebycheff’s covariance inequality,

272
Chernoff bound, 357
Choquet–Deny lemma, 158
CLT, see central limit theory
communicating states, 5–6
compensation, 246
competing risks, 45
component, 186, 194, 198
continuity of stationary distributions,

75, 87, 284–286
convergence rate, 19, 164, 191
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194–197, 356–357

convex conjugate, 355
convex order, 284, 336–338, 411

increasing, 336–339, 411
coupling, 11, 189–197, 205–206, 253,

342, 348, 402, 411
ε–, 192–194
broad sense, 189, 190
inequality, 190–191, 414
maximal, 197
narrow sense, 190
Ornstein, 227
shift, 197

Cox process, 217, 337, 410
Coxian distributions, 85
Cramér’s condition (C), 189, 355
Cramér–Lundberg asymptotics,

68, 165, 365–369, 371, 373,
378–379, 395, 402, 404, 411

Croft–Kingman lemma, 415
cumulant, 106, 248, 312, 352, 414
cumulative process, 178–179, 313
current life, 151–153, 173, 213
customer class, 113, 125–134
cycle maximum, 298–301, 368, 395
cyclic class, 17, 28, 204

dam, see storage process
finite, 390, 394
infinitely deep, 391
Moran, 395

demography, see population model
departure process, 115–117, 122, 125
detailed balance, 114
diagonalization, 49, 56, 89–90, 242,

329–331, 335
diffusion, 263, 361
diffusion approximation, see

functional CLT
corrected, 369–373

directly Riemann integrable, 154–158,
160, 163, 170, 187, 209

discrete skeleton, 51, 54, 57, 106, 415
distributional Little’s law, 277
doubly exponential distribution, 92,

96, 109, 230
doubly stochastic, 15
duality, 260–264, 392–396, 399–401

EOQ model, 396
ergodic theorem, 19, 219

for Markov chains, 17, 202
Erlang distribution, 62, 81, 84, 90,

153, 349, 351, 389
excursion, 174, 241, 320, 321, 394, 406
exit vector, 83
explosion, 40–41, 43–44, 47–48, 53,

73, 117
exponential change of measure, 99,

162–165, 352–379
exponential ergodicity, see

convergence rate, exponential
exponential family, 352–354, 364, 369
extinction, 7, 24
extreme value theory, 180, 183–185,

298, 369

FCFS, 63, 108–109, 340–343
FIFO, see FCFS
filtration, 37
finite capacity model, 389–396
fixed discontinuity, 409
fluid limit, 136
fluid model, 300, 301, 306–308,

328–330, 334–335, 394
forward differential equation, 48–50
forward recurrence time, 9, 14, 38, 88,

140–143, 150–156, 172, 188,
193–196, 224, 276, 405

Foster’s criteria, 24, 282
Fréchet distribution, 184, 298
fractional Brownian motion, 301, 369
functional CLT, 267, 288–290
fundamental matrix, 31, 55

G–matrix, 322–324, 328, 331–334
Gärtner–Ellis theorem, 357, 369
Gaussian process, 219, 301, 369
Gaussian random walk, 243
generator, 38, 263, 361, 400
geometrical ergodicity, see

convergence rate, exponential
geometrical trial, 18, 26, 200, 346, 412
Girsanov’s theorem, 361
Gumbel distribution, 184, 298, 369

H = λG, 279
harmonic function, 20–21, 24, 25, 30
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Harris chain, 198–206, 325, 345–348,
383, 384

heavy tails, 113, 165–167, 184,
295–301, 344, 354, 369, 387,
402, 404–406, 412

heavy traffic, 136, 255, 286–290, 295,
366, 369–373

heterogeneous servers, 80, 328
Hewitt–Savage 0–1 law, 158, 225, 226
hidden Markov model, 311
h–transform, 24
Hurst parameter, 301
hydrodynamical limit, 136
hyperexponential distribution, 62, 81,

153, 389

idle period, 103, 267, 271, 273, 274
imbedded Markov chain, see Markov

chain, imbedded
importance sampling, 374, 376
increasing convex order, 336–339, 411
infinitely divisible distribution,

244–250
insensitivity, 78, 123–124, 128, 130
instantaneous state, 39, 44
insurance mathematics, 401
insurance risk, see ruin probability
integral equation

Lindley, 94, 96, 109, 229, 268
Lotka, 143, 210
renewal, see renewal equation
Volterra, 387
Wiener–Hopf, 96, 229

integration by parts, 251, 255, 274
intensity, 40, 44–50, 304, 337, 410
intensity matrix, 38
intensity measure, 88, 152, 217, 246,

411
invariant σ–field, 19, 197, 219
inventory model, 61, 63, 396–398
inverse Gaussian distribution, 85,

288, 362–364, 367
irreducibility, 6, 13, 26, 50, 91
iterative algorithm, 241–242, 321,

323, 331–335
Ito’s formula, 361

Jackson network, 117–123, 131,
134–135

closed, 120–122, 134–135
generalized, 136

Kelly network, 135
Kelly’s lemma, 59, 124, 127, 129
Kendall classification, 61–63
Kiefer–Wolfowitz vector, 341
Kolmogorov consistency, 12, 33, 247,

252, 358, 407
Kolmogorov’s loop criterion, 59
Krein–Rutman theorem, 29
Kronecker product, 324, 327

 = λw, see Little’s formula
Lévy exponent, 104, 107, 245–250
Lévy measure, 246
Lévy process, 96–97, 104, 229,

244–250, 253–260, 284, 309,
360–362, 364–366, 381, 387,
392

characteristic triplet of, 246
reflected, 96–97, 253–260
spectrally positive, 250, 254, 256

Lévy–Khintchine representation, 245
ladder epoch, 220–223, 229–232
ladder height distribution, 220–222,

224–225, 227–243, 268, 272,
292, 296, 314, 322, 328, 357,
366–367, 405

ladder point, 223
Laplace distribution, see doubly

exponential distribution
Laplace transform, 47, 83–85, 87, 105,

107, 113, 146, 149, 232, 257,
259, 403–404, 414

inversion, 218, 239, 373, 414
large deviations, 136, 355–357, 369,

375, 376
lattice or nonlattice, 153–157, 170,

186, 208, 222, 225, 273, 354,
413

strongly nonlattice, see Cramér’s
condition (C)

LCFS, 63, 109–110, 130, 284
lead time, 397
length–biasing, 177
LIFO, see LCFS
light tails, 184, 352–379, 402, 404
light traffic, 290–295
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likelihood ratio, 177, 358, 359
Lindley process, 23, 92–97, 220, 237,

250, 260, 262, 267, 280, 298,
336, 341, 344

linear progression algorithm, 332
Little’s formula, 71, 276, 278, 284
local balance, 58
local time, 251, 256–260, 310, 393
logarithmic asymptotics, 357, 369,

375
logarithmic reduction algorithm, 333
lognormal distribution, 412
long–range dependence, 301
long–tailed distribution, see heavy

tails
Lorden’s inequality, 160
loss system, 67, 78–80, 123–124, 307,

395
Loynes’s lemma, 252–253, 255, 260,

263, 336, 400
Lundberg equation, 165, 238, 354,

365
Lundberg’s inequality, 365
Lyapounov function, see test function

M–matrix, 56
machine repair problem, 79
Malthusian parameter, 163
manufacturing system, 71, 135
MAP, see Markov additive process or

Markovian arrival process
Markov additive process, 229, 302,

309–317, 324, 328, 330,
376–379, 394, 400

Markov chain, 3–38, 57, 181, 191–192,
264, 286, 361

ergodic, 17, 18, 25, 74, 191–192
Harris, see Harris chain
imbedded, 40, 50, 70, 93, 236,

279–284, 318, 322, 349–351,
384

inhomogeneous, 57
Monte Carlo, 88
on a subset, 14, 16, 75, 201–202,

212, 319, 320, 389–391
Markov process, 7, 32–59, 139, 192,

198–206, 260–261, 309, 348,
359–360

ergodic, 52, 58, 321

jump, 39–59
minimal, 41–45, 54
piecewise deterministic, 387
stochastically monotone, 260

Markov–modulated Poisson process,
213, 302, 306

Markov–modulation, 264, 302, 307,
322, 324, 336

Markovian arrival process, 302–306,
308, 322

martingale, 20–24, 26, 31, 38, 56,
104–105, 107, 158, 182, 235,
254–260, 285, 289, 290, 312,
329–331, 335, 358–359, 362,
411, 415

backward, 247, 249, 254, 285, 289
Dynkin, 38, 56
Kella–Whitt, 255–260
likelihood ratio, 358, 362, 376
local, 38, 255, 361, 410
Wald, 104, 181, 235, 255, 258, 312,

329–331, 362, 376, 392, 394,
403

matrix–geometric method, 243
mixing, 179
mixture, 81, 84
Mogulskii’s theorem, 357, 376
Monte Carlo method, see simulation
Moran’s model for the dam, 395
multiplicative functional, 359, 361

natural scale, 182
negative customers, 71
netput, 93, 136, 236, 240, 307, 308,

394, 399
number in system, see queue length

oblique reflection, 136
occupation measure, 12, 224, 225,

228, 299, 315, 325
on–off model, 301, 307
Orey’s C–set theorem, 205
Ornstein–Uhlenbeck process, 206
overshoot distribution, 42, 87, 195,

221, 224, 233, 239, 294,
364–366, 370–372, 397, 404

Palm theory, 108, 213–219, 303, 327,
337
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Palm–Jacobæus formula, 80
Pareto distribution, 404
PASTA, 109, 133, 178, 218, 219, 385
periodicity, 6, 9, 17, 19, 26, 28, 51, 54,

171, 202, 204, 206, 219, 268,
346

Perron–Frobenius theory, 25–29, 55,
83, 210, 305, 312

phase generator, 83
phase representation, 83, 242

reversed, 91, 124, 130
phase–type distribution, 80–92, 123,

128, 148, 234, 239–243, 260,
303, 306–308, 324, 326, 327,
389, 394

Poisson’s equation, 30–31, 55
Polish space, 33, 407–408, 410
Pollaczeck–Khinchine formula, 238,

257, 281, 296, 387, 405
population model, 7, 24, 46, 76, 80,

117, 143, 163, 210
preemptive, 65, 284

non, 65, 109
priority class, 64
processor sharing, see PS
product–form, 132, 135
Prohorov’s theorem, 408
PS, 63, 80, 111–113, 118, 130

generalized, 113

QBD, see quasi birth–death process
quasi birth–death process, 323–324,

328, 332–334
quasi–reversibility, 125–134
quasi–stationary distribution, 16, 19
queue

D/G/1, 337
D/M/1, 295
GI/D/1, 337
GI/G/1, 92, 168, 266–301, 337,

341, 353, 356, 366, 368, 399
GI/G/s, 64, 300, 340–348, 369
GI/M/1, 70, 93, 236, 238, 279–281,

318, 366
GI/M/1 type, 319–322, 328, 331
GI/M/s, 348–351
GI/PH/1, 239–243, 319, 326, 328
GI/PH/s, 327, 351
M/D/1, 295

M/Ek/1, 97
M/G/1, 70, 95, 97, 109, 236–238,

275, 281–284, 296, 301, 318,
336, 337, 367, 381, 387, 394,
399, 402

M/G/1 type, 322–323, 328, 331
M/G/∞, 115
M/M/1, 46, 50, 75–76, 95, 96,

98–113, 176, 181, 230, 259,
260, 354

finite, 77, 390
Markov–modulated, 322, 324
multiclass, 127, 130

M/M/∞, 76–77, 182
M/M/m, 77
M/PH/1, 130, 242, 394
M/PH/·, 128–130
M/PH/∞, 130
MArP/G/1, 322
MArP/PH/1, 308, 324, 328
bottleneck, 121
doubly infinite, 98, 103, 107, 110
fork–join, 71
join–the–shortest, 71
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